create a website

The role of textual analysis in oil futures price forecasting based on machine learning approach. (2022). Gong, XU ; Chen, Qiyang ; Guan, Keqin.
In: Journal of Futures Markets.
RePEc:wly:jfutmk:v:42:y:2022:i:10:p:1987-2017.

Full description at Econpapers || Download paper

Cited: 24

Citations received by this document

Cites: 87

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Machine learning the performance of hedge fund. (2025). Jiang, Fuwei ; Wang, Wanwan ; Ma, Tian.
    In: Journal of International Money and Finance.
    RePEc:eee:jimfin:v:155:y:2025:i:c:s0261560625000671.

    Full description at Econpapers || Download paper

  2. Performance comparison of alternative stochastic volatility models and its determinants in energy futures: COVID‐19 and Russia–Ukraine conflict features. (2024). Fernandes, Mario Correia ; Dias, Jose Carlos ; Vidal, Joo Pedro.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:44:y:2024:i:3:p:343-383.

    Full description at Econpapers || Download paper

  3. Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market. (2024). Heredia, Jose Antonio ; Medina, Alberto Menendez.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:10:p:2338-:d:1393354.

    Full description at Econpapers || Download paper

  4. The role of news sentiment in salmon price prediction using deep learning. (2024). Ewald, Christian-Oliver ; Li, Yaoyu.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000576.

    Full description at Econpapers || Download paper

  5. Stress from attention: The relationship between climate change attention and crude oil markets. (2024). Lin, Boqiang ; Chen, Yiyang ; Gong, XU.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:34:y:2024:i:c:s2405851324000187.

    Full description at Econpapers || Download paper

  6. Textual analysis and gold futures price forecasting: Evidence from the Chinese market. (2024). Liu, Yanchu ; Zhang, YU ; Peng, Xinyi.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:69:y:2024:i:pa:s1544612324011450.

    Full description at Econpapers || Download paper

  7. The impact of global uncertainties on the spillover among the European carbon market, the Chinese oil futures market, and the international oil futures market. (2024). Zhu, Yulin ; Zheng, Yan ; Cui, NA ; Liu, Hong.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:67:y:2024:i:pb:s1544612324009218.

    Full description at Econpapers || Download paper

  8. Oil prices and systemic financial risk: A complex network analysis. (2024). Gong, XU ; Wang, Kangsheng ; Wen, Fenghua.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004444.

    Full description at Econpapers || Download paper

  9. A novel secondary decomposition method for forecasting crude oil price with twitter sentiment. (2024). Guo, Yuanxuan ; Qian, Shuangyue ; Tang, Ling ; Li, Ling ; Wu, Jun.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223033480.

    Full description at Econpapers || Download paper

  10. Is the tone of the government-controlled media valuable for capital market? Evidence from Chinas new energy industry. (2024). Xu, Zhiwei ; Hua, Xia ; Ren, Pengyue ; Li, Jiaqi.
    In: Energy Policy.
    RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523005025.

    Full description at Econpapers || Download paper

  11. Can the sentiment of the official media predict the return volatility of the Chinese crude oil futures?. (2024). Gan, Shiqi ; Xu, Zhiwei ; Xiong, Yujie ; Hua, Xia.
    In: Energy Economics.
    RePEc:eee:eneeco:v:140:y:2024:i:c:s0140988324006753.

    Full description at Econpapers || Download paper

  12. Forecasting oil futures returns with news. (2024). Wang, Yudong ; Pan, Zhiyuan ; Huang, Juan ; Zhong, Hao.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003141.

    Full description at Econpapers || Download paper

  13. Exploiting the sentiments: A simple approach for improving cross hedging effectiveness. (2024). Wang, Yudong ; Fu, Ziqian ; Pan, Zhiyuan ; Dong, Qingma.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003013.

    Full description at Econpapers || Download paper

  14. The information content of Shanghai crude oil futures vs WTI benchmark: Evidence from temporal and spatial dimensions. (2024). Guo, Yumei ; Yin, Libo ; Cao, Hong.
    In: Energy Economics.
    RePEc:eee:eneeco:v:132:y:2024:i:c:s0140988324002007.

