create a website

A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining. (2020). Kő, Andrea ; Gillani, Saira ; Ko, Andrea.
In: International Journal of Information Technology & Decision Making (IJITDM).
RePEc:wsi:ijitdm:v:19:y:2020:i:01:n:s0219622019300076.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 89

References cited by this document

Cocites: 27

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. A. Al-Arfaj and A. Al-Salman, Ontology construction from text: Challenges and trends, International Journal of Artificial Intelligence and Expert Systems 6(2) (2015) 15–26.
    Paper not yet in RePEc: Add citation now
  2. A. D. Nerkar, Business Analytics (BA): Core of Business Intelligence (BI). International Journal of Advanced Engineering, Management and Science 2(12) (2016) 2176–2178.
    Paper not yet in RePEc: Add citation now
  3. A. G. López-Herrera, E. Herrera-Viedma, M. J. Cobo, M. A. Martínez, G. Kou and Y. Shi, A conceptual snapshot of the first decade (2002–2011) of the international journal of information technology & decision making, International Journal of Information Technology & Decision Making 11(2) (2012) 247–270.

  4. A. Maedche and S. Staab, The TEXT-TO-ONTO ontology learning environment, Proc. Software Demonstration at ICCS-2000 — Eight Int. Conf. Conceptual Structures, Retrieved from http://www.aifb.uni-karlsruhe.de/WBS (Academic Press, 2000), pp. 890–930.
    Paper not yet in RePEc: Add citation now
  5. A. O’Mara-Eves, J. Thomas, J. McNaught, M. Miwa, S. Ananiadou, Using text mining for study identification in systematic reviews: A systematic review of current approaches, Systematic Reviews 4(1) (2015) 5, https://doi.org/10.1186/2046-4053-4-5.
    Paper not yet in RePEc: Add citation now
  6. B. Chae and D. L. Olson, Business analytics for supply chain: A dynamic-capabilities framework. International Journal of Information Technology & Decision Making 12(1) (2013) 9–26, https://doi.org/10.1142/S0219622013500016.

