- Aït‐Youcef, C. (2019). How index investment impacts commodities: A story about the financialization of agricultural commodities. Economic Modelling, 80, 23–33.
Paper not yet in RePEc: Add citation now
Akyildirim, E., Çepni, O., Pham, L., & Uddin, G. S. (2022). How connected is the agricultural commodity market to the news‐based investor sentiment? Energy Economics, 113(C), 106174. https://doi.org/10.1016/j.eneco.2022.106174.
- Amaya, D., Christoffersen, P., Jacobs, K., & Vasquez, A. (2015). Does realized skewness predict the cross‐section of equity returns? Journal of Financial Economics, 118, 135–167. https://doi.org/10.1016/j.jfineco.2015.02.009.
Paper not yet in RePEc: Add citation now
Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885–905. https://doi.org/10.2307/2527343.
- Bahloul, W. (2018). Short‐term contrarian and sentiment by traders' types on futures markets: Evidence from the DCOT traders' positions. Review of Behavioral Finance, 10(4), 298–319. https://doi.org/10.1108/RBF-07-2017-0063.
Paper not yet in RePEc: Add citation now
Bahloul, W., & Bouri, A. (2016). The impact of investor sentiment on returns and conditional volatility in US futures markets. Journal of Multinational Financial Management, 36(C), 89–102. https://doi.org/10.1016/j.mulfin.2016.07.003.
Bahloul, W., Balcilar, M., Cunado, J., & Gupta, R. (2018). The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality‐in‐quantiles test. Journal of Multinational Financial Management, 45(C), 52–71. https://doi.org/10.1016/j.mulfin.2018.04.002.
- Balcilar, M., Sertoglu, K., & Agan, B. (2022). The COVID‐19 effects on agricultural commodity markets. Agrekon, 61(3), 239–265. https://doi.org/10.1080/03031853.2022.2078381.
Paper not yet in RePEc: Add citation now
- Barndorff‐Nielsen, O. E., & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2, 1–37. https://doi.org/10.1093/jjfinec/nbh001.
Paper not yet in RePEc: Add citation now
Barndorff‐Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics, 4, 1–30. https://doi.org/10.1093/jjfinec/nbi022.
- Barndorff‐Nielsen, O. E., Kinnebrouk, S., & Shephard, N. (2010). Measuring downside risk: realised semivariance. In T. Bollerslev, J. Russell, & M. Watson (Eds.), Volatility and time series econometrics: Essays in honor of Robert F. Engle (pp. 117–136). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199549498.003.0007.
Paper not yet in RePEc: Add citation now
Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century. Quarterly Journal of Economics, 121(3), 823–866. https://doi.org/10.1162/qjec.121.3.823.
Barro, R. J. (2009). Rare disasters, asset prices, and welfare costs. American Economic Review, 99(1), 243–264. https://doi.org/10.1257/aer.99.1.243.
Bonato, M. (2019). Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed? Journal of International Financial Markets Institutions and Money, 62(C), 184–202. https://doi.org/10.1016/j.intfin.2019.07.005.
- Bonato, M., Çepni, O., Gupta, R., & Pierdzioch, C. (2022). El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach. Journal of Forecasting, 42, 785–801. https://doi.org/10.1002/for.2914.
Paper not yet in RePEc: Add citation now
- Bonato, M., Cepni, O., Gupta, R., & Pierdzioch, C. (2023). Climate risks and state‐level stock‐market realized volatility. Journal of Financial Markets, 66, 100854.
Paper not yet in RePEc: Add citation now
- Borgards, O., & Czudaj, R. L. (2022). Long‐short speculator sentiment in agricultural commodity markets. International Journal of Finance and Economics, 28, 3511–3528. https://doi.org/10.1002/ijfe.2605.
Paper not yet in RePEc: Add citation now
- Bouri, E., Gupta, R., Pierdzioch, C., & Salisu, A. A. (2021). El Niño and forecastability of oil‐price realized volatility. Theoretical and Applied Climatology, 144, 1173–1180. https://doi.org/10.1007/s00704-021-03569-1.