    Full description at Econpapers || Download paper

  15. Dynamic volatility spillover and market emergency: Matching and forecasting. (2024). Chen, Yan ; Zhou, Wei.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:71:y:2024:i:c:s1062940824000354.

    Full description at Econpapers || Download paper

  16. Climate change attention and carbon futures return prediction. (2023). Sun, Chuanwang ; Gong, XU ; Li, Mengjie ; Guan, Keqin.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:43:y:2023:i:9:p:1261-1288.

    Full description at Econpapers || Download paper

  17. Oil Sector and Sentiment Analysis—A Review. (2023). Silva, Thiago ; Santos, Marcus Vinicius ; Morgado-Dias, Fernando.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:12:p:4824-:d:1175299.

    Full description at Econpapers || Download paper

  18. A new hybrid deep learning model for monthly oil prices forecasting. (2023). Gong, XU ; Guan, Keqin.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006345.

    Full description at Econpapers || Download paper

  19. Intraday and overnight tail risks and return predictability in the crude oil market: Evidence from oil-related regular news and extreme shocks. (2023). Xu, Yahua ; Bouri, Elie ; Zhang, Dingsheng ; Wang, Cheng.
    In: Energy Economics.
    RePEc:eee:eneeco:v:127:y:2023:i:pb:s0140988323006199.

    Full description at Econpapers || Download paper

  20. The impact of carbon markets on the financial performance of power producers: Evidence based on China. (2023). Dai, Zhifeng ; Zhang, Xinhua.
    In: Energy Economics.
    RePEc:eee:eneeco:v:127:y:2023:i:pa:s0140988323006175.

    Full description at Econpapers || Download paper

  21. Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices. (2023). Wang, Xiuqing ; Hao, Yun ; Huang, Wenyang ; Gao, Tianxiao.
    In: Energy Economics.
    RePEc:eee:eneeco:v:127:y:2023:i:pa:s0140988323006047.

    Full description at Econpapers || Download paper

  22. Saving energy by cleaning the air?: Endogenous energy efficiency and energy conservation potential. (2023). Zhang, Zihan ; Kuang, Yunming ; Tan, Ruipeng.
    In: Energy Economics.
    RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323004449.

    Full description at Econpapers || Download paper

  23. Oil price uncertainty and audit fees: Evidence from the energy industry. (2023). Zhang, Yun ; Miao, Xiao ; Chen, Meng ; Wen, Fenghua.
    In: Energy Economics.
    RePEc:eee:eneeco:v:125:y:2023:i:c:s014098832300350x.

    Full description at Econpapers || Download paper

  24. Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets. (2023). Dai, Zhifeng ; Zhang, Xinhua ; Tang, Rui.
    In: Energy Economics.
    RePEc:eee:eneeco:v:120:y:2023:i:c:s0140988323001378.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Agarwal, B., Ramampiaro, H., Langseth, H., & Ruocco, M. (2018). A deep network model for paraphrase detection in short text messages. Information Processing and Management, 54(6), 922–937.
    Paper not yet in RePEc: Add citation now
  2. Alquist, R., Ellwanger, R., & Jin, J. (2020). The effect of oil price shocks on asset markets: Evidence from oil inventory news. Journal of Futures Markets, 40, 1212–1230.

  3. Araci, D. (2019). FinBERT: Financial sentiment analysis with pre‐trained language models. Available: https://arxiv.org/abs/1908.10063.
    Paper not yet in RePEc: Add citation now
  4. Baek, Y., & Kim, H. Y. (2018). ModAugNet: A new forecasting framework f1or stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications, 113, 457–480.
    Paper not yet in RePEc: Add citation now
  5. Bai, Y., Li, X., Yu, H., & Jia, S. (2021). Crude oil price forecasting incorporating news text. International Journal of Forecasting, 38(1), 367–383.

  6. Ballestra, L. V., Guizzardi, A., & Palladini, F. (2019). Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators. International Journal of Forecasting, 35(4), 1250–1262.

