- Agarwal, B., Ramampiaro, H., Langseth, H., & Ruocco, M. (2018). A deep network model for paraphrase detection in short text messages. Information Processing and Management, 54(6), 922–937.
Paper not yet in RePEc: Add citation now
Alquist, R., Ellwanger, R., & Jin, J. (2020). The effect of oil price shocks on asset markets: Evidence from oil inventory news. Journal of Futures Markets, 40, 1212–1230.
- Araci, D. (2019). FinBERT: Financial sentiment analysis with pre‐trained language models. Available: https://arxiv.org/abs/1908.10063.
Paper not yet in RePEc: Add citation now
- Baek, Y., & Kim, H. Y. (2018). ModAugNet: A new forecasting framework f1or stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications, 113, 457–480.
Paper not yet in RePEc: Add citation now
Bai, Y., Li, X., Yu, H., & Jia, S. (2021). Crude oil price forecasting incorporating news text. International Journal of Forecasting, 38(1), 367–383.
Ballestra, L. V., Guizzardi, A., & Palladini, F. (2019). Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators. International Journal of Forecasting, 35(4), 1250–1262.
Baumeister, C., & Hamilton, J. D. (2019). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. American Economic Review, 109(5), 1873–1910.
- Ben Jabeur, S., Khalfaoui, R., & Ben Arfi, W. (2021). The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning. Journal of Environmental Management, 298, 113511.
Paper not yet in RePEc: Add citation now
Bera, A. K., & Jarque, C. M. (1981). Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Economics Letters, 7(4), 313–318.
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Paper not yet in RePEc: Add citation now
Bork, L., Mller, S. V., & Pedersen, T. Q. (2020). A new index of housing sentiment. Management Science, 66(4), 1563–1583.
- Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (pp. 111–118).
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Paper not yet in RePEc: Add citation now
Calomiris, C. W., & Mamaysky, H. (2019). How news and its context drive risk and returns around the world. Journal of Financial Economics, 133(2), 299–336.
Chiang, I. H. E., Hughen, W. K., & Sagi, J. S. (2015). Estimating oil risk factors using information from equity and derivatives markets. Journal of Finance, 70(2), 769–804.
Chiew, E., & Choong, S. S. (2022). A solution for M5 forecasting—uncertainty: Hybrid gradient boosting and autoregressive recurrent neural network for quantile estimation. International Journal of Forecasting. Available: https://www.sciencedirect.com/science/article/abs/pii/S0169207022000097.
Clements, A. E., & Todorova, N. (2016). Information flow, trading activity and commodity futures volatility. Journal of Futures Markets, 36(1), 88–104.
Clerides, S., Krokida, S. I., Lambertides, N., & Tsouknidis, D. (2022). What matters for consumer sentiment in the euro area? World crude oil price or retail gasoline price? Energy Economics, 105, 105743.
- Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning (pp. 160–167).
Paper not yet in RePEc: Add citation now
Cookson, J. A., & Niessner, M. (2020). Why don't we agree? Evidence from a social network of investors. Journal of Finance, 75(1), 173–228.
Dées, S., Karadeloglou, P., Kaufmann, R. K., & Sánchez, M. (2007). Modelling the world oil market: Assessment of a quarterly econometric model. Energy Policy, 35(1), 178–191.
Entrop, O., Frijns, B., & Seruset, M. (2020). The determinants of price discovery on bitcoin markets. Journal of Futures Markets, 40(5), 816–837.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist‐level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
- Fan, J., Xue, L., & Zhou, Y. (2021). How much can machines learn finance from Chinese text data? Working Paper, Avaliable: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3765862.
Paper not yet in RePEc: Add citation now
- Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of on‐line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
Paper not yet in RePEc: Add citation now
Frijns, B., & Huynh, T. D. (2018). Herding in analysts' recommendations: The role of media. Journal of Banking & Finance, 91, 1–18.
Gao, L., Han, Y., Zhengzi Li, S., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics, 129(2), 394–414.
Gong, X., & Lin, B. (2021). Effects of structural changes on the prediction of downside volatility in futures markets. Journal of Futures Markets, 41, 1124–1153.
Gong, X., Guan, K., Chen, L., Liu, T., & Fu, C. (2021). What drives oil prices?—A Markov switching VAR approach. Resources Policy, 74, 102316.
Gong, X., Liu, Y., & Wang, X. (2021). Dynamic volatility spillovers across oil and natural gas futures markets based on a time‐varying spillover method. International Review of Financial Analysis, 76, 101790.
