create a website

Convergence analysis of artificial intelligence research capacity: Are the less developed catching up with the developed ones?. (2024). Rong, YU ; Javed, Saima ; Abbasi, Babar Nawaz.
In: Journal of International Development.
RePEc:wly:jintdv:v:36:y:2024:i:4:p:2172-2192.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 61

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abou‐Foul, M., Ruiz‐Alba, J. L., & López‐Tenorio, P. J. (2023). The impact of artificial intelligence capabilities on servitization: The moderating role of absorptive capacity—A dynamic capabilities perspective. Journal of Business Research, 157, 113609. https://doi.org/10.1016/j.jbusres.2022.113609.
    Paper not yet in RePEc: Add citation now
  2. Aghion, P., Jones, B. F., & Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda (pp. 237–282). University of Chicago Press.
    Paper not yet in RePEc: Add citation now
  3. Arakpogun, E. O., Elsahn, Z., Olan, F., & Elsahn, F. (2021). Artificial intelligence in Africa: Challenges and opportunities. In The Fourth Industrial Revolution: Implementation of artificial intelligence for growing business success (pp. 375–388). Springer. https://doi.org/10.1007/978-3-030-62796-6_22.
    Paper not yet in RePEc: Add citation now
  4. Bal, R., & Gill, I. S. (2020). Policy approaches to artificial intelligence based technologies in China. European Union and the United States.
    Paper not yet in RePEc: Add citation now
  5. Bourne, C. (2019). AI cheerleaders: Public relations, neoliberalism and artificial intelligence. Public Relations Inquiry, 8(2), 109–125. https://doi.org/10.1177/2046147X19835250.
    Paper not yet in RePEc: Add citation now
  6. Brynjolfsson, E., Rock, D., & Syverson, C. (2018). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. In The economics of artificial intelligence: An agenda (pp. 23–57). University of Chicago Press.
    Paper not yet in RePEc: Add citation now
  7. Caltech Science Exchange. (2023). Artificial intelligence—AI research. https://scienceexchange.caltech.edu/topics/artificial-intelligence-research.
    Paper not yet in RePEc: Add citation now
  8. Chatterjee, S. (2020). AI strategy of India: Policy framework, adoption challenges and actions for government. Transforming Government: People, Process and Policy, 14(5), 757–775. https://doi.org/10.1108/TG-05-2019-0031.
    Paper not yet in RePEc: Add citation now
  9. Chatterjee, S., Chaudhuri, R., Kamble, S., Gupta, S., & Sivarajah, U. (2022). Adoption of artificial intelligence and cutting‐edge technologies for production system sustainability: A moderator‐mediation analysis. Information Systems Frontiers, 25, 1779–1794. https://doi.org/10.1007/s10796-022-10317-x.
    Paper not yet in RePEc: Add citation now
  10. Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118.
    Paper not yet in RePEc: Add citation now
  11. Chubb, J., Cowling, P., & Reed, D. (2022). Speeding up to keep up: Exploring the use of AI in the research process. AI & Society, 37, 1439–1457. https://doi.org/10.1007/s00146-021-01259-0.
    Paper not yet in RePEc: Add citation now
  12. Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on innovation: An exploratory analysis. In The economics of artificial intelligence: An agenda (pp. 115–146). University of Chicago Press.
    Paper not yet in RePEc: Add citation now
  13. Cohen, I. G., Evgeniou, T., Gerke, S., & Minssen, T. (2020). The European artificial intelligence strategy: Implications and challenges for digital health. The Lancet Digital Health, 2(7), 376–379. https://doi.org/10.1016/S2589-7500(20)30112-6.
    Paper not yet in RePEc: Add citation now
  14. Criado, J. I., Sandoval‐Almazan, R., Valle‐Cruz, D., & Ruvalcaba‐Gómez, E. A. (2021). Chief information officers' perceptions about artificial intelligence: A comparative study of implications and challenges for the public sector. First Monday, 26(1). https://doi.org/10.5210/fm.v26i1.10648.
    Paper not yet in RePEc: Add citation now
  15. Damioli, G., Van Roy, V., & Vertesy, D. (2021). The impact of artificial intelligence on labor productivity. Eurasian Business Review, 11, 1–25. https://doi.org/10.1007/s40821-020-00172-8.

