- Amsler, M. H. (1968). Les Chaines De Markov Des Assurances Vie, Invalidité Et Maladie. In Transactions of the 18th international congress of actuaries (Vol. 5, pp. 731–746). München: Springer.
Paper not yet in RePEc: Add citation now
- Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. (2016). Supervised, unsupervised, and semi‐supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13, 971–989. https://doi.org/10.1109/TCBB.2015.2478454.
Paper not yet in RePEc: Add citation now
Ayuso, M., Guillen, M., & Nielsen, J. P. (2019). Improving automobile insurance ratemaking using telematics: Incorporating mileage and driver behaviour data. Transportation, 46, 735–752. https://doi.org/10.1007/s11116-018-9890-7.
Baione, F., & Levantesi, S. (2014). A health insurance pricing model based on prevalence rates: Application to critical illness insurance. Insurance: Mathematics & Economics, 58, 174–184.
- Barry, L., & Charpentier, A. (2020). Personalization as a promise: Can big data change the practice of insurance? Big Data & Society, 7, 205395172093514. https://doi.org/10.1177/2053951720935143.
Paper not yet in RePEc: Add citation now
- Bolón‐Canedo, V., & Alonso‐Betanzos, A. (2019). Ensembles for feature selection: A review and future trends. Information Fusion, 52, 1–12. https://doi.org/10.1016/j.inffus.2018.11.008.
Paper not yet in RePEc: Add citation now
- Boodhun, N., & Jayabalan, M. (2018). Risk prediction in life insurance industry using supervised learning algorithms. Complex & Intelligent Systems, 4, 145–154. https://doi.org/10.1007/s40747-018-0072-1.
Paper not yet in RePEc: Add citation now
Boone, J. (2015). Basic versus supplementary health insurance: Moral Hazard and adverse selection. Journal of Public Economics, 128, 50–58. https://doi.org/10.1016/j.jpubeco.2015.05.009.
Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2018). Optimal deep learning Lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies, 11, 1636–1655. https://doi.org/10.3390/en11071636.
Boyer, M. M., & Peter, R. (2020). Insurance fraud in a Rothschild‐Stiglitz world. The Journal of Risk and Insurance, 87, 117–142. https://doi.org/10.1111/jori.12264.
Cather, D. A. (2020). Reconsidering insurance discrimination and adverse selection in an era of data analytics. Geneva pap. Risk Insurance‐Issues Practice, 45, 426–456.
- Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.
Paper not yet in RePEc: Add citation now
- Chowdhary, C. L., & Acharjya, D. P. (2017). Clustering algorithm in Possibilistic exponential fuzzy C‐mean segmenting medical images. Journal of Biomimetics Biomaterials and Biomedical Engineering, 30, 12–23.
Paper not yet in RePEc: Add citation now
Christiansen, M. C. (2012). Multistate models in health insurance. AStA ‐ Advances in Statistical Analysis, 96, 155–186.
Cohen, A., & Siegelman, P. (2010). Testing for adverse selection in insurance markets. The Journal of Risk and Insurance, 77, 39–84. https://doi.org/10.1111/j.1539-6975.2009.01337.x.
- Deng, X., Li, Y., Weng, J., & Zhang, J. (2018). Feature selection for text classification: A review. Multimedia Tools and Applications, 78, 3797–3816.
Paper not yet in RePEc: Add citation now
- Fleischmann, A. (2015). Calibrating intensities for long‐term care multiple‐state Markov insurance model. European Actuarial Journal, 5, 327–354. https://doi.org/10.1007/s13385-015-0117-4.
Paper not yet in RePEc: Add citation now
Gunnsteinsson, S. (2020). Experimental identification of asymmetric information: Evidence on crop Insurance in the Philippines. Journal of Development Economics, 144, 102414. https://doi.org/10.1016/j.jdeveco.2019.102414.
- Hernández‐Pereira, E., Bolón‐Canedo, V., Sánchez‐Maroño, N., Álvarez‐Estévez, D., Moret‐Bonillo, V., & Alonso‐Betanzos, A. (2016). A comparison of performance of K‐complex classification methods using feature selection. Information Sciences, 328, 1–14.
