References contributed by 972386_502353612431840
Ahern, K. R., & Harford, J. (2014). The importance of industry links in merger waves. The Journal of Finance, 69(2), 527–576. Ahn, J. J., Kim, D. H., Oh, K. J., & Kim, T. Y. (2012). Applying option Greeks to directional forecasting of implied volatility in the options market: An intelligent approach. Expert Systems with Applications, 39(10), 9315–9322.
Alcock, J., & Carmichael, T. (2008). Nonparametric American option pricing. Journal of Futures Markets, 28(8), 717–748.
Ali, U., & Hirshleifer, D. (2020). Shared analyst coverage: Unifying momentum spillover effects. Journal of Financial Economics, 136(3), 649–675.
Andreou, P. C., Charalambous, C., & Martzoukos, S. H. (2008). Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters. European Journal of Operational Research, 185(3), 1415–1433.
Andreou, P. C., Charalambous, C., & Martzoukos, S. H. (2014). Assessing the performance of symmetric and asymmetric implied volatility functions. Review of Quantitative Finance & Accounting, 42, 373–397.
- Antón, M., & Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3), 1099–1127.
Paper not yet in RePEc: Add citation now
- Audrino, F., & Colangelo, D. (2011). Option strategies based on semi-parametric implied volatility surface prediction. The Journal of Investment Strategies, 1(1), 3–41.
Paper not yet in RePEc: Add citation now
Bakshi, G. S., & Chen, Z. (1997). An alternative valuation model for contingent claims. Journal of Financial Economics, 44(1), 123–165.
Bali, T. G., Beckmeyer, H., Moerke, M., & Weigert, F. (2021). Option return predictability with machine learning and big data [Georgetown McDonough School of Business Research Paper, 3895984].
Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69–107.
Bilson, J. F. O., Kang, S. B., & Luo, H. (2015). The term structure of implied dividend yields and expected returns. Economics Letters, 128, 9–13.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
- Chen, Y., Wei, Z., & Huang, X. (2018). Incorporating corporation relationship via graph convolutional neural networks for stock price prediction. In Proceedings of the 27th ACM International Conference on Information & Knowledge Management (pp. 1655–1658).
Paper not yet in RePEc: Add citation now
- Cheng, R., & Li, Q. (2021). Modeling the momentum spillover effect for stock prediction via attribute-driven graph attention networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 1, pp. 55–62).
Paper not yet in RePEc: Add citation now
Chi, Y., Hao, W., & Zhang, Y. (2022). Volatility model applications in China's SSE50 options market. Journal of Futures Markets, 42(9), 1704–1720.
Cohen, L., & Frazzini, A. (2008). Economic links and predictable returns. The Journal of Finance, 63(4), 1977–2011.
Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & Economic Statistics, 20(1), 134–144.
Fan, G. Z., Pu, M., Sing, T. F., & Zhang, X. (2022). Risk aversion and urban land development options. Real Estate Economics, 50(3), 767–788.
- Fang, M., & Taylor, S. (2021). A machine learning based asset pricing factor model comparison on anomaly portfolios. Economics Letters, 204, 109919.
Paper not yet in RePEc: Add citation now
Feng, F., He, X., Wang, X., Luo, C., Liu, Y., & Chua, T. S. (2019). Temporal relational ranking for stock prediction. ACM Transactions on Information Systems, 37(2), 1–30.
- Ferguson, R., & Green, A. (2018). Deeply learning derivatives. arXiv preprint arXiv:1809.02233. http://arxiv.org/abs/1809.02233.
Paper not yet in RePEc: Add citation now
- Ge, M., Zhou, S., Luo, S., & Tian, B. (2021). 3D Tensor-based deep learning models for predicting option price. In 2021 International Conference on Information Science & Communications Technologies (ICISCT) (pp. 1–6). IEEE.
Paper not yet in RePEc: Add citation now
Gregoriou, A., Healy, J., & Ioannidis, C. (2007). Hedging under the influence of transaction costs: An empirical investigation on FTSE 100 index options. Journal of Futures Markets, 27(5), 471–494.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
- Healy, J., Dixon, M., Read, B., & Cai, F. F. (2002). A data-centric approach to understanding the pricing of financial options. The European Physical Journal B—Condensed Matter & Complex Systems, 27, 219–227.
Paper not yet in RePEc: Add citation now
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.
- Huang, J., Xing, R., & Li, Q. (2022). Asset pricing via deep graph learning to incorporate heterogeneous predictors. International Journal of Intelligent Systems, 37(11), 8462–8489.
Paper not yet in RePEc: Add citation now
Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.
- Janková, Z. (2018). Drawbacks and limitations of Black–Scholes model for options pricing. Journal of Financial Studies & Research, 2018, 1–7.
Paper not yet in RePEc: Add citation now
Lee, C. M. C., Sun, S. T., Wang, R., & Zhang, R. (2019). Technological links and predictable returns. Journal of Financial Economics, 132(3), 76–96.