  7. B. De Bruijn and J. Martin, Getting to the (c)ore of knowledge: Mining biomedical literature, International Journal of Medical Informatics 67(1–3) (2002) 7–18, https://doi.org/10.1016/S1386-5056(02)00050-3.
    Paper not yet in RePEc: Add citation now
  8. B. Fortuna, M. Grobelnik and D. Mladenić, OntoGen: semi-automatic ontology editor, Human Interface and the Management of Information, Interacting in Information Environments 4558 (2007) 309–318, https://doi.org/10.1007/978-3-540-73354-6.
    Paper not yet in RePEc: Add citation now
  9. B. Liu and L. Zhang, A survey of opinion mining and sentiment analysis, in Mining Text Data (Springer US, 2012), pp. 415–463.
    Paper not yet in RePEc: Add citation now
  10. B. Liu, Sentiment analysis and opinion mining, Synthesis Lectures on Human Language Technologies 5(1) (2012) 1–167, https://doi.org/10.2200/S00416ED1V01Y201204HLT016.
    Paper not yet in RePEc: Add citation now
  11. B. Pang and L. Lee, Opinion mining and sentiment analysis, Foundations and Trends® in Information Retrieval, 1(2) (2006) 91–231, https://doi.org/10.1561/1500 000 001.
    Paper not yet in RePEc: Add citation now
  12. B. Rous, Major update to ACM’s computing classification system, Communications of the ACM 55(11) (2012) 12–12, https://doi.org/10.1145/2366316.2366320.
    Paper not yet in RePEc: Add citation now
  13. C. Brewster, H. Alani, S. Dasmahapatra and Y. Wilks, Data driven ontology evaluation, in Fourth Int. Conf. Language Resources and Evaluation (LREC’04) (European Language Resources Association (ELRA), 2004), pp. 641–644, https://doi.org/10.1.1.99.6070.
    Paper not yet in RePEc: Add citation now
  14. C. Holsapple, A. Lee-Post and R. Pakath, A unified foundation for business analytics, Decision Support Systems 64 (2014) 130–141, https://doi.org/10.1016/j.dss.2014.05.013.
    Paper not yet in RePEc: Add citation now
  15. C. O’Neil and R. Schutt, Introduction: What is data science, in Doing Data Science: Straight Talk from the Frontline, 1st ed. (O’Reilly Media, Inc., USA, 2013).
    Paper not yet in RePEc: Add citation now
  16. C. Soh and M. L. Markus, How IT creates business value: a process theory synthesis, in ICIS 1995 Proc. (Association for Information Systems (AIS), 1995), Paper 4. Retrieved from http://aisel.aisnet.org/icis1995/4.
    Paper not yet in RePEc: Add citation now
  17. C. White, A taxonomy for BI, DM Review, (2004) 70–71.
    Paper not yet in RePEc: Add citation now
  18. D. Delen and H. Demirkan, Data, information and analytics as services, Decision Support Systems 55(1) (2013) 359–363, https://doi.org/10.1016/j.dss.2012.05.044.
    Paper not yet in RePEc: Add citation now
  19. D. J. Power, C. Heavin, J. McDermott and M. Daly, Defining business analytics: An empirical approach, Journal of Business Analytics 1(1) (2018) 40–53.
    Paper not yet in RePEc: Add citation now
  20. D. Larson and V. Chang, A review and future direction of agile, business intelligence, analytics and data science, International Journal of Information Management 36(5) (2016) 700–710, https://doi.org/10.1016/j.ijinfomgt.2016.04.013.
    Paper not yet in RePEc: Add citation now
  21. D. R. Moscato and E. D. Moscato, A taxonomy of a decision support system for professional sports, Issues in Information Systems 5(2) (2004) 633–639.
    Paper not yet in RePEc: Add citation now
  22. E. Breck, Y. Choi and C. Cardie, Identifying expressions of opinion in context, IJCAI International Joint Conf. Artificial Intelligence (2007), pp. 2683–2688, https://doi.org/10.1016/j.jad.2005.02.015.
    Paper not yet in RePEc: Add citation now
  23. E. Turban, R. Sharda and D. Delen, Decision Support and Business Intelligence Systems, 9th ed. (Pearson, New Jersey, 2011).
    Paper not yet in RePEc: Add citation now
  24. G. C. Souza, Supply chain analytics, Business Horizons 57(5) (2014) 595–605, https://doi.org/10.1016/j.bushor.2014.06.004.

  25. G. Kou, D. Ergu, C. Lin and Y. Chen, Pairwise comparison matrix in multiple criteria decision making, Technological and Economic Development of Economy 22(5) (2016) 738–765, https://doi.org/10.3846/20294913.2016.1210694.
    Paper not yet in RePEc: Add citation now
  26. G. Kou, Y. Peng and G. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Information Sciences 275 (2014) 1–12, https://doi.org/10.1016/j.ins.2014.02.137.
    Paper not yet in RePEc: Add citation now
  27. G. Nenadić, H. Mima, I. Spasić, S. Ananiadou and J. I. Tsujii, Terminology-driven literature mining and knowledge acquisition in biomedicine, International Journal of Medical Informatics 67(1–3) (2002) 33–48, https://doi.org/10.1016/S1386-5056(02)00055-2.
    Paper not yet in RePEc: Add citation now
  28. G. Phillips-Wren, L. S. Iyer, U. Kulkarni and T. Ariyachandra, Business analytics in the context of big data: A roadmap for research, Communications of the Association for Information Systems 37 (2015) 448–472.
    Paper not yet in RePEc: Add citation now
  29. G. Schryen, Revisiting IS business value research: What we already know, what we still need to know and how we can get there, European Journal of Information Systems 22(2) (2013) 139–169, https://doi.org/10.1057/ejis.2012.45.
    Paper not yet in RePEc: Add citation now
  30. Gartner (2018), 2018 CIO Agenda Report, https://www.gartner.com/imagesrv/cio-trends/pdf/cio_agenda_2018.pdf, 2018.
    Paper not yet in RePEc: Add citation now
  31. Gartner, IT Glossary, Retrieved from https://www.gartner.com/it-glossary/business-analytics (2019).
    Paper not yet in RePEc: Add citation now
  32. Gartner, Magic Quadrant for Business Intelligence and Analytics Platforms, https://www.gartner.com/home 2017 (2017).
    Paper not yet in RePEc: Add citation now
  33. H. Ahonen-Myka, Finding all maximal frequent sequences in text, in Proc. ICML Workshop on Machine Learning in Text Data Analysis (Slovenian Language Technologies Society, 1999), pp. 11–17.
    Paper not yet in RePEc: Add citation now
  34. H. Barki, S. Rivard and J. Talbot, A keyword classification scheme for IS research literature: An update, Mis Quarterly 17 (1993) 209–226, https://doi.org/10.2307/249802.
    Paper not yet in RePEc: Add citation now
  35. H. Chen, R. H. L. Chiang and V. C. Storey, Business Intelligence and Analytics: From big data to big impact, Mis Quarterly 36(4) (2012) 1165–1188, https://doi.org/10.1145/2463676.2463712.
    Paper not yet in RePEc: Add citation now
  36. H. J. Watson, Business analytics insight: Hype or here to stay? Business Intelligence Journal 16(1) (2011) 4–8.
    Paper not yet in RePEc: Add citation now
  37. H. Small, Visualizing science by citation mapping, Journal of the American Society for Information Science 50 (1999) 799–813.