  7. Baumeister, C., & Hamilton, J. D. (2019). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. American Economic Review, 109(5), 1873–1910.

  8. Ben Jabeur, S., Khalfaoui, R., & Ben Arfi, W. (2021). The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning. Journal of Environmental Management, 298, 113511.
    Paper not yet in RePEc: Add citation now
  9. Bera, A. K., & Jarque, C. M. (1981). Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Economics Letters, 7(4), 313–318.

  10. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
    Paper not yet in RePEc: Add citation now
  11. Bork, L., Mller, S. V., & Pedersen, T. Q. (2020). A new index of housing sentiment. Management Science, 66(4), 1563–1583.

  12. Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (pp. 111–118).
    Paper not yet in RePEc: Add citation now
  13. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    Paper not yet in RePEc: Add citation now
  14. Calomiris, C. W., & Mamaysky, H. (2019). How news and its context drive risk and returns around the world. Journal of Financial Economics, 133(2), 299–336.

  15. Chiang, I. H. E., Hughen, W. K., & Sagi, J. S. (2015). Estimating oil risk factors using information from equity and derivatives markets. Journal of Finance, 70(2), 769–804.

  16. Chiew, E., & Choong, S. S. (2022). A solution for M5 forecasting—uncertainty: Hybrid gradient boosting and autoregressive recurrent neural network for quantile estimation. International Journal of Forecasting. Available: https://www.sciencedirect.com/science/article/abs/pii/S0169207022000097.

  17. Clements, A. E., & Todorova, N. (2016). Information flow, trading activity and commodity futures volatility. Journal of Futures Markets, 36(1), 88–104.

  18. Clerides, S., Krokida, S. I., Lambertides, N., & Tsouknidis, D. (2022). What matters for consumer sentiment in the euro area? World crude oil price or retail gasoline price? Energy Economics, 105, 105743.

  19. Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning (pp. 160–167).
    Paper not yet in RePEc: Add citation now
  20. Cookson, J. A., & Niessner, M. (2020). Why don't we agree? Evidence from a social network of investors. Journal of Finance, 75(1), 173–228.

  21. Dées, S., Karadeloglou, P., Kaufmann, R. K., & Sánchez, M. (2007). Modelling the world oil market: Assessment of a quarterly econometric model. Energy Policy, 35(1), 178–191.

  22. Entrop, O., Frijns, B., & Seruset, M. (2020). The determinants of price discovery on bitcoin markets. Journal of Futures Markets, 40(5), 816–837.

  23. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist‐level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

  24. Fan, J., Xue, L., & Zhou, Y. (2021). How much can machines learn finance from Chinese text data? Working Paper, Avaliable: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3765862.
    Paper not yet in RePEc: Add citation now
  25. Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of on‐line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
    Paper not yet in RePEc: Add citation now
  26. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
    Paper not yet in RePEc: Add citation now
  27. Frijns, B., & Huynh, T. D. (2018). Herding in analysts' recommendations: The role of media. Journal of Banking & Finance, 91, 1–18.

  28. Gao, L., Han, Y., Zhengzi Li, S., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics, 129(2), 394–414.

  29. Gong, X., & Lin, B. (2021). Effects of structural changes on the prediction of downside volatility in futures markets. Journal of Futures Markets, 41, 1124–1153.

  30. Gong, X., Guan, K., Chen, L., Liu, T., & Fu, C. (2021). What drives oil prices?—A Markov switching VAR approach. Resources Policy, 74, 102316.

  31. Gong, X., Liu, Y., & Wang, X. (2021). Dynamic volatility spillovers across oil and natural gas futures markets based on a time‐varying spillover method. International Review of Financial Analysis, 76, 101790.

  32. Gu, C., Chen, D., & Stan, R. (2021). Investor sentiment and the market reaction to macroeconomic news. Journal of Futures Markets, 41(9), 1412–1426.

  33. He, M., Zhang, Y., Wen, D., & Wang, Y. (2021). Forecasting crude oil prices: A scaled PCA approach. Energy Economics, 97, 105189.