- Li, L., Arab, A., Liu, J., Liu, J., & Han, Z. (2019). Bitcoin options pricing using LSTM-based prediction model and blockchain statistics. In 2019 IEEE International Conference on Blockchain (Blockchain) (pp. 67–74). IEEE.
Paper not yet in RePEc: Add citation now
- Li, Q., Chen, Y., Wang, J., Chen, Y., & Chen, H. (2017). Web media and stock markets: A survey and future directions from a big data perspective. IEEE Transactions on Knowledge & Data Engineering, 30(2), 381–399.
Paper not yet in RePEc: Add citation now
- Liang, L., & Cai, X. (2022). Time-sequencing European options and pricing with deep learning—Analyzing based on interpretable ALE method. Expert Systems with Applications, 187, 115951.
Paper not yet in RePEc: Add citation now
Liu, X., Cao, Y., Ma, C., & Shen, L. (2019). Wavelet-based option pricing: An empirical study. European Journal of Operational Research, 272(3), 1132–1142.
Medvedev, N., & Wang, Z. (2022). Multistep forecast of the implied volatility surface using deep learning. Journal of Futures Markets, 42(4), 645–667.
Menzly, L., & Ozbas, O. (2010). Market segmentation and cross-predictability of returns. The Journal of Finance, 65(4), 1555–1580.
Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics & Management Science, 4(1), 141–183.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144.
Monteiro, A. M., & Santos, A. A. F. (2022). Option prices for risk-neutral density estimation using nonparametric methods through big data and large-scale problems. Journal of Futures Markets, 42(1), 152–171.
- Montesdeoca, L., & Niranjan, M. (2016). Extending the feature set of a data-driven artificial neural network model of pricing financial options. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–6). IEEE.
Paper not yet in RePEc: Add citation now
Moskowitz, T. J., & Grinblatt, M. (1999). Do industries explain momentum? The Journal of Finance, 54(4), 1249–1290.
- Park, H., & Lee, J. (2012). Forecasting nonnegative option price distributions using Bayesian kernel methods. Expert Systems with Applications, 39(18), 13243–13252.
Paper not yet in RePEc: Add citation now
- Park, H., Kim, N., & Lee, J. (2014). Parametric models and non-parametric machine learning models for predicting option prices: Empirical comparison study over KOSPI 200 index options. Expert Systems with Applications, 41(11), 5227–5237.
Paper not yet in RePEc: Add citation now
- Parsons, C. A., Sabbatucci, R., & Titman, S. (2020). Geographic lead–lag effects. The Review of Financial Studies, 33(10), 4721–4770.
Paper not yet in RePEc: Add citation now
Patel, V., Putniņš, T. J., Michayluk, D., & Foley, S. (2020). Price discovery in stock and options markets. Journal of Financial Markets, 47, 100524.
- Ruf, J., & Wang, W. (2019). Neural networks for option pricing and hedging: A literature review. arXiv preprint arXiv:1911.05620. http://arxiv.org/abs/1911.05620.
Paper not yet in RePEc: Add citation now
- Singh, S., & Dixit, A. (2016). Performance of the Heston's stochastic volatility model: a study in Indian index options market. Theoretical Economics Letters, 6(2), 151–165.
Paper not yet in RePEc: Add citation now
- Souder, D., & Bromiley, P. (2017). Timing for dollars: How option exercisability influences resource allocation. Journal of Management, 43(8), 2555–2579.
Paper not yet in RePEc: Add citation now
Wei, X., Xie, Z., Cheng, R., Zhang, D., & Li, Q. (2021). An intelligent learning and ensembling framework for predicting option prices. Emerging Markets Finance & Trade, 57(15), 4237–4260.
- Wysocki, M., & Ślepaczuk, R. (2021). Artificial neural networks performance in WIG20 index options pricing. Entropy, 24(1), 35.
Paper not yet in RePEc: Add citation now
Xing, R., Li, Q., Zhao, J., & Xu, X. (2021). Media-based corporate network and its effects on stock market. Emerging Markets Finance & Trade, 57(15), 4211–4236.
Yang, Y. H., & Shao, Y. H. (2020). Time-dependent lead–lag relationships between the VIX and VIX futures markets. The North American Journal of Economics & Finance, 53, 101196.
Yao, J., Li, Y., & Tan, C. L. (2000). Option price forecasting using neural networks. Omega, 28(4), 455–466.
- Zang, H., Liu, L., Sun, L., Cheng, L., Wei, Z., & Sun, G. (2020). Short-term global horizontal irradiance forecasting based on a hybrid CNN–LSTM model with spatiotemporal correlations. Renewable Energy, 160, 26–41.
Paper not yet in RePEc: Add citation now
- Zhao, K., Zhang, J., & Liu, Q. (2022). Dual-hybrid modeling for option pricing of CSI 300ETF. Information, 13(1), 36.
Paper not yet in RePEc: Add citation now
- Zhao, K., Zhang, J., & Liu, Q. (2022). Dual‐hybrid modeling for option pricing of CSI 300ETF. Information, 13(1), 36.
Paper not yet in RePEc: Add citation now