Gu, C., Chen, D., & Stan, R. (2021). Investor sentiment and the market reaction to macroeconomic news. Journal of Futures Markets, 41(9), 1412–1426.
He, M., Zhang, Y., Wen, D., & Wang, Y. (2021). Forecasting crude oil prices: A scaled PCA approach. Energy Economics, 97, 105189.
- Johnson, R., & Zhang, T. (2015). Effective use of word order for text categorization with convolutional neural networks. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2015) (pp. 103–112).
Paper not yet in RePEc: Add citation now
- Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from OPEC announcements. American Economic Review, 111(4), 1092–1125.
Paper not yet in RePEc: Add citation now
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 2017(30), 3146–3154.
Paper not yet in RePEc: Add citation now
Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069.
Kilian, L., & Murphy, D. P. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478.
- Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (pp. 1746–1751).
Paper not yet in RePEc: Add citation now
- Kunal, S., Saha, A., Varma, A., & Tiwari, V. (2018). Textual dissection of live twitter reviews using naive Bayes. Procedia Computer Science, 132, 307–313.
Paper not yet in RePEc: Add citation now
- LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient‐based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
Paper not yet in RePEc: Add citation now
Li, J., Li, G., Liu, M., Zhu, X., & Wei, L. (2022). A novel text‐based framework for forecasting agricultural futures using massive online news headlines. International Journal of Forecasting, 38(1), 35–50.
Li, J., Xu, Z., Xu, H., Tang, L., & Yu, L. (2017). Forecasting oil price trends with sentiment of online news articles. Asia‐Pacific Journal of Operational Research, 34(2), 1740019.
- Li, X., Shang, W., & Wang, S. (2019). Text‐based crude oil price forecasting: A deep learning approach. International Journal of Forecasting, 35(4), 1548–1560.
Paper not yet in RePEc: Add citation now
Li, Y., Bu, H., Li, J., & Wu, J. (2020). The role of text‐extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning. International Journal of Forecasting, 36(4), 1541–1562.
Li, Y., Jiang, S., Li, X., & Wang, S. (2021). The role of news sentiment in oil futures returns and volatility forecasting: Data‐decomposition based deep learning approach. Energy Economics, 95, 105140.
- Liang, Y., Wu, J., Wang, W., Cao, Y., Zhong, B., Chen, Z., & Li, Z. (2019). Product marketing prediction based on XGboost and LightGBM algorithm. In ACM International Conference Proceeding Series (pp. 150–153).
Paper not yet in RePEc: Add citation now
- Lin, S., Yeh, Y., & Chen, B. (2011). Leveraging Kullback–Leibler divergence measures and information‐rich cues for speech summarization. IEEE Transactions on Audio, Speech, and Language Processing, 19(4), 871–882.
Paper not yet in RePEc: Add citation now
Liu, J., & Huang, X. (2021). Forecasting crude oil price using event extraction. IEEE Access, 9, 149067–149076.
- Liu, L., Geng, Q., Zhang, Y., & Wang, Y. (2022). Investors' perspective on forecasting crude oil return volatility: Where do we stand today? Journal of Management Science and Engineering, 7(3), 423–438.
Paper not yet in RePEc: Add citation now
Liu, Y., & Matthies, B. (2022). Long run risk: Is it there? Journal of Finance, 12, 163–169. Forthcoming.
Liu, Y., Han, L., & Yin, L. (2018). Does news uncertainty matter for commodity futures markets? Heterogeneity in energy and non‐energy sectors. Journal of Futures Markets, 38(10), 1246–1261.
MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of Economic Literature, 35(1), 13–39.
Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782–796.
- Michael, L., & Evgenia, P. (2006). Consumer confidence and asset prices: Some empirical evidence. Review of Financial Studies, 4, 1499–1529.
Paper not yet in RePEc: Add citation now
- Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (pp. 1532–1543).
Paper not yet in RePEc: Add citation now
- Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), 61–74.
Paper not yet in RePEc: Add citation now
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back‐propagating errors. Nature, 323(6088), 533–536.
Paper not yet in RePEc: Add citation now
- Sadik, Z. A., Date, P. M., & Mitra, G. (2020). Forecasting crude oil futures prices using global macroeconomic news sentiment. IMA Journal of Management Mathematics, 31(2), 191–215.
Paper not yet in RePEc: Add citation now
- Serrano‐Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera‐Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18–38.