  38. H. Yu and V. Hatzivassiloglou, Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences, in Proc. 2003 Conf. Empirical Methods in Natural Language Processing (Association for Computational LinguisticsN, USA, 2003), pp. 129–136, https://doi.org/10.3115/1119355.1119372.
    Paper not yet in RePEc: Add citation now
  39. I. Vessey, V. Ramesh and R. L. Glass, A unified classification system for research in the computing disciplines, Information and Software Technology 47(4) (2005) 245–255, https://doi.org/10.1016/j.infsof.2004.08.006.
    Paper not yet in RePEc: Add citation now
  40. IBM, The Four V’s of Big Data. Retrieved from http://www.ibmbigdatahub.com/infographic/four-vsbig-data (2014).
    Paper not yet in RePEc: Add citation now
  41. J. Brank, M. Grobelnik and D. Mladenić, A survey of ontology evaluation techniques, in Proc. Conf. Data Mining and Data Warehouses (Citeseer Ljubljana, Slovenia, 2005), pp. 166–170, https://doi.org/10.1.1.101.4788.
    Paper not yet in RePEc: Add citation now
  42. J. Guan, A. S. Manikas and L. H. Boyd, The international journal of production research at 55: A content-driven review and analysis, International Journal of Production Research 57 (2017) 1–13, https://doi.org/10.1080/00207543.2017.1296979.
    Paper not yet in RePEc: Add citation now
  43. J. Jin, Y. Liu, P. Ji and H. Liu, Understanding big consumer opinion data for market-driven product design, International Journal of Production Research 54(10) (2016) 3019–3041, https://doi.org/10.1080/00207543.2016.1154208.

  44. J. Kocken and J. Hulstijn, in Providing Continuous Assurance, VMBO Workshop Series (Luxembourg Institute of Science and Technology, Luxembourg, 2017), pp. 1–16.