  16. De‐Arteaga, M., Herlands, W., Neill, D. B., & Dubrawski, A. (2018). Machine learning for the developing world. ACM Transactions on Management Information Systems, 9(2), 1–14. https://doi.org/10.1145/3210548.
    Paper not yet in RePEc: Add citation now
  17. Demaidi, M. N. (2023). Artificial intelligence national strategy in a developing country. AI & Society. https://doi.org/10.1007/s00146-023-01779-x.
    Paper not yet in RePEc: Add citation now
  18. Du, K. R. (2017). Econometric convergence test and club clustering using Stata. The Stata Journal, 17, 882–900. https://doi.org/10.1177/1536867X1801700407.

  19. European Commission. (2020). On artificial intelligence—A European approach to excellence and trust. https://ec.europa.eu.
    Paper not yet in RePEc: Add citation now
  20. Fatima, S., Desouza, K. C., & Dawson, G. S. (2020). National strategic artificial intelligence plans: A multi‐dimensional analysis. Economic Analysis and Policy, 67, 178–194. https://doi.org/10.1016/j.eap.2020.07.008.

  21. Feijóo, C., Kwon, Y., Bauer, J. M., Bohlin, E., Howell, B., Jain, R., Potgieter, P., Vu, K., Whalley, J., & Xia, J. (2020). Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. Telecommunications Policy, 44(6), 101988. https://doi.org/10.1016/j.telpol.2020.101988.

  22. Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European Journal of Operational Research, 204(2), 189–198. https://doi.org/10.1016/j.ejor.2009.08.003.

  23. Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330.
    Paper not yet in RePEc: Add citation now
  24. Hu, Z. Y., Tang, L. W., & Su, J. (2015). Convergence of provincial carbon emission intensity and dynamic processes. Resources Science, 37, 142–151.
    Paper not yet in RePEc: Add citation now
  25. Ilhan, B., Guneri, P., & Wilder‐Smith, P. (2021). The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral Oncology, 116, 105254. https://doi.org/10.1016/j.oraloncology.2021.105254.
    Paper not yet in RePEc: Add citation now
  26. Johnson, J. (2019). Artificial intelligence & future warfare: Implications for international security. Defense & Security Analysis, 35(2), 147–169. https://doi.org/10.1080/14751798.2019.1600800.

  27. Jorge, R. R., Van, R. V., Rossetti, F., & Tangi, L. (2022). AI watch, national strategies on artificial intelligence: A European perspective (2022nd ed.). Publications Office of the European Union. KJ‐NA‐31083‐EN‐N (online). https://doi.org/10.2760/385851.
    Paper not yet in RePEc: Add citation now
  28. Kazim, E., Almeida, D., Kingsman, N., Kerrigan, C., Koshiyama, A., Lomas, E., & Hilliard, A. (2021). Innovation and opportunity: Review of the UK's national AI strategy. Discover Artificial Intelligence, 1(1), 14. https://doi.org/10.1007/s44163-021-00014-0.
    Paper not yet in RePEc: Add citation now
  29. Kong, D., Zhou, Y., Liu, Y., & Xue, L. (2017). Using the data mining method to assess the innovation gap: A case of industrial robotics in a catching‐up country. Technological Forecasting and Social Change, 119, 80–97. https://doi.org/10.1016/j.techfore.2017.02.035.
    Paper not yet in RePEc: Add citation now
  30. Korinek, A., & Stiglitz, J. E. (2021). Artificial intelligence, globalization, and strategies for economic development (No. w28453). National Bureau of Economic Research.

  31. Li, B. H., Hou, B. C., Yu, W. T., Lu, X. B., & Yang, C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18, 86–96. https://doi.org/10.1631/FITEE.1601885.
    Paper not yet in RePEc: Add citation now
  32. Li, F., Li, G., Qin, W., Qin, J., & Ma, H. (2018). Identifying economic growth convergence clubs and their influencing factors in China. Sustainability, 10, 2588. https://doi.org/10.3390/su10082588.

  33. Liu, J., Chang, H., Forrest, J. Y. L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of China's manufacturing sectors. Technological Forecasting and Social Change, 158, 120142. https://doi.org/10.1016/j.techfore.2020.120142.
    Paper not yet in RePEc: Add citation now
  34. Lundvall, B. Å., & Rikap, C. (2022). China's catching‐up in artificial intelligence seen as a co‐evolution of corporate and national innovation systems. Research Policy, 51(1), 104395. https://doi.org/10.1016/j.respol.2021.104395.

