Amin, K. I., & Jarrow, R. (1991). Pricing foreign currency options under stochastic interest rates. Journal of International Money and Finance, 10, 310–329.
Amin, K. I., & Jarrow, R. (1992). Pricing options on risky assets in a stochastic interest rate economy. Mathematical Finance, 2, 217–237.
Bakshi, G. S., Cao, C., & Chen, Z. W. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52, 2003–2049.
- Bakshi, G. S., Cao, C., & Chen, Z. W. (2000). Pricing and hedging long‐term options. Journal of Econometrics, 94, 277–318.
Paper not yet in RePEc: Add citation now
Bates, D. S. (2003). Empirical option pricing: A retrospection. Journal of Econometrics, 116, 387–404.
- Black, F. (1976). Studies in stock price volatility changes. In Proceedings of the 1976 Business Meeting of the Business and Economic Statistics Section (pp. 177–181). American Statistical Association.
Paper not yet in RePEc: Add citation now
Black, F., & Scholes, L. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.
Brown, C., & Robinson, D. (2002). Skewness and kurtosis implied by option prices: A correction. Journal of Financial Research, 25, 279–282.
- Choi, Y., & Ok, S. (2011). Effects of rollover strategies and information stability on the performance measures in options markets: An examination of the KOSPI 200 index options market. Journal of Futures Markets, 32, 360–388.
Paper not yet in RePEc: Add citation now
Choi, Y., Jordan, S. J., & Ok, S. (2012). Dividend–rollover effect and the ad hoc Black–Scholes model. Journal of Futures Markets, 32, 742–772.
Corrado, C. J., & Su, T. (1996). Skewness and kurtosis in S&P 500 index returns implied by option prices. Journal of Financial Research, 19, 175–192.
- Dennis, P., & Mayhew, S. (2002). Risk‐neutral skewness: Evidence from stock options. Journal of Financial and Quantitative Analysis, 37, 471–493.
Paper not yet in RePEc: Add citation now
- Dixit, A., & Singh, S. (2018). Ad‐hoc Black–Scholes vis‐à‐vis TSRV‐based Black–Scholes: Evidence from Indian options market. Journal of Quantitative Economics, 16, 57–88.
Paper not yet in RePEc: Add citation now
Duan, J. C. (1995). The GARCH option pricing model. Mathematical Finance, 5, 13–32.
Duan, J. C., & Zhang, H. (2001). Pricing Hang Seng index options around the Asian financial crisis ‐ A GARCH approach. Journal of Banking and Finance, 25, 1989–2014.
Dumas, B., Fleming, J., & Whaley, R. (1998). Implied volatility functions: Empirical tests. Journal of Finance, 53, 2059–2106.
- Gemmill, G., & Saflekos, A. (2000). How useful are implied distributions? Journal of Derivatives, 7, 83–91.
Paper not yet in RePEc: Add citation now
Heston, S. L. (1993). A closed‐form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6, 327–343.
Heston, S. L., & Nandi, S. (2000). A closed‐form GARCH option valuation model. Review of Financial Studies, 13, 585–625.
Ho, T. S., Stapleton, R. C., & Subrahmanyam, M. G. (1997). The valuation of American options with stochastic interest rates: A generalization of the Geske–Johnson technique. Journal of Finance, 52, 827–840.
Hsieh, K. C., & Ritchken, P. (2005). An empirical comparison of GARCH option pricing models. Review of Derivatives Research, 8, 129–150.
Hull, J., & White, A. (1987). The pricing of options with stochastic volatilities. Journal of Finance, 42, 281–300.
- Jackwerth, J. C., & Rubinstein, M. (2001). Recovering stochastic processes from option prices (Working Paper). University of Wisconsin at Madison and University of California at Berkeley.
Paper not yet in RePEc: Add citation now
Johnson, H., & Shanno, D. (1987). Option pricing when the variance is changing. Journal of Financial and Quantitative Analysis, 22, 143–151.
Kim, I. J., & Kim, S. (2004). Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market. Pacific‐Basin Finance Journal, 12, 117–142.
Kim, I. J., & Kim, S. (2005). Is it important to consider the jump component for pricing and hedging short‐term options? Journal of Futures Markets, 25, 989–1009.
- Kim, S. (2008). Skewness of kurtosis? Using Corrado and Su (1996)'s model. Journal of Derivatives and Quantitative Studies, 16, 1–20.
Paper not yet in RePEc: Add citation now
Kim, S. (2009). The performance of traders' rules in options market. Journal of Futures Markets, 29, 999–1020.
- Kim, S. (2014). Are traders' rules useful for pricing options? Evidence from intraday data. Journal of Risk, 17, 63–84.
Paper not yet in RePEc: Add citation now
- Kim, S. (2017). Pricing and hedging options with rollover parameters. Journal of Risk, 19, 1–40.
Paper not yet in RePEc: Add citation now
- Kim, S., & Song, I. J. (2021). The traders' rule and long‐term options. Journal of Futures Markets, 41, 406–436.
Paper not yet in RePEc: Add citation now
- Kirgiz, İ. (2001). An empirical comparison of alternative stochastic volatility option pricing models (Working Paper). University of Maryland.
Paper not yet in RePEc: Add citation now
- Kou, S. G. (2002). A jump‐diffusion model for option pricing. Management Science, 48, 955–1101.
Paper not yet in RePEc: Add citation now
Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management Science, 50, 1178–1192.
Li, M., & Pearson, N. D. (2004). Price deviations of S&P 500 index options from the Black–Scholes formula follow a simple pattern (Working Paper). University of Illinois at Urbana‐Champaign.
- Li, M., & Pearson, N. D. (2008). A “Horse Race” among competing option pricing models using S&P 500 index options (Working Paper). Georgia Institute of Technology and University of Illinois at Urbana‐Champaign.
Paper not yet in RePEc: Add citation now
Madan, D. B., Carr, P., & Chang, E. C. (1998). The variance gamma process and option pricing. European Finance Review, 2, 79–105.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–144.
Naik, V. (1993). Option valuation and hedging strategies with jumps in the volatility of asset returns. Journal of Finance, 48, 1969–1984.
Naik, V., & Lee, M. H. (1990). General equilibrium pricing of options on the market portfolio with discontinuous returns. Review of Financial Studies, 3, 493–522.
- OptionMetrics, LLC. (1996–2015). OptionMetrics; IvyDB by OptionMetrics. Retrieved from Wharton Research Data Service. https://doi.org/10.17616/R3NC9W.
Paper not yet in RePEc: Add citation now
- Rindell, K. (1995). Pricing of index options when interest rates are stochastic: An empirical test. Journal of Banking and Finance, 19, 785–802.
Paper not yet in RePEc: Add citation now
Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application. Journal of Financial and Quantitative Analysis, 22, 419–438.
Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics, 19, 351–377.