Paper not yet in RePEc: Add citation now
Campbell, J. Y. (2008). Viewpoint: Estimating the equity premium. Canadian Journal of Economics, 41(1), 1–21. https://doi.org/10.1111/j.1365-2966.2008.00453.x.
Chatziantoniou, I., Degiannakis, S., Filis, G., & Lloyd, T. (2021). Oil price volatility is effective in predicting food price volatility. Or is it? Energy Journal, 42, 2. https://doi.org/10.5547/01956574.42.6.icha.
Clark, T. D., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138, 291–311. https://doi.org/10.1016/j.jeconom.2006.05.023.
- Corsi, F. (2009). A simple approximate long‐memory model of realized volatility. Journal of Financial Econometrics, 7, 174–196. https://doi.org/10.1093/jjfinec/nbp001.
Paper not yet in RePEc: Add citation now
Degiannakis, S., Filis, G., Klein, T., & Walther, T. (2022). Forecasting realized volatility of agricultural commodities. International Journal of Forecasting, 38(1), 74–96. https://doi.org/10.1016/j.ijforecast.2019.08.011.
- Demirer, R., Gupta, R., Nel, J., & Pierdzioch, C. (2022). Effect of rare disaster risks on crude oil: Evidence from El Niño from over 140 years of data. Theoretical and Applied Climatology, 147, 691–699. https://doi.org/10.1007/s00704-021-03856-x.
Paper not yet in RePEc: Add citation now
Friedman, J., Tibshirani, R., & Hastie, T. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22. https://doi.org/10.18637/jss.v033.i01.
Gil‐Alana, L. A., Cunado, J., & de Gracia, F. P. (2012). Persistence, long memory, and unit roots in commodity prices. Canadian Journal of Agricultural Economics, 60(4), 451–468. https://doi.org/10.1111/j.1744-7976.2012.01253.x.
Giot, P., & Laurent, S. (2003). Market risk in commodity markets: A VaR approach. Energy Economics, 25(5), 435–457. https://doi.org/10.1016/S0140-9883(03)00052-5.
Giot, P., Laurent, S., & Petitjean, M. (2010). Trading activity, realized volatility and jumps. Journal of Empirical Finance, 17(1), 168–175. https://doi.org/10.1016/j.jempfin.2009.07.001.
- Granger, C. W., & Jeon, Y. (2004). Thick modeling. Economic Modelling, 21(2), 323–343. https://doi.org/10.1016/S0264-9993(03)00017-8.
Paper not yet in RePEc: Add citation now
- Greb, F., & Prakash, A. (2015). Has price volatility changed? Food outlook. Food and Agriculture Organization of the United Nations.
Paper not yet in RePEc: Add citation now
- Greb, F., & Prakash, A. (2017). Assessing volatility patterns in food crops. In FAO commodity and trade policy research working paper series. Available for download from: http://www.fao.org/3/a-i7066e.pdf.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7.
Paper not yet in RePEc: Add citation now
- Hill, B. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3, 1163–1173. https://doi.org/10.1214/aos/1176343247.
Paper not yet in RePEc: Add citation now
- Ji, Q., Bahloul, W., Geng, J.‐B., & Gupta, R. (2020). Trading behaviour connectedness across commodity markets: Evidence from the hedgers' sentiment perspective. Research in International Business and Finance, 52(C), 101114. https://doi.org/10.1016/j.ribaf.2019.101114.
Paper not yet in RePEc: Add citation now
- Johnson, T. (2011). Food price volatility and insecurity. Council on Foreign Relations (CFR). Available for download from: https://www.cfr.org/backgrounder/foodprice-volatility-and-insecurity.
Paper not yet in RePEc: Add citation now
- Lumley, T. based on Fortran code by A. Miller (2020). leaps: Regression subset selection. R package version 3.1. Available for download from: https://CRAN.R-project.org/package=leaps.
Paper not yet in RePEc: Add citation now
Luo, J., Klein, T., Ji, Q., & Hou, C. (2019). Forecasting realized volatility of agricultural commodity futures with infinite hidden Markov HAR models. International Journal of Forecasting, 38(1), 51–73. https://doi.org/10.1016/j.ijforecast.2019.08.007.
Manela, A., & Moreira, A. (2017). News implied volatility and disaster concerns. Journal of Financial Economics, 123(1), 137–162. https://doi.org/10.1016/j.jfineco.2016.01.032.