Paper not yet in RePEc: Add citation now
- Shi, T., Kang, K., Choo, J., & Reddy, C. K. (2018). Short‐text topic modeling via non‐negative matrix factorization enriched with local word‐context correlations. In The Web Conference 2018—Proceedings of the World Wide Web Conference, WWW 2018 (pp. 1105–1114).
Paper not yet in RePEc: Add citation now
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48.
Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 101084.
Tang, L., Dai, W., Yu, L., & Wang, S. (2015). A novel CEEMD‐based EELM ensemble learning paradigm for crude oil price forecasting. International Journal of Information Technology and Decision Making, 14(1), 141–169.
- Tang, Y., Xiao, X., Wahab, M., & Ma, F. (2021). The role of oil futures intraday information on predicting US stock market volatility. Journal of Management Science and Engineering, 6(1), 64–74.
Paper not yet in RePEc: Add citation now
- Terragni, S., Fersini, E., Galuzzi, B., Tropeano, P., & Candelieri, A. (2021). OCTIS: Comparing and optimizing topic models is simple! In EACL 2021—16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the System Demonstrations (pp. 263–270).
Paper not yet in RePEc: Add citation now
Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.
Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms' fundamentals. Journal of Finance, 63(3), 1139–1168.
Wang, B., & Wang, J. (2020). Energy futures and spots prices forecasting by hybrid SW‐GRU with EMD and error evaluation. Energy Economics, 90, 104827.
Wang, J. J., Wang, J. Z., Zhang, Z. G., & Guo, S. P. (2012). Stock index forecasting based on a hybrid model. Omega, 40(6), 758–766.
Wang, L., Ma, F., Niu, T., & Liang, C. (2021). The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market. Energy Economics, 99, 105319.
Wang, Y., Pan, Z., Liu, L., & Wu, C. (2019). Oil price increases and the predictability of equity premium. Journal of Banking & Finance, 102, 43–58.
Wei, Y., Liu, J., Lai, X., & Hu, Y. (2017). Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics, 68, 141–150.
- Wei, Y., Sun, S., Ma, J., Wang, S., & Lai, K. K. (2019). A decomposition clustering ensemble learning approach for forecasting foreign exchange rates. Journal of Management Science and Engineering, 4(1), 45–54.
Paper not yet in RePEc: Add citation now
Wen, F., Gong, X., & Cai, S. (2016). Forecasting the volatility of crude oil futures using HAR‐type models with structural breaks. Energy Economics, 59, 400–413.
- Wu, B., Wang, L., Lv, S. X., & Zeng, Y. R. (2021). Effective crude oil price forecasting using new text‐based and big‐data‐driven model. Measurement: Journal of the International Measurement Confederation, 168, 108468.
Paper not yet in RePEc: Add citation now
Xiong, T., Bao, Y., & Hu, Z. (2013). Beyond one‐step‐ahead forecasting: Evaluation of alternative multi‐step‐ahead forecasting models for crude oil prices. Energy Economics, 40, 405–415.
Ye, J., & Xue, M. (2021). Influences of sentiment from news articles on EU carbon prices. Energy Economics, 101, 105393.
- Ye, Y., Liu, C., Zemiti, N., & Yang, C. (2019). Optimal feature selection for EMG‐based finger force estimation using LightGBM model. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO‐MAN 2019) (pp. 1–9).
Paper not yet in RePEc: Add citation now
Ye, Z., Hu, C., He, L., Ouyang, G., & Wen, F. (2020). The dynamic time–frequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis. The Energy Journal, 41(5), 251–270.
Yu, L., Zhao, Y., & Tang, L. (2017). Ensemble forecasting for complex time series using sparse representation and neural networks. Journal of Forecasting, 36(2), 122–138.
- Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data‐driven oil consumption forecasting with Google trends. International Journal of Forecasting, 35(1), 213–223.
Paper not yet in RePEc: Add citation now
Zhai, J., Cao, Y., & Liu, X. Q. (2020). A neural network enhanced volatility component model. Quantitative Finance, 20(5), 783–797.
Zhang, Y. J., & Wei, Y. M. (2010). The crude oil market and the gold market: Evidence for cointegration, causality and price discovery. Resources Policy, 35(3), 168–177.
- Zhang, Y., & Wallace, B. (2016). A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. Working Paper. Available: https://arxiv.org/abs/1510.03820.
Paper not yet in RePEc: Add citation now
- Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237.
Paper not yet in RePEc: Add citation now
Zhao, Y., Li, J., & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, 9–16.