  45. J. Thomas, J. McNaught and S. Ananiadou, Applications of text mining within systematic reviews, Research Synthesis Methods 2(1) (2011) 1–14, https://doi.org/10.1002/jrsm.27.
    Paper not yet in RePEc: Add citation now
  46. J. Yi, T. Nasukawa, R. Bunescu and W. Niblack, Sentiment analyser: Extraction sentiments about a given topic using natural language processing techniques, in IEEE Intl. Conf. Data Mining (ICDM) (IEEE, 2003), pp. 427–434.
    Paper not yet in RePEc: Add citation now
  47. J. Yu, J. A. Thom and A. Tam, Ontology evaluation using wikipedia categories for browsing, in Proc. Sixteenth ACM Conf. Information and Knowledge Management — CIKM ’07 (ACM, 2007), https://doi.org/10.1145/1321440.1321474, p. 223.
    Paper not yet in RePEc: Add citation now
  48. K. D. Bailey, Typologies and Taxonomies: An Introduction to Classification Techniques, Vol. 102 (Sage, 1994).
    Paper not yet in RePEc: Add citation now
  49. K. Dellschaft and S. Staab, On how to perform a gold standard based evaluation of ontology learning, Learning 4273(8) (2006) 228–241, https://doi.org/10.1007/11926078_17.
    Paper not yet in RePEc: Add citation now
  50. K. Meijer, F. Frasincar and F. Hogenboom, A semantic approach for extracting domain taxonomies from text, Decision Support Systems 62 (2014) 78–93, https://doi.org/10.1016/j.dss.2014.03.006.
    Paper not yet in RePEc: Add citation now
  51. L. J. Jensen, J. Saric and P. Bork, Literature mining for the biologist: From information retrieval to biological discovery, Nature Reviews Genetics 7(2) (2006) 119–129, https://doi.org/10.1038/nrg1768.
    Paper not yet in RePEc: Add citation now
  52. L. Waltman, N. J. van Eck and E. C. M. Noyons, A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics 4(4) (2010) 629–635, https://doi.org/10.1016/j.joi.2010.07.002.

  53. M. A. Waller and S. E. Fawcett, Data science, predictive analytics and big data: A revolution that will transform supply chain design and management, Journal of Business Logistics 34(2) (2013) 77–84, https://doi.org/10.1111/jbl.12010.
    Paper not yet in RePEc: Add citation now
  54. M. F. Porter, Snowball: A language for stemming algorithms (2001),
    Paper not yet in RePEc: Add citation now
  55. M. Gualtieri, The forrester waveTM: Predictive analytics and machine learning solutions, Q1 2017, Forrester Research (2017).
    Paper not yet in RePEc: Add citation now
  56. M. Hofmann and R. Klinkenberg, RapidMiner: Data Mining Use Cases and Business Analytics Applications, Zhurnal Eksperimental’noi I Teoreticheskoi Fiziki, (2013), https://doi.org/78-1-4822-0550-3.
    Paper not yet in RePEc: Add citation now
  57. M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma and F. Herrera, An approach for detecting, quantifying and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field, Journal of Informetrics 5(1) (2011) 146–166.

  58. M. J. Cobo, F. Chiclana, A. Collop, J. de Ona and E. Herrera-Viedma, A bibliometric analysis of the intelligent transportation systems research based on science mapping, IEEE Transactions on Intelligent Transportation Systems 15(2) (2014) 901–908.
    Paper not yet in RePEc: Add citation now
  59. M. Lebied, Top 10 Analytics and Business Intelligence Trends for 2018, https://www.datapine.com/blog/business-intelligence-trends (2018).
    Paper not yet in RePEc: Add citation now
  60. M. Liberatore and W. Luo, Informs and the analytics movement: The view of the membership, Interfaces 41(6) (2011) 578–589, https://doi.org/org/10.1287/inte.1110.0599.

  61. McAfee Lab, McAfee Labs 2016 Threats Predictions McAfee Labs. McAfee Labs. Retrieved from www.mcafee.com/us/mcafee-labs.aspx%0Ahttp://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf (2016).
    Paper not yet in RePEc: Add citation now
  62. N. J. van Eck and L. Waltman, Text mining and visualization using VOSviewer, ISSI Newsletter 7(3) (2011) 50–54, https://doi.org/10.1371/journal.pone.0054847.
    Paper not yet in RePEc: Add citation now
  63. N. Melville, K. Kraemer and V. Gurbaxani, Review: information technology and organizational performance: An integrative model of IT business value, MIS Quarterly 28(2) (2004) 283–322, https://doi.org/10.2307/25148636.
    Paper not yet in RePEc: Add citation now
  64. P. Delir Haghighi, F. Burstein, A. Zaslavsky and P. Arbon, Development and evaluation of ontology for intelligent decision support in medical emergency management for mass gatherings, Decision Support Systems 54(2) (2013) 1192–1204, https://doi.org/10.1016/j.dss.2012.11.013.
    Paper not yet in RePEc: Add citation now
  65. P. Goes, Editor’s comments: Big data and IS research. MIS Quarterly 38(3) (2014) iii–viii.
    Paper not yet in RePEc: Add citation now
  66. P. Monali and K. Sandip, A concise survey on text data mining, International Journal of Advanced Research in Computer Science and Electronics Engineering 3(9) (2014) 8040–8043.
    Paper not yet in RePEc: Add citation now
  67. P. Trkman, K. McCormack, M. P. V. De Oliveira and M. B. Ladeira, The impact of business analytics on supply chain performance. Decision Support Systems 49(3) (2010) 318–327, https://doi.org/10.1016/j.dss.2010.03.007.
    Paper not yet in RePEc: Add citation now
  68. P. Velardi, R. Navigli, A. Cucchiarelli and F. Neri, Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies, Ontology Learning from Text: Methods, Evaluation and Applications, Vol. 123 (IOS Press, 2005), pp. 92–106.
    Paper not yet in RePEc: Add citation now
  69. Q. Zhang and R. S. Segall, Web mining: A survey of current research, techniques and software. International Journal of Information Technology & Decision Making 7(4) (2008) 683–720.