  34. Johnson, R., & Zhang, T. (2015). Effective use of word order for text categorization with convolutional neural networks. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2015) (pp. 103–112).
    Paper not yet in RePEc: Add citation now
  35. Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from OPEC announcements. American Economic Review, 111(4), 1092–1125.
    Paper not yet in RePEc: Add citation now
  36. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 2017(30), 3146–3154.
    Paper not yet in RePEc: Add citation now
  37. Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069.

  38. Kilian, L., & Murphy, D. P. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478.

  39. Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (pp. 1746–1751).
    Paper not yet in RePEc: Add citation now
  40. Kunal, S., Saha, A., Varma, A., & Tiwari, V. (2018). Textual dissection of live twitter reviews using naive Bayes. Procedia Computer Science, 132, 307–313.
    Paper not yet in RePEc: Add citation now
  41. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient‐based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
    Paper not yet in RePEc: Add citation now
  42. Li, J., Li, G., Liu, M., Zhu, X., & Wei, L. (2022). A novel text‐based framework for forecasting agricultural futures using massive online news headlines. International Journal of Forecasting, 38(1), 35–50.

  43. Li, J., Xu, Z., Xu, H., Tang, L., & Yu, L. (2017). Forecasting oil price trends with sentiment of online news articles. Asia‐Pacific Journal of Operational Research, 34(2), 1740019.

  44. Li, X., Shang, W., & Wang, S. (2019). Text‐based crude oil price forecasting: A deep learning approach. International Journal of Forecasting, 35(4), 1548–1560.
    Paper not yet in RePEc: Add citation now
  45. Li, Y., Bu, H., Li, J., & Wu, J. (2020). The role of text‐extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning. International Journal of Forecasting, 36(4), 1541–1562.

  46. Li, Y., Jiang, S., Li, X., & Wang, S. (2021). The role of news sentiment in oil futures returns and volatility forecasting: Data‐decomposition based deep learning approach. Energy Economics, 95, 105140.

  47. Liang, Y., Wu, J., Wang, W., Cao, Y., Zhong, B., Chen, Z., & Li, Z. (2019). Product marketing prediction based on XGboost and LightGBM algorithm. In ACM International Conference Proceeding Series (pp. 150–153).
    Paper not yet in RePEc: Add citation now
  48. Lin, S., Yeh, Y., & Chen, B. (2011). Leveraging Kullback–Leibler divergence measures and information‐rich cues for speech summarization. IEEE Transactions on Audio, Speech, and Language Processing, 19(4), 871–882.
    Paper not yet in RePEc: Add citation now
  49. Liu, J., & Huang, X. (2021). Forecasting crude oil price using event extraction. IEEE Access, 9, 149067–149076.

  50. Liu, L., Geng, Q., Zhang, Y., & Wang, Y. (2022). Investors' perspective on forecasting crude oil return volatility: Where do we stand today? Journal of Management Science and Engineering, 7(3), 423–438.
    Paper not yet in RePEc: Add citation now
  51. Liu, Y., & Matthies, B. (2022). Long run risk: Is it there? Journal of Finance, 12, 163–169. Forthcoming.

  52. Liu, Y., Han, L., & Yin, L. (2018). Does news uncertainty matter for commodity futures markets? Heterogeneity in energy and non‐energy sectors. Journal of Futures Markets, 38(10), 1246–1261.

  53. MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of Economic Literature, 35(1), 13–39.

  54. Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782–796.

  55. Michael, L., & Evgenia, P. (2006). Consumer confidence and asset prices: Some empirical evidence. Review of Financial Studies, 4, 1499–1529.
    Paper not yet in RePEc: Add citation now
  56. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (pp. 1532–1543).
    Paper not yet in RePEc: Add citation now
  57. Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), 61–74.
    Paper not yet in RePEc: Add citation now
  58. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back‐propagating errors. Nature, 323(6088), 533–536.
    Paper not yet in RePEc: Add citation now
  59. Sadik, Z. A., Date, P. M., & Mitra, G. (2020). Forecasting crude oil futures prices using global macroeconomic news sentiment. IMA Journal of Management Mathematics, 31(2), 191–215.
    Paper not yet in RePEc: Add citation now
  60. Serrano‐Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera‐Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18–38.
    Paper not yet in RePEc: Add citation now
  61. Shi, T., Kang, K., Choo, J., & Reddy, C. K. (2018). Short‐text topic modeling via non‐negative matrix factorization enriched with local word‐context correlations. In The Web Conference 2018—Proceedings of the World Wide Web Conference, WWW 2018 (pp. 1105–1114).
    Paper not yet in RePEc: Add citation now
  62. Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48.