  35. Malerbi, F. K., & Melo, G. B. (2022). Feasibility of screening for diabetic retinopathy using artifcial intelligence, Brazil. Bulletin of the World Health Organization, 100(10), 643–647. https://doi.org/10.2471/BLT.22.288580.
    Paper not yet in RePEc: Add citation now
  36. Maussumbayev, R., Toleubekova, R., Kaziyev, K., Baibaktina, A., & Bekbauova, A. (2022). Development of research capacity of a future social pedagogue in the face of digital technologies. Education and Information Technologies, 27(5), 6947–6966. https://doi.org/10.1007/s10639-022-10901-3.
    Paper not yet in RePEc: Add citation now
  37. Mehra, S. (2021). Are developing countries catching up in AI research? Retrieved from: https://indiaai.gov.in/article/are-developing-countries-catching-up-in-ai-research.
    Paper not yet in RePEc: Add citation now
  38. Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434.
    Paper not yet in RePEc: Add citation now
  39. Millington, K. A. (2017). How changes in technology and automation will affect the labour market in Africa. K4D Helpdesk Report. Institute of Development Studies.
    Paper not yet in RePEc: Add citation now
  40. Mishra, S., & Wang, K. (2021). Convergence and inequality in research globalization. Retrieved from: https://arxiv.org/abs/2103.02052.
    Paper not yet in RePEc: Add citation now
  41. Noorden, R. V., & Perkel, J. M. (2023). AI and science: What 1,600 researchers think. Nature, 621, 672–675. https://doi.org/10.1038/d41586-023-02980-0.

  42. Ouyang, F., Zheng, L., & Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27(6), 7893–7925. https://doi.org/10.1007/s10639-022-10925-9.
    Paper not yet in RePEc: Add citation now
  43. Pandey, S., Verma, M. K., & Shukla, R. (2021). A scientometric analysis of scientific productivity of artificial intelligence research in India. Journal of Scientometric Research, 10(2), 245–250. https://doi.org/10.5530/jscires.10.2.38.
    Paper not yet in RePEc: Add citation now
  44. Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO.
    Paper not yet in RePEc: Add citation now
  45. Phillips, P. C. B., & Sul, D. (2007). Transition modeling and econometric convergence tests. Econometrica, 75(6), 1771–1855. https://doi.org/10.1111/j.1468-0262.2007.00811.x.

  46. Phillips, P. C. B., & Sul, D. (2009). Economic transition and growth. Journal of Applied Economics, 24(7), 1153–1185. https://doi.org/10.1002/jae.1080.

  47. Radu, R. (2021). Steering the governance of artificial intelligence: National strategies in perspective. Policy and Society, 40(2), 178–193. https://doi.org/10.1080/14494035.2021.1929728.

  48. Raghuvanshi, A. (2023). Signatures of capacity development through research collaborations in artificial intelligence and machine learning. Journal of Informetrics, 17(1), 101358. https://doi.org/10.1016/j.joi.2022.101358.

  49. Saba, C. S., & David, O. O. (2023). Identifying convergence in telecommunication infrastructures and the dynamics of their influencing factors across countries. Journal of the Knowledge Economy, 14(2), 1413–1466. https://doi.org/10.1007/s13132-022-00967-2.

  50. Saba, C. S., & Ngepah, N. (2023). Empirics of convergence in industrialisation and their determinants: Global evidence. Discover Sustainability, 4, 25. https://doi.org/10.1007/s43621-023-00136-8.
    Paper not yet in RePEc: Add citation now
  51. Santos, R. S., & Qin, L. (2019). Risk capital and emerging technologies: Innovation and investment patterns based on artificial intelligence patent data analysis. Journal of Risk and Financial Management, 12(4), 189. https://doi.org/10.3390/jrfm12040189.

  52. Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artifcial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/10.1016/j.giq.2021.101624.
    Paper not yet in RePEc: Add citation now
  53. Sifat, I. (2023). Artificial intelligence as an institution: Impacts, integration strategies, and policy directions. Available at SSRN: https://ssrn.com/abstract=4545403.
    Paper not yet in RePEc: Add citation now
  54. Sofi, A. A., Sasidharan, S., & Bhat, M. Y. (2023). Economic growth and club convergence: Is there a neighbour's effect? International Journal of Finance & Economics, 28(3), 2475–2494.

