- Aastveit, K. A., Fastø, T. M., Granziera, E., Paulsen, K. S., & Torstensen, K. N. (2020). Nowcasting Norwegian household consumption with debit card transaction data. Norges Bank Working Paper 17/2020.
Paper not yet in RePEc: Add citation now
- Baumeister, C., Leiva‐León, D., & Sims, E. (2022). Tracking weekly state‐level economic conditions. Review of Economics and Statistics.
Paper not yet in RePEc: Add citation now
- Bokun, K. O., Jackson, L. E., Kliesen, K. L., & Owyang, M. T. (2023). FRED‐SD: A real‐time database for state‐level data with forecasting applications. International Journal of Forecasting, 39(1), 279–297.
Paper not yet in RePEc: Add citation now
- Carriero, A., Clark, T. E., Marcellino, M., & Mertens, E. (2022). Addressing COVID‐19 outliers in BVARs with stochastic volatility. Review of Economics and Statistics.
Paper not yet in RePEc: Add citation now
- Chernis, T., Cheung, C., & Velasco, G. (2020). A three‐frequency dynamic factor model for nowcasting Canadian provincial GDP growth. International Journal of Forecasting, 36(3), 851–872.
Paper not yet in RePEc: Add citation now
- Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal‐trend decomposition procedure based on Loess. Journal of Official Statistics, 6(1), 3–33.
Paper not yet in RePEc: Add citation now
- Cox, M., Triebel, J., Linz, S., Fries, C., Flores, L. F., Lorenz, A., Ollech, D., Dietrich, A., LeCrone, J., & Webel, K. (2020). Täglicher Lkw‐Maut‐Fahrleistungsindex aus digitalen Prozessdaten der Lkw‐Mauterhebung. WISTA—Wirtschaft und Statistik, 4, 63–76.
Paper not yet in RePEc: Add citation now
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263.
Eraslan, S., & Götz, T. B. (2021). An unconventional weekly economic activity index for Germany. Economics Letters, 204, 109881.
Fezzi, C., & Fanghella, V. (2021). Tracking GDP in real‐time using electricity market data: Insights from the first wave of COVID‐19 across Europe. European Economic Review, 139, 103907.
Fornaro, P. (2020). Nowcasting industrial production using uncoventional data sources. ETLA Working Papers No. 80.
Gil, M., Leiva‐León, D., Perez, J., & Urtasun, A. (2019). An application of dynamic factor models to nowcast regional economic activity in Spain. Banco de España Occasional Papers No. 1904.
Götz, T. B., & Knetsch, T. A. (2019). Google data in bridge equation models for German GDP. International Journal of Forecasting, 35(1), 45–66.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Harvey, D. I., Leybourne, S. J., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2), 281–291.
- Hauf, S., Stehrenberg, S., & Zwick, M. (2020). EXDAT—Experimentelle Daten und Methoden für eine innovative Statistik. WISTA—Wirtschaft und Statistik, 4, 51–62.
Paper not yet in RePEc: Add citation now
Henzel, S., Lehmann, R., & Wohlrabe, K. (2015). Nowcasting regional GDP: The case of the Free State of Saxony. Review of Economics, 66(1), 71–98.
Janzen, B., & Radulescu, D. (2020). Electricity use as a real‐time indicator of the economic burden of the COVID‐19‐related lockdown: Evidence from Switzerland. CESifo Economic Studies, 66(4), 303–321.
Jardet, C., & Meunier, B. (2022). Nowcasting world GDP growth with high‐frequency data. Journal of Forecasting, 41(6), 1181–1200.
Kholodilin, K. A., Siliverstovs, B., & Kooths, S. (2008). A dynamic panel data approach to the forecasting of the GDP of German Länder. Spatial Economic Analysis, 3(2), 195–207.
Koop, G., McIntyre, S., & Mitchell, J. (2020). UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting. Journal of the Royal Statistical Society Series A, 183(1), 91–119.
Koop, G., McIntyre, S., Mitchell, J., & Poon, A. (2020). Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970. Journal of Applied Econometrics, 35(2), 176–197.
- Kuck, K., & Schweikert, K. (2021). Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models. Journal of Forecasting, 40(5), 861–882.
Paper not yet in RePEc: Add citation now
Lehmann, R. (2023). The forecasting power of the ifo Business Survey. Journal of Business Cycle Research, 19(1), 43–94.
Lehmann, R., & Reif, M. (2021). Predicting the German economy: Headline survey indices under test. Journal of Business Cycle Research, 17(2), 215–232.
Lehmann, R., & Wikman, I. (2023). Quarterly GDP estimates for the German states: New data for business cycle analyses and long‐run dynamics. CESifo Working Paper No. 10280.
- Lehmann, R., & Wohlrabe, K. (2014). Regional economic forecasting: State‐of‐the‐art methodology and future challenges. Economics and Business Letters, 3(4), 218–231.
Paper not yet in RePEc: Add citation now
Lehmann, R., & Wohlrabe, K. (2015). Forecasting GDP at the regional level with many predictors. German Economic Review, 16(2), 226–254.
- Lehmann, R., & Wohlrabe, K. (2017). Boosting and regional economic forecasting: The case of Germany. Letters in Spatial and Resource Sciences, 10(2), 161–175.
Paper not yet in RePEc: Add citation now
- Lehmann, R., Leiss, F., Litsche, S., Sauer, S., Weber, M., Weichselberger, A., & Wohlrabe, K. (2019). Mit den ifo‐Umfragen regionale Konjunktur verstehen. ifo Schnelldienst, 72(9), 45–49.
Paper not yet in RePEc: Add citation now
Lenza, M., & Primiceri, G. E. (2022). How to estimate a vector autoregression after March 2020. Journal of Applied Econometrics, 37(4), 688–699.
Lewis, D. J., Mertens, K., Stock, J. H., & Trivedi, M. (2020). U.S. economic activity during the early weeks of the SARS‐Cov‐2 outbreak. Covid Economics, 6, 1–21.
- Linz, S., Fries, C., & Völker, J. (2018). Saisonbereinigung der Konjunkturstatistiken mit X‐12‐ARIMA und mit X13 in JDemetra+. WISTA—Wirtschaft und Statistik, 4, 59–80.
Paper not yet in RePEc: Add citation now
Lourenço, N., & Rua, A. (2021). The Daily Economic Indicator: Tracking economic activity daily during the lockdown. Economic Modelling, 100, 105500.
Marcellino, M., & Schumacher, C. (2010). Factor MIDAS for nowcasting and forecasting with ragged‐edge data: A model comparison for German GDP. Oxford Bulletin of Economics and Statistics, 72(4), 518–550.
Ollech, D. (2023). Economic analysis using higher frequency time series: Challenges for seasonal adjustment. Empirical Economics, 64(3), 1375–1398.
- Prol, J. L., & Sungmin, O. (2020). Impact of COVID‐19 measures on short‐term electricity consumption in the most affected EU countries and USA states. iScience, 23(10), 101639.
Paper not yet in RePEc: Add citation now
Thorsrud, L. A. (2020). Words are the new numbers: A newsy coincident index of the business cycle. Journal of Business & Economic Statistics, 38(2), 393–409.