  63. Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 101084.

  64. Tang, L., Dai, W., Yu, L., & Wang, S. (2015). A novel CEEMD‐based EELM ensemble learning paradigm for crude oil price forecasting. International Journal of Information Technology and Decision Making, 14(1), 141–169.

  65. Tang, Y., Xiao, X., Wahab, M., & Ma, F. (2021). The role of oil futures intraday information on predicting US stock market volatility. Journal of Management Science and Engineering, 6(1), 64–74.
    Paper not yet in RePEc: Add citation now
  66. Terragni, S., Fersini, E., Galuzzi, B., Tropeano, P., & Candelieri, A. (2021). OCTIS: Comparing and optimizing topic models is simple! In EACL 2021—16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the System Demonstrations (pp. 263–270).
    Paper not yet in RePEc: Add citation now
  67. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.

  68. Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms' fundamentals. Journal of Finance, 63(3), 1139–1168.

  69. Wang, B., & Wang, J. (2020). Energy futures and spots prices forecasting by hybrid SW‐GRU with EMD and error evaluation. Energy Economics, 90, 104827.

  70. Wang, J. J., Wang, J. Z., Zhang, Z. G., & Guo, S. P. (2012). Stock index forecasting based on a hybrid model. Omega, 40(6), 758–766.

  71. Wang, L., Ma, F., Niu, T., & Liang, C. (2021). The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market. Energy Economics, 99, 105319.

  72. Wang, Y., Pan, Z., Liu, L., & Wu, C. (2019). Oil price increases and the predictability of equity premium. Journal of Banking & Finance, 102, 43–58.

  73. Wei, Y., Liu, J., Lai, X., & Hu, Y. (2017). Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics, 68, 141–150.

  74. Wei, Y., Sun, S., Ma, J., Wang, S., & Lai, K. K. (2019). A decomposition clustering ensemble learning approach for forecasting foreign exchange rates. Journal of Management Science and Engineering, 4(1), 45–54.
    Paper not yet in RePEc: Add citation now
  75. Wen, F., Gong, X., & Cai, S. (2016). Forecasting the volatility of crude oil futures using HAR‐type models with structural breaks. Energy Economics, 59, 400–413.

  76. Wu, B., Wang, L., Lv, S. X., & Zeng, Y. R. (2021). Effective crude oil price forecasting using new text‐based and big‐data‐driven model. Measurement: Journal of the International Measurement Confederation, 168, 108468.
    Paper not yet in RePEc: Add citation now
  77. Xiong, T., Bao, Y., & Hu, Z. (2013). Beyond one‐step‐ahead forecasting: Evaluation of alternative multi‐step‐ahead forecasting models for crude oil prices. Energy Economics, 40, 405–415.

  78. Ye, J., & Xue, M. (2021). Influences of sentiment from news articles on EU carbon prices. Energy Economics, 101, 105393.

  79. Ye, Y., Liu, C., Zemiti, N., & Yang, C. (2019). Optimal feature selection for EMG‐based finger force estimation using LightGBM model. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO‐MAN 2019) (pp. 1–9).
    Paper not yet in RePEc: Add citation now
  80. Ye, Z., Hu, C., He, L., Ouyang, G., & Wen, F. (2020). The dynamic time–frequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis. The Energy Journal, 41(5), 251–270.

  81. Yu, L., Zhao, Y., & Tang, L. (2017). Ensemble forecasting for complex time series using sparse representation and neural networks. Journal of Forecasting, 36(2), 122–138.