Paper not yet in RePEc: Add citation now
- Hofmann, A., Häfen, O. V., & Nell, M. (2018). Optimal insurance policy indemnity schedules with Policyholders' limited liability and background risk. The Journal of Risk and Insurance, 86, 973–988.
Paper not yet in RePEc: Add citation now
- Huang, Y., & Meng, S. (2019). Automobile insurance classification ratemaking based on telematics driving data. Decision Support Systems, 127, 113156. https://doi.org/10.1016/j.dss.2019.113156.
Paper not yet in RePEc: Add citation now
- Jain, A. K. (2010). Data clustering: 50 years beyond K‐means. Pattern Recognition Letters, 31, 651–666. https://doi.org/10.1016/j.patrec.2009.09.011.
Paper not yet in RePEc: Add citation now
- Jain, R., Alzubi, J. A., Jain, N., & Joshi, P. (2019). Assessing risk in life insurance using ensemble learning. Journal of Intelligent Fuzzy Systems, 37, 2969–2980. https://doi.org/10.3233/JIFS-190078.
Paper not yet in RePEc: Add citation now
- Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society a: Mathematical, Physical & Engineering Sciences, 374, 2065–2080.
Paper not yet in RePEc: Add citation now
- Khanmohammadi, S., Adibeig, N., & Shanehbandy, S. (2017). An improved overlapping K‐means clustering method for medical applications. Expert Systems with Applications, 67, 12–18.
Paper not yet in RePEc: Add citation now
Knight, T. O., Coble, K. H., Goodwin, B. K., Rejesus, R. M., & Seo, S. (2010). Developing variable unit‐structure premium rate differentials in crop insurance. American Journal of Agricultural Economics, 92, 141–151. https://doi.org/10.1093/ajae/aap002.
- Lam B. S. Y., & Choy S. K. (2019). A trimmed clustering‐based L1‐principal component analysis model for image classification and clustering problems with outliers. Applied Sciences, 9, 1562–1586. https://doi.org/10.3390/app9081562.
Paper not yet in RePEc: Add citation now
- Liu, X., Zhou, Y., & Zongrun, W. (2020). Can the development of a Patient's condition be predicted through intelligent inquiry under the E‐health business mode? Sequential feature map‐based disease risk prediction upon features selected from cognitive diagnosis big data. International Journal of Information Management, 50, 463–486. https://doi.org/10.1016/j.ijinfomgt.2019.05.006.
Paper not yet in RePEc: Add citation now
Lu, Z. Y., Meng, S. W., Liu, L. P., & Han, Z. Q. (2018). Optimal insurance design under background risk with dependence. Insurance: Mathematics & Economics, 80, 15–28.
- Ma, Y.‐L., Zhu, X., Hu, X., & Chiu, Y.‐C. (2018). The use of context‐sensitive insurance telematics data in auto insurance rate making. Transportation Research: Part A‐Policy Practice, 113, 243–258. https://doi.org/10.1016/j.tra.2018.04.013.
Paper not yet in RePEc: Add citation now
- Majid, A., Khan, M. A., Yasmin, M., Rehman, A., Yousafzai, A., & Tariq, U. (2020). Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy Research and Technique, 83, 562–576. https://doi.org/10.1002/jemt.23447.
Paper not yet in RePEc: Add citation now
- Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094. https://doi.org/10.1038/srep26094.
Paper not yet in RePEc: Add citation now
- Nandi, R. J., Nandi, A. K., Rangayyan, R. M., & Scutt, D. (2006). Classification of breast masses in mammograms using genetic programming and feature selection. Medical & Biological Engineering & Computing, 44, 683–694. https://doi.org/10.1007/s11517-006-0077-6.
Paper not yet in RePEc: Add citation now
- Nijpels, G., Beulens, J. W., van der Heijden, A. A., & Elders, P. J. (2019). Innovations in personalised diabetes care and risk management. European Journal of Preventive Cardiology, 26, 125–132. https://doi.org/10.1177/2047487319880043.
