Anderson, T. W., & Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics, 18(1), 47–82. https://doi.org/10.1016/0304-4076(82)90095-1.
Ando, T., & Bai, J. (2016). Panel data models with grouped factor structure under unknown group membership. Journal of Applied Econometrics, 31(1), 163–191. https://doi.org/10.1002/jae.2467.
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297. https://doi.org/10.2307/2297968.
Auffhammer, M., & Steinhauser, R. (2012). Forecasting the path of US CO2 emissions using state‐level information. Review of Economics and Statistics, 94(1), 172–185. https://doi.org/10.1162/REST_a_00152.
- Bartels, L. M. (1996). Pooling disparate observations. American Journal of Political Science, 40, 905–942. https://doi.org/10.2307/2111800.
Paper not yet in RePEc: Add citation now
- Behr, A. (2003). A comparison of dynamic panel data estimators: Monte Carlo evidence and an application to the investment function. Bundesbank Series 1 Discussion Paper, 2003–05.
Paper not yet in RePEc: Add citation now
- Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross‐validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. https://doi.org/10.1016/j.csda.2017.11.003.
Paper not yet in RePEc: Add citation now
Bester, C. A., & Hansen, C. B. (2016). Grouped effects estimators in fixed effects models. Journal of Econometrics, 190(1), 197–208. https://doi.org/10.1016/j.jeconom.2012.08.022.
- Bun, M. J., & Carree, M. A. (2005). Bias‐corrected estimation in dynamic panel data models. Journal of Business & Economic Statistics, 23(2), 200–210. https://doi.org/10.1198/073500104000000532.
Paper not yet in RePEc: Add citation now
Danilov, D., & Magnus, J. R. (2004). On the harm that ignoring pretesting can cause. Journal of Econometrics, 122(1), 27–46. https://doi.org/10.1016/j.jeconom.2003.10.018.
- Delahaye, D., Chaimatanan, S., & Mongeau, M. (2019). Simulated annealing: From basics to applications. Handbook of Metaheuristics (p. 1). Springer.
Paper not yet in RePEc: Add citation now
Desbordes, R., Koop, G., & Vicard, V. (2018). One size does not fit all panel data: Bayesian model averaging and data poolability. Economic Modelling, 75, 364–376. https://doi.org/10.1016/j.econmod.2018.07.009.
- Dhaene, G., & Jochmans, K. (2015). Split‐panel jackknife estimation of fixed‐effect models. The Review of Economic Studies, 82(3), 991–1030. https://doi.org/10.1093/restud/rdv007.
Paper not yet in RePEc: Add citation now
Feenstra, R. C., Inklaar, R., & Timmer, M. P. (2015). The next generation of the Penn World Table. American Economic Review, 105(10), 3150–3182. https://doi.org/10.1257/aer.20130954.
- Frühwirth‐Schnatter, S. (2006). Finite mixture and Markov switching models. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Hansen, B. E. (2008). Least‐squares forecast averaging. Journal of Econometrics, 146(2), 342–350. https://doi.org/10.1016/j.jeconom.2008.08.022.
Paper not yet in RePEc: Add citation now
- Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. Journal of Econometrics, 167(1), 38–46. https://doi.org/10.1016/j.jeconom.2011.06.019.
Paper not yet in RePEc: Add citation now
Jin, S., & Su, L. (2013). A nonparametric poolability test for panel data models with cross section dependence. Econometric Reviews, 32(4), 469–512. https://doi.org/10.1080/07474938.2012.690669.
Juhl, T., & Lugovskyy, O. (2014). A test for slope heterogeneity in fixed effects models. Econometric Reviews, 33(8), 906–935. https://doi.org/10.1080/07474938.2013.806708.
Kasahara, H., & Shimotsu, K. (2009). Nonparametric identification of finite mixture models of dynamic discrete choices. Econometrica, 77(1), 135–175.
- Kendall, M. G. (1954). Note on bias in the estimation of autocorrelation. Biometrika, 41(3–4), 403–404. https://doi.org/10.1093/biomet/41.3-4.403.
Paper not yet in RePEc: Add citation now
- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671.
Paper not yet in RePEc: Add citation now
Lin, C.‐C., & Ng, S. (2012). Estimation of panel data models with parameter heterogeneity when group membership is unknown. Journal of Econometric Methods, 1(1), 42–55.
- Maddala, G. S., Trost, R. P., Li, H., & Joutz, F. (1997). Estimation of short‐run and long‐run elasticities of energy demand from panel data using shrinkage estimators. Journal of Business & Economic Statistics, 15(1), 90–100. https://doi.org/10.1080/07350015.1997.10524691.
Paper not yet in RePEc: Add citation now
- McLachlan, G., & Peel, D. (2000). Finite mixture models, Wiley series in probability and statistics. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426. https://doi.org/10.2307/1911408.
Nolte, A., & Schrader, R. (2000). A note on the finite time behavior of simulated annealing. Mathematics of Operations Research, 25(3), 476–484. https://doi.org/10.1287/moor.25.3.476.12211.
Pesaran, M. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74, 967–1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x.
Pesaran, M. H., & Timmermann, A. (2007). Selection of estimation window in the presence of breaks. Journal of Econometrics, 137, 134–161. https://doi.org/10.1016/j.jeconom.2006.03.010.
Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50–93. https://doi.org/10.1016/j.jeconom.2007.05.010.
- Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880. https://doi.org/10.1080/01621459.1984.10477105.
Paper not yet in RePEc: Add citation now
Schmalensee, R., Stoker, T. M., & Judson, R. A. (1998). World carbon dioxide emissions: 1950–2050. Review of Economics and Statistics, 80(1), 15–27. https://doi.org/10.1162/003465398557294.
Su, L., Shi, Z., & Phillips, P. C. (2016). Identifying latent structures in panel data. Econometrica, 84(6), 2215–2264. https://doi.org/10.3982/ECTA12560.
Wang, W., Phillips, P. C., & Su, L. (2018). Homogeneity pursuit in panel data models: Theory and application. Journal of Applied Econometrics, 33(6), 797–815. https://doi.org/10.1002/jae.2632.
Wang, W., Zhang, X., & Paap, R. (2019). To pool or not to pool: What is a good strategy for parameter estimation and forecasting in panel regressions? Journal of Applied Econometrics, 34(5), 724–745. https://doi.org/10.1002/jae.2696.