  55. Squicciarini, M., & Nachtigall, H. (2021). Demand for AI skills in jobs: Evidence from online job postings (No. 2021/03). OECD Publishing.

  56. Strusani, D., & Houngbonon, G. V. (2019). The role of artificial intelligence in supporting development in emerging markets (No. 32365). The World Bank Group. https://doi.org/10.1596/32365.
    Paper not yet in RePEc: Add citation now
  57. Su, Z., Togay, G., & Côté, A.‐M. (2021). Artifcial intelligence: A destructive and yet creative force in the skilled labour market. Human Resource Development International, 24(3), 341–352. https://doi.org/10.1080/13678868.2020.1818513.
    Paper not yet in RePEc: Add citation now
  58. Walsh, T., Levy, N., Bell, G., Elliott, A., Maclaurin, J., Mareels, I., & Wood, F. M. (2019). The effective and ethical development of artificial intelligence: An opportunity to improve our wellbeing. Australian Council of Learned Academies.
    Paper not yet in RePEc: Add citation now
  59. Wang, S., Sun, Z., & Chen, Y. (2023). Effects of higher education institutes' artificial intelligence capability on students' self‐efficacy, creativity and learning performance. Education and Information Technologies, 28(5), 4919–4939. https://doi.org/10.1007/s10639-022-11338-4.
    Paper not yet in RePEc: Add citation now
  60. Wenning, S. (2023). What influence does the AI strategy have on possible outcomes of Chinese foreign policy and economic development? Advances in Social Sciences Research Journal, 10(4), 50–75. https://doi.org/10.14738/assrj.104.14416.
    Paper not yet in RePEc: Add citation now
  61. Yang, C. H. (2022). How artificial intelligence technology affects productivity and employment: Firm‐level evidence from Taiwan. Research Policy, 51(6), 104536. https://doi.org/10.1016/j.respol.2022.104536.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Convergence analysis of artificial intelligence research capacity: Are the less developed catching up with the developed ones?. (2024). Rong, YU ; Javed, Saima ; Abbasi, Babar Nawaz.
    In: Journal of International Development.
    RePEc:wly:jintdv:v:36:y:2024:i:4:p:2172-2192.

    Full description at Econpapers || Download paper

  2. Improving the Performance of Corporate Employees through the Use of Artificial Intelligence: The Case of Copilot Application. (2024). Cristina, Vasilescu ; Militaru, Gheorghe.
    In: Proceedings of the International Conference on Business Excellence.
    RePEc:vrs:poicbe:v:18:y:2024:i:1:p:1819-1830:n:1016.

    Full description at Econpapers || Download paper

  3. Multifactor productivity growth enhancers across industries and countries: firm-level evidence. (2024). Nakatani, Ryota.
    In: Eurasian Business Review.
    RePEc:spr:eurasi:v:14:y:2024:i:2:d:10.1007_s40821-024-00265-8.

    Full description at Econpapers || Download paper

  4. Does Artificial Intelligence Improve Export Technical Complexity Upgrade of Manufacturing Enterprises? Evidence from China. (2024). Tang, Pingjuan ; Xiao, Shengpeng ; Lin, Changqing.
    In: SAGE Open.
    RePEc:sae:sagope:v:14:y:2024:i:3:p:21582440241267126.

    Full description at Econpapers || Download paper

  5. Multifactor productivity growth enhancers across industries and countries: Firm-level evidence. (2024). Nakatani, Ryota.
    In: MPRA Paper.
    RePEc:pra:mprapa:120503.

    Full description at Econpapers || Download paper

  6. Policy analysis combining artificial intelligence and text mining technology in the perspective of educational informatization. (2024). Kuang, Han ; Tian, Peng ; Liang, Xiuwei.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-04076-0.

    Full description at Econpapers || Download paper

  7. Artificial intelligence and socioeconomic forces: transforming the landscape of religion. (2024). He, Yugang.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03137-8.

    Full description at Econpapers || Download paper

  8. Artificial intelligence and religious freedom: divergent paths converging on economic expansion. (2024). He, Yugang.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02642-0.

    Full description at Econpapers || Download paper

  9. Artificial intelligence and firm growth — catch-up processes of SMEs through integrating AI into their knowledge bases. (2024). Fornahl, Dirk ; Kopka, Alexander.
    In: Small Business Economics.
    RePEc:kap:sbusec:v:62:y:2024:i:1:d:10.1007_s11187-023-00754-6.