Paper not yet in RePEc: Add citation now
- Nilashi, M., Ibrahim, O. B., Ahmadi, H., & Shahmoradi, L. (2017). An analytical method for diseases prediction using machine learning techniques. Computers and Chemical Engineering, 106, 212–223. https://doi.org/10.1016/j.compchemeng.2017.06.011.
Paper not yet in RePEc: Add citation now
- Shi, X., Guo, Z., Nie, F., Yang, L., You, J., & Tao, D. (2016). Two‐dimensional whitening reconstruction for enhancing robustness of principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2130–2136.
Paper not yet in RePEc: Add citation now
- Sideris, C., Pourhomayoun, M., Kalantarian, H., & Sarrafzadeh, M. (2016). A flexible data‐driven comorbidity feature extraction framework. Computers in Biology and Medicine, 73, 165–172. https://doi.org/10.1016/j.compbiomed.2016.04.014.
Paper not yet in RePEc: Add citation now
Soika, S. (2018). Moral Hazard and advantageous selection in private disability insurance. Geneva Papers on Risk Insurance‐Issues Practice, 43, 97–125. https://doi.org/10.1057/s41288-017-0055-2.
- Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random Forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028.
Paper not yet in RePEc: Add citation now
- Steinley, D. (2006). K‐means clustering: A half‐century synthesis. The British Journal of Mathematical and Statistical Psychology, 59, 1–34. https://doi.org/10.1348/000711005X48266.
Paper not yet in RePEc: Add citation now
- Tsai, C.‐F., & Sung, Y.‐T. (2020). Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowledge‐Based Systems, 203, 106097. https://doi.org/10.1016/j.knosys.2020.106097.
Paper not yet in RePEc: Add citation now
- Uğuz, H. (2011). A two‐stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge‐Based Systems, 24, 1024–1032.
Paper not yet in RePEc: Add citation now
- Vadori, N., & Swishchuk, A. (2015). Strong law of large numbers and central limit theorems for Functionals of inhomogeneous semi‐Markov processes. Stochastic Analysis and Applications, 33, 213–243.
Paper not yet in RePEc: Add citation now
van Winssen, K. P. M., van Kleef, R. C., & van de Ven, W. (2018). Can premium differentiation counteract adverse selection in the Dutch supplementary health insurance? A simulation study. The European Journal of Health Economics, 19, 757–768. https://doi.org/10.1007/s10198-017-0918-2.
Woodard, J. D. (2016). Integrating high resolution soil data into Federal Crop Insurance Policy: Implications for policy and conservation. Environmental Science & Policy, 66, 93–100. https://doi.org/10.1016/j.envsci.2016.08.011.
- Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841–847. https://doi.org/10.1109/34.85677.
Paper not yet in RePEc: Add citation now
- Xu, R., Damelin, S., Nadler, B., & Wunsch, D. C. 2nd (2010). Clustering of high‐dimensional gene expression data with feature filtering methods and diffusion maps. Artificial Intelligence in Medicine, 48, 91–98. https://doi.org/10.1016/j.artmed.2009.06.001.
Paper not yet in RePEc: Add citation now
- Xue, Y., Zhang, L., Wang, B., Zhang, Z., & Li, F. (2018). Nonlinear feature selection using Gaussian kernel Svm‐Rfe for fault diagnosis. Applied Intelligence, 48, 3306–3331. https://doi.org/10.1007/s10489-018-1140-3.
Paper not yet in RePEc: Add citation now
- Yang, X., Chen, J., Pan, A., Wu, J. H. Y., Zhao, F., Xie, Y., Wang, Y., Ye, Y., Pan, X. F., & Yang, C. X. (2020). Association between higher blood pressure and risk of diabetes mellitus in middle‐aged and elderly Chinese adults. Diabetes and Metabolism Journal, 44, 436–445.
Paper not yet in RePEc: Add citation now
- Yi, S., Lai, Z., He, Z., Cheung, Y.‐M., & Liu, Y. (2017). Joint sparse principal component analysis. Pattern Recognition, 61, 524–536. https://doi.org/10.1016/j.patcog.2016.08.025.
Paper not yet in RePEc: Add citation now
- Yuvaraj, N., & SriPreethaa, K. R. (2017). Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Cluster Computing, 22, 1–9.
Paper not yet in RePEc: Add citation now