  70. R. C. Basole, C. D. Seuss and W. B. Rouse, IT innovation adoption by enterprises: Knowledge discovery through text analytics, Decision Support Systems 54(2) (2013) 1044–1054, https://doi.org/10.1016/j.dss.2012.10.029.
    Paper not yet in RePEc: Add citation now
  71. R. C. Nickerson, U. Varshney and J. Muntermann, A method for taxonomy development and its application in information systems, European Journal of Information Systems 22(3) (2013) 336–359, https://doi.org/10.1057/ejis.2012.26.
    Paper not yet in RePEc: Add citation now
  72. R. Feldman and I. Dagan, Knowledge discovery in textual databases (KDT), International Conference on Knowledge Discovery and Data Mining (KDD), (1995) 112–117, https://doi.org/10.1.1.47.7462.
    Paper not yet in RePEc: Add citation now
  73. R. Green, Typologies and taxonomies: An introduction to classification techniques. Journal of the American Society for Information Science 47(4) (1996) 328–329, https://doi.org/10.1002/(SICI)1097-4571(199604)47:4<328::AID-ASI10>3.0.CO;2-Y.

  74. R. Sharda, D. Delen, E. Turban, J. E. Aronson, T. Liang and D. King, Business Intelligence: A Managerial Perspective on Analytics, 3rd edn. (Prentice Hall, New York, 2014).
    Paper not yet in RePEc: Add citation now
  75. R. Van Rees, Clarity in the usage of the terms ontology, taxonomy and classification, CIB Report 284(432) (2003) 1–8.
    Paper not yet in RePEc: Add citation now
  76. S. Adolph, M. Tisch and J. Metternich, Challenges and approaches to competency development for future production, Educational Alternatives 12 (2014) 1001–1010.
    Paper not yet in RePEc: Add citation now
  77. S. Alter, A Taxonomy of decision support systems, Sloan Management Review 19(1) (1977) 39–56.
    Paper not yet in RePEc: Add citation now
  78. S. Gillani and A. Ko, Incremental ontology population and enrichment through semantic-based text mining, International Journal on Semantic Web and Information Systems 11(3) (2015) 44–66, https://doi.org/10.4018/IJSWIS.2015070103.