Marfatia, H. A., Luo, J., & Ji, Q. (2022). Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility. Journal of Forecasting, 41(2), 383–404. https://doi.org/10.1002/for.2811.
McAleer, M., & Medeiros, M. C. (2008). Realized volatility: A review. Econometric Reviews, 27, 10–45. https://doi.org/10.1080/07474930701853509.
Mišecka, T., Ciaian, P., Rajcaniova, M., & Pokrivcak, J. (2019). In search of attention in agricultural commodity markets. Economics Letters, 184(3), 108668. https://doi.org/10.1016/j.econlet.2019.108668.
Müller, U. A., Dacorogna, M. M., Davé, R. D., Olsen, R. B., & Pictet, O. V. (1997). Volatilities of different time resolutions—Analyzing the dynamics of market components. Journal of Empirical Finance, 4, 213–239. https://doi.org/10.1016/S0927-5398(97)00007-8.
Ordu, B. M., Oran, A., & Soytas, U. (2018). Is food financialized? Yes, but only when liquidity is abundant. Journal of Banking and Finance, 95, 82–96. https://doi.org/10.1016/j.jbankfin.2017.06.001.
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
Paper not yet in RePEc: Add citation now
Roache, S. K. (2010). What explains the rise in food price volatility? International Monetary Fund Working Paper No. 2010/129.
Sakariyahu, R., Lawal, R., Oyekola, O., Dosumu, O. E., & Adigun, R. (2023). Natural disasters, investor sentiments and stock market reactions: Evidence from Turkey–Syria earthquakes. Economics Letters, 228, 111153. https://doi.org/10.1016/j.econlet.2023.111153.
Shan, L., & Gong, S. X. (2012). Investor sentiment and stock returns: Wenchuan earthquake. Finance Research Letters, 9(1), 36–47. https://doi.org/10.1016/j.frl.2011.07.002.
Shiba, S., Aye, G. C., Gupta, R., & Goswami, S. (2022). Forecastability of agricultural commodity futures realised volatility with daily infectious disease‐related uncertainty. Journal of Risk and Financial Management, 15(11), 525. https://doi.org/10.3390/jrfm15110525.
- Sujithan, K. O., Avouyi‐Dovi, S., & Koliai, L. (2014). On the determinants of food price volatility. International Conference on Food Price Volatility: Causes & Challenges, 25–26 February, 2014, Rabat. Available for download from: https://www.imf.org/external/np/seminars/eng/2014/food/pdf/Avouyi-Dovi.pdf.
Paper not yet in RePEc: Add citation now
Tian, F., Yang, K., & Chen, L. (2017a). Realized volatility forecasting of agricultural commodity futures using long memory and regime switching. Journal of Forecasting, 36(4), 421–430. https://doi.org/10.1002/for.2443.
- Tian, F., Yang, K., & Chen, L. (2017b). Realized volatility forecasting of agricultural commodity futures using the HAR model with time‐varying sparsity. International Journal of Forecasting, 33(1), 132–152. https://doi.org/10.1016/j.ijforecast.2016.08.002.
Paper not yet in RePEc: Add citation now
Xu, J.‐L., & Hsu, Y.‐L. (2022). The impact of news sentiment indicators on agricultural product prices. Computational Economics, 59(2), 1645–1657. https://doi.org/10.1007/s10614-021-10189-4.
Yang, K., Tian, F., Chen, L., & Li, S. (2017). Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches. International Review of Economics and Finance, 49, 276–291. https://doi.org/10.1016/j.iref.2017.01.030.
- Zhou, H., & Zhu, J. Q. (2012). An empirical examination of jump risk in asset pricing and volatility forecasting in China's equity and bond markets. Pacific‐Basin Finance Journal, 20(5), 857–880. https://doi.org/10.1016/j.pacfin.2009.05.005.
Paper not yet in RePEc: Add citation now
Živkov, D., Njegić, J., & Pećanac, M. (2019). Multiscale interdependence between the major agricultural commodities. Agricultural Economics – Czech, 65(2), 82–92. https://doi.org/10.17221/147/2018-AGRICECON.