    Full description at Econpapers || Download paper

  10. AI-Powered E-Learning for Lifelong Learners: Impact on Performance and Knowledge Application. (2024). Ahn, Hyun Yong.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:20:p:9066-:d:1502289.

    Full description at Econpapers || Download paper

  11. Artificial intelligence capabilities for circular business models: Research synthesis and future agenda. (2024). Parida, Vinit ; Mikalef, Patrick ; Sjodin, David ; Madanaguli, Arun.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:200:y:2024:i:c:s0040162523008740.

    Full description at Econpapers || Download paper

  12. The role of industrial intelligence in peaking carbon emissions in China. (2024). Dong, Zhiqing ; Chen, QI ; Cheng, LU ; Wang, Linhui.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:199:y:2024:i:c:s004016252300690x.

    Full description at Econpapers || Download paper

  13. Artificial intelligence, household financial fragility and energy resources consumption: Impacts of digital disruption from a demand-based perspective. (2024). Zhang, Yuhan ; Hao, Yanwei ; Li, Xiang.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:88:y:2024:i:c:s0301420723011807.

    Full description at Econpapers || Download paper

  14. Impact of industrial robot on labour productivity: Empirical study based on industry panel data. (2024). Zhao, Yantong ; Said, Rusmawati ; Ismail, Normaz Wana ; Hamzah, Hanny Zurina.
    In: Innovation and Green Development.
    RePEc:eee:ingrde:v:3:y:2024:i:2:s2949753124000250.

    Full description at Econpapers || Download paper

  15. Leveraging the power of artificial intelligence toward the energy transition: The key role of the digital economy. (2024). Lee, Chi-Chuan ; Fang, Yuzhu ; Li, Xinghao ; Quan, Shiyun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:135:y:2024:i:c:s0140988324003621.

    Full description at Econpapers || Download paper

  16. Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value. (2024). SHEN, Zhiyang ; Song, Malin ; Tamayo-Verleene, Kristine ; Pan, Heting.
    In: Energy Economics.
    RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324001002.

    Full description at Econpapers || Download paper

  17. Impact of industrial intelligence on green total factor productivity: The indispensability of the environmental system. (2024). Yang, Siying ; Liu, Fengshuo.
    In: Ecological Economics.
    RePEc:eee:ecolec:v:216:y:2024:i:c:s0921800923002847.

    Full description at Econpapers || Download paper

  18. AI Users Are Not All Alike: The Characteristics of French Firms Buying and Developing AI. (2024). Fontanelli, Luca ; Calvino, Flavio.
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_11466.

    Full description at Econpapers || Download paper

  19. Adoption of Artificial Intelligence in Small and Medium-Sized Enterprises in Spain: The Role of Competences and Skills. (2024). Romero, Isidoro ; Huseyn, Mammadov ; Gonzalez-Abril, Luis ; Ruiz-Gandara, Africa.
    In: The AMFITEATRU ECONOMIC journal.
    RePEc:aes:amfeco:v:26:y:2024:i:67:p:848.

    Full description at Econpapers || Download paper

  20. Effects of Artificial Intelligence-Based Technologies Implementation s on the Skills Needed in the Automotive Industry A Bibliometric Analysis. (2024). Banta, Viorel-Costin ; Cretu, Romeo-Catalin ; Serban, Elena Claudia ; Tutui, Daniela.
    In: The AMFITEATRU ECONOMIC journal.
    RePEc:aes:amfeco:v:26:y:2024:i:67:p:801.

    Full description at Econpapers || Download paper

  21. Der Investitionsstandort Deutschland aus Sicht der Familienunternehmen: Jahresmonitor der Stiftung Familienunternehmen. (2023). Garnitz, Johanna ; von Maltzan, Annette ; Zarges, Lara ; Wohlrabe, Klaus.
    In: Studien.
    RePEc:zbw:sfustu:281020.

    Full description at Econpapers || Download paper

  22. Artificial intelligence, complementary assets and productivity: evidence from French firms. (2023). Fontanelli, Luca ; Calvino, Flavio.
    In: LEM Papers Series.
    RePEc:ssa:lemwps:2023/35.

    Full description at Econpapers || Download paper

  23. Artificial intelligence and radical innovation: an opportunity for all companies?. (2023). Grashof, Nils ; Kopka, Alexander.
    In: Small Business Economics.
    RePEc:kap:sbusec:v:61:y:2023:i:2:d:10.1007_s11187-022-00698-3.