  82. Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data‐driven oil consumption forecasting with Google trends. International Journal of Forecasting, 35(1), 213–223.
    Paper not yet in RePEc: Add citation now
  83. Zhai, J., Cao, Y., & Liu, X. Q. (2020). A neural network enhanced volatility component model. Quantitative Finance, 20(5), 783–797.

  84. Zhang, Y. J., & Wei, Y. M. (2010). The crude oil market and the gold market: Evidence for cointegration, causality and price discovery. Resources Policy, 35(3), 168–177.

  85. Zhang, Y., & Wallace, B. (2016). A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. Working Paper. Available: https://arxiv.org/abs/1510.03820.
    Paper not yet in RePEc: Add citation now
  86. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237.
    Paper not yet in RePEc: Add citation now
  87. Zhao, Y., Li, J., & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, 9–16.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Political Uncertainty Cycles and the Impact of Oil Shocks on Supply Chain Pressures. (2025). Williams, Corey.
    In: Economies.
    RePEc:gam:jecomi:v:13:y:2025:i:6:p:166-:d:1675114.

    Full description at Econpapers || Download paper

  2. The impact of air pollution on crude oil futures market. (2024). Zhang, Yuejun ; Yao, Ting.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:44:y:2024:i:6:p:1055-1068.

    Full description at Econpapers || Download paper

  3. Energy profile and oil shocks: a dynamic analysis of their impact on stock markets. (2024). Maghyereh, Aktham ; Ziadat, Salem Adel.
    In: Eurasian Economic Review.
    RePEc:spr:eurase:v:14:y:2024:i:3:d:10.1007_s40822-024-00277-9.

    Full description at Econpapers || Download paper

  4. COVID-19, the Russia–Ukraine war and the connectedness between the U.S. and Chinese agricultural futures markets. (2024). Zhang, Yongmin ; Sun, Yiru ; Zhao, Yingxue ; Ding, Shusheng ; Shi, Haili.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02852-6.

    Full description at Econpapers || Download paper

  5. Have the causal effects between equities, oil prices, and monetary policy changed over time?. (2024). Olson, Eric ; Kurov, Alexander ; Wolfe, Marketa Halova.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000655.

    Full description at Econpapers || Download paper

  6. Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers. (2024). Hanif, Waqas ; Hadhri, Sinda ; el Khoury, Rim.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:34:y:2024:i:c:s2405851324000230.

    Full description at Econpapers || Download paper

  7. Quantitative easing and the spillover effects from the crude oil market to other financial markets: Evidence from QE1 to QE3. (2024). Lyu, Yongjian ; Zhang, Xinyu ; Yang, MO ; Cao, Jin ; Liu, Jiatao.
    In: Journal of International Money and Finance.
    RePEc:eee:jimfin:v:140:y:2024:i:c:s0261560623001900.

    Full description at Econpapers || Download paper

  8. The impact of oil shocks on the stock market. (2024). Jimenez-Rodriguez, Rebeca ; Castro, Cesar.
    In: Global Finance Journal.
    RePEc:eee:glofin:v:60:y:2024:i:c:s1044028324000395.

    Full description at Econpapers || Download paper

  9. Exploring the dynamic connections between oil price shocks and bond yields in developed nations: A TVP-SVAR-SV approach. (2024). Maghyereh, Aktham ; Ziadat, Salem Adel ; Razzaq, Abdel.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022497.

    Full description at Econpapers || Download paper

  10. Exploiting the sentiments: A simple approach for improving cross hedging effectiveness. (2024). Wang, Yudong ; Fu, Ziqian ; Pan, Zhiyuan ; Dong, Qingma.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003013.

    Full description at Econpapers || Download paper

  11. Chinas futures market volatility and sectoral stock market volatility prediction. (2024). Zeng, Qing ; Zhong, Juandan ; Zhang, Jixiang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:132:y:2024:i:c:s0140988324001373.

    Full description at Econpapers || Download paper

  12. The Negative Pricing of the May 2020 WTI Contract. (2023). Fuertes, Ana-Maria ; Miffre, Jolle ; Fernandez-Perez, Adrian.
    In: The Energy Journal.
    RePEc:sae:enejou:v:44:y:2023:i:1:p:119-142.