    Full description at Econpapers || Download paper

  24. The productivity impact of short-term labor mobility across industries. (2023). Vivarelli, Marco ; tani, max ; Piva, Mariacristina.
    In: Small Business Economics.
    RePEc:kap:sbusec:v:60:y:2023:i:2:d:10.1007_s11187-022-00610-z.

    Full description at Econpapers || Download paper

  25. The impact of artificial intelligence on total factor productivity: empirical evidence from China’s manufacturing enterprises. (2023). Sun, Ting-Ting ; Xu, Ru-Yu ; Wang, Ke-Liang.
    In: Economic Change and Restructuring.
    RePEc:kap:ecopln:v:56:y:2023:i:2:d:10.1007_s10644-022-09467-4.

    Full description at Econpapers || Download paper

  26. The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation. (2023). Li, Yuru ; Jia, Xuemei ; Liu, Qing ; Zhang, Lijun ; Feng, Jiahao.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:16:p:12170-:d:1213532.

    Full description at Econpapers || Download paper

  27. On the Substitution and Complementarity between Robots and Labor: Evidence from Advanced and Emerging Economies. (2023). An, Zidong ; Wang, Yan ; Li, Jing.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:12:p:9790-:d:1174607.

    Full description at Econpapers || Download paper

  28. Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: A bibliometric analysis of research publications from 1960-2021. (2023). Hajkowicz, Stefan ; Karimi, Sarvnaz ; Sanderson, Conrad ; Naughtin, Claire ; Bratanova, Alexandra.
    In: Technology in Society.
    RePEc:eee:teinso:v:74:y:2023:i:c:s0160791x23000659.

    Full description at Econpapers || Download paper

  29. Artificial intelligence and productivity: global evidence from AI patent and bibliometric data. (2023). Parteka, Aleksandra ; Kordalska, Aleksandra.
    In: Technovation.
    RePEc:eee:techno:v:125:y:2023:i:c:s0166497223000755.

    Full description at Econpapers || Download paper

  30. Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China. (2023). Dong, Zhiqing ; Cao, Zhanglu ; Wang, Linhui.
    In: Structural Change and Economic Dynamics.
    RePEc:eee:streco:v:66:y:2023:i:c:p:342-356.

    Full description at Econpapers || Download paper

  31. Artificial intelligence, resource reallocation, and corporate innovation efficiency: Evidence from Chinas listed companies. (2023). Wang, Zeyu ; Xu, Yang ; Zeng, Liangen ; Zheng, Hao ; Han, Haiting ; Li, Chengming.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000326.

    Full description at Econpapers || Download paper

  32. Artificial intelligence and firm-level productivity. (2023). Rammer, Christian ; Fernández, Gastón P. ; Czarnitzki, Dirk ; Fernandez, Gaston P.
    In: Journal of Economic Behavior & Organization.
    RePEc:eee:jeborg:v:211:y:2023:i:c:p:188-205.

    Full description at Econpapers || Download paper

  33. Artificial intelligence technology innovation and firm productivity: Evidence from China. (2023). Liu, Zhenpeng ; Zhai, Shaoxuan.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:58:y:2023:i:pb:s1544612323008097.

    Full description at Econpapers || Download paper

  34. Widening or closing the gap? The relationship between artificial intelligence, firm-level productivity and regional clusters. (2023). Grashof, Nils ; Kopka, Alexander.
    In: Bremen Papers on Economics & Innovation.
    RePEc:atv:wpaper:2304.

    Full description at Econpapers || Download paper

  35. Artificial intelligence and firm-level productivity. (2022). Rammer, Christian ; Fernández, Gastón P. ; Czarnitzki, Dirk ; Fernandez, Gaston P.
    In: ZEW Discussion Papers.
    RePEc:zbw:zewdip:22005.

    Full description at Econpapers || Download paper

  36. Public support for research in artificial intelligence: a descriptive study of U.S. Department of Defense SBIR Projects. (2022). van Hasselt, Martijn ; Link, Albert ; Chowdhury, Farhat.
    In: The Journal of Technology Transfer.
    RePEc:kap:jtecht:v:47:y:2022:i:3:d:10.1007_s10961-022-09943-z.

    Full description at Econpapers || Download paper

  37. Identifying artificial intelligence (AI) invention: a novel AI patent dataset. (2022). Pairolero, Nicholas A ; Toole, Andrew A ; Giczy, Alexander V.
    In: The Journal of Technology Transfer.
    RePEc:kap:jtecht:v:47:y:2022:i:2:d:10.1007_s10961-021-09900-2.

    Full description at Econpapers || Download paper

  38. Return of the Solow-paradox in AI? AI-adoption and firm productivity. (2022). Schubert, Torben ; Back, Asta ; Suominen, Arho ; Hajikhani, Arash ; Jager, Angela.
    In: Papers in Innovation Studies.
    RePEc:hhs:lucirc:2022_001.

    Full description at Econpapers || Download paper

  39. Artificial intelligence and productivity: global evidence from AI patent and bibliometric data. (2022). Parteka, Aleksandra ; Kordalska, Aleksandra.
    In: GUT FME Working Paper Series A.
    RePEc:gdk:wpaper:67.

    Full description at Econpapers || Download paper

  40. The Regional Development Trap in Europe. (2022). Rodríguez-Pose, Andrés ; Iammarino, Simona ; Diemer, Andreas ; Storper, Michael ; Rodriguez-Pose, Andres.
    In: Papers in Evolutionary Economic Geography (PEEG).
    RePEc:egu:wpaper:2209.

    Full description at Econpapers || Download paper

  41. How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan. (2022). Yang, Chih-Hai.
    In: Research Policy.
    RePEc:eee:respol:v:51:y:2022:i:6:s0048733322000634.

    Full description at Econpapers || Download paper

  42. Artificial intelligence, firms and consumer behavior: A survey. (2022). Rondi, Laura ; Abrardi, Laura ; Cambini, Carlo.
    In: Journal of Economic Surveys.
    RePEc:bla:jecsur:v:36:y:2022:i:4:p:969-991.

    Full description at Econpapers || Download paper

  43. AI Patenting and Employment: Evidence from the Worlds Top R&D Investors. (2022). Sterlacchini, Alessandro.
    In: Working Papers.
    RePEc:anc:wpaper:462.

    Full description at Econpapers || Download paper

  44. May AI revolution be labour-friendly? Some micro evidence from the supply side. (2021). Vivarelli, Marco ; Vertesy, Daniel ; Van Roy, Vincent ; Damioli, Giacomo.
    In: GLO Discussion Paper Series.
    RePEc:zbw:glodps:823.

    Full description at Econpapers || Download paper

  45. Grasping Digitalization in the Working World: An Example From the German National Educational Panel Study. (2021). Schongen, Sebastian ; Pollak, Reinhard ; Laible, Marie-Christine ; Schulz, Benjamin ; Vicari, Basha ; Friedrich, Teresa Sophie.
    In: EconStor Open Access Articles and Book Chapters.
    RePEc:zbw:espost:251776.

    Full description at Econpapers || Download paper

  46. Modeling Drivers and Barriers of Artificial Intelligence Adoption: Insights from a Strategic Management Perspective. (2021). Kar, Sudatta ; Gupta, Manmohan Prasad.
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:28:y:2021:i:4:p:217-238.

    Full description at Econpapers || Download paper

  47. Will the AI revolution be labour-friendly? Some micro evidence from the supply side. (2021). Vivarelli, Marco ; Vertesy, Daniel ; Van Roy, Vincent ; Damioli, Giacomo.
    In: MERIT Working Papers.
    RePEc:unm:unumer:2021016.

    Full description at Econpapers || Download paper

  48. Translating technological innovation into efficiency: the case of US public P&C insurance companies. (2021). Grassi, Laura ; Lanfranchi, Davide.
    In: Eurasian Business Review.
    RePEc:spr:eurasi:v:11:y:2021:i:4:d:10.1007_s40821-021-00189-7.

    Full description at Econpapers || Download paper

  49. May AI Revolution Be Labour-Friendly? Some Micro Evidence from the Supply Side. (2021). Vivarelli, Marco ; Vertesy, Daniel ; Van Roy, Vincent ; Damioli, Giacomo.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp14309.

    Full description at Econpapers || Download paper

  50. Detecting the labour-friendly nature of AI product innovation. (2021). Vivarelli, Marco ; Vertesy, Daniel ; Van Roy, Vincent ; Damioli, Giacomo.
    In: DISCE - Working Papers del Dipartimento di Politica Economica.
    RePEc:ctc:serie5:dipe0017.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 15:09:15 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.