    Full description at Econpapers || Download paper

  13. The Negative Pricing of the May 2020 WTI Contract. (2023). Fuertes, Ana-Maria ; Miffre, Joelle ; Fernandez-Perez, Adrian.
    In: Post-Print.
    RePEc:hal:journl:hal-03933797.

    Full description at Econpapers || Download paper

  14. Oil price shocks and stock–bond correlation. (2023). Ziadat, Salem Adel ; Rehman, Mobeen ; McMillan, David G ; Razzaq, Abdel.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823001122.

    Full description at Econpapers || Download paper

  15. Contagion or flight‐to‐quality? The linkage between oil price and the US dollar based on the local Gaussian approach. (2022). Shen, Yao ; Yang, Shenggang ; Dong, Minyi ; Ming, Lei.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:42:y:2022:i:4:p:722-750.

    Full description at Econpapers || Download paper

  16. Do oil shocks impact stock liquidity?. (2022). Zhang, Qin ; Wong, Jin Boon.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:42:y:2022:i:3:p:472-491.

    Full description at Econpapers || Download paper

  17. Does clean energy matter? Revisiting the spillovers between energy and foreign exchange markets. (2022). Liu, Yang ; Qiao, Tongshuai ; Han, Liyan.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:42:y:2022:i:11:p:2068-2083.

    Full description at Econpapers || Download paper

  18. The impact of COVID‐19 on the interdependence between US and Chinese oil futures markets. (2022). Zhang, Yongmin ; Ding, Shusheng ; Shi, Haili.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:42:y:2022:i:11:p:2041-2052.

    Full description at Econpapers || Download paper

  19. The role of textual analysis in oil futures price forecasting based on machine learning approach. (2022). Gong, XU ; Chen, Qiyang ; Guan, Keqin.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:42:y:2022:i:10:p:1987-2017.

    Full description at Econpapers || Download paper

  20. Heterogeneous effects of oil structure and oil shocks on stock prices in different regimes: Evidence from oil-exporting and oil-importing countries. (2022). Roudari, Soheil ; Sadeghi, Abdorasoul.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:76:y:2022:i:c:s0301420722000472.

    Full description at Econpapers || Download paper

  21. The Indirect Effects of Oil Price on Consumption through Assets. (2022). Javad, Seyed Mohammad ; Razmi, Seyedeh Fatemeh ; Torki, Leila ; Dowlatabadi, Ehsan Mohaghegh.
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2022-01-29.

    Full description at Econpapers || Download paper

  22. Forty years of the Journal of Futures Markets: A bibliometric overview. (2021). Kumar, Satish ; Pandey, Nitesh ; Baker, Kent H.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:41:y:2021:i:7:p:1027-1054.

    Full description at Econpapers || Download paper

  23. The dynamics of cross‐boundary fire—Financial contagion between the oil and stock markets. (2021). Wang, Tianyang ; Yuan, Ying.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:41:y:2021:i:10:p:1655-1673.

    Full description at Econpapers || Download paper

  24. The Negative Pricing of the May 2020 WTI Contract. (2021). Fuertes, Ana-Maria ; Joelle, Miffre ; Ana-Maria, Fuertes ; Adrian, Fernandez-Perez.
    In: MPRA Paper.
    RePEc:pra:mprapa:112352.

    Full description at Econpapers || Download paper

  25. What drives oil prices? — A Markov switching VAR approach. (2021). Gong, XU ; Liu, Tangyong ; Chen, Liqing ; Guan, Keqin ; Fu, Chengbo.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721003263.

    Full description at Econpapers || Download paper

  26. Effects of idiosyncratic jumps and co-jumps on oil, gold, and copper markets. (2021). Lau, Chi Keung ; Gözgör, Giray ; Gozgor, Giray ; Marco, Chi Keung ; Xu, Bing ; Semeyutin, Artur.
    In: Energy Economics.
    RePEc:eee:eneeco:v:104:y:2021:i:c:s014098832100517x.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-17 12:37:22 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.