  79. S. Mohanty, M. Jagadeesh and H. Srivatsa, Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics (2013), https://doi.org/10.1007/978-1-4302-4873-6.
    Paper not yet in RePEc: Add citation now
  80. T. H. Davenport and J. G. Harris, Competing on Analytics: The New Science of Winning (Harvard Business Press, 2007).
    Paper not yet in RePEc: Add citation now
  81. T. H. Davenport, Big Data @ Work: Dispelling the Myths, Uncovering the Opportunities (Harvard Business Review Press, 2014).
    Paper not yet in RePEc: Add citation now
  82. T. H. Davenport, L. Adams, Z. A. Ahmad, N. Karia, E. E. Anschutz, B. Becker and C. Young, Competing on analytics, Harvard Business Review 84(1) (2006) 98–107, 134, https://doi.org/10.1177/2158244011433338.
    Paper not yet in RePEc: Add citation now
  83. T. R. Gruber, Toward principles for the design of ontologies used for knowledge sharing, International Journal of Human — Computer Studies 43(5–6) (1995) 907–928, https://doi.org/10.1006/ijhc.1995.1081.
    Paper not yet in RePEc: Add citation now
  84. V. Korde and C. N. Mahender, Text classification and classifiers: A survey, International Journal of Artificial Intelligence & Applications 3(2) (2012) 85–99, https://doi.org/10.5121/ijaia.2012.3208.
    Paper not yet in RePEc: Add citation now
  85. V.-H. Trieu, Getting value from business intelligence systems: A review and research agenda, Decision Support Systems 93 (2017) 111–124, https://doi.org/10.1016/j.dss.2016.09.019.
    Paper not yet in RePEc: Add citation now
  86. X. Kang, F. Ren and Y. Wu, Exploring latent semantic information for textual emotion recognition in blog articles, IEEE/CAA Journal of Automatica Sinica 5(1) (2017) 204–216.
    Paper not yet in RePEc: Add citation now
  87. Y. Li, S. Chung and J. Holt, Text document clustering based on frequent word sequences, Data & Knowledge Engineering (2005) 293–294, https://doi.org/10.1016/j.datak.2007.08.001.
    Paper not yet in RePEc: Add citation now
  88. Y. Lv, Y. Chen, X. Zhang, Y. Duan and N. L. Li, Social media based transportation research: The state of the work and the networking, IEEE/CAA Journal of Automatica Sinica 4 (1) (2017) 19–26.
    Paper not yet in RePEc: Add citation now
  89. Y. Peng, G. Kou, Y. Shi and Z. Chen, A descriptive framework for the field of data mining and knowledge discovery, International Journal of Information Technology & Decision Making 7(4) (2008) 639–682.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Motivators and Inhibitors for Business Analytics Adoption from the Cross-Cultural Perspectives: A Data Mining Approach. (2024). Min, Hokey ; Lea, Bih-Ru.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:26:y:2024:i:3:d:10.1007_s10796-023-10399-1.

    Full description at Econpapers || Download paper

  2. A thematic review of 45 years of The Journal of Technology Transfer. (2024). Cunningham, James A ; Abid, Nabila ; Perea-Vicente, Jos-Luis.
    In: Post-Print.
    RePEc:hal:journl:hal-04980007.

    Full description at Econpapers || Download paper

  3. Human-related capabilities in big data analytics: a taxonomy of human factors with impact on firm performance. (2023). Korherr, Philipp ; Kanbach, Dominik.
    In: Review of Managerial Science.
    RePEc:spr:rvmgts:v:17:y:2023:i:6:d:10.1007_s11846-021-00506-4.

    Full description at Econpapers || Download paper

  4. Transforming Supply Chains: Powering Circular Economy with Analytics, Integration and Flexibility Using Dual Theory and Deep Learning with PLS-SEM-ANN Analysis. (2023). Adeel, Umar ; Yeo, Sook Fern ; Shafique, Muhammad Noman ; Rashid, Ammar.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:15:p:11979-:d:1210215.

    Full description at Econpapers || Download paper

  5. The Impact of Business Intelligence and Analytics Adoption on Decision Making Effectiveness and Managerial Work Performance. (2023). Muntean, Mihaela ; Hurbean, Luminiea ; Militaru, Florin ; Danaiata, Doina.
    In: Scientific Annals of Economics and Business (continues Analele Stiintifice).
    RePEc:aic:saebjn:v:70:y:2023:i:si:p:43-54:n:3.

    Full description at Econpapers || Download paper

  6. Structure of human resource management in the information technology field: A bibliometric analysis. (2022). Sehitoglu, Yasin ; Sengullendi, Muhammet Fatih ; Bilgeturk, Mahmut.
    In: Upravlenets.
    RePEc:url:upravl:v:13:y:2022:i:2:p:85-103.

    Full description at Econpapers || Download paper

  7. Supply chain analytics adoption: Determinants and impacts on organisational performance and competitive advantage. (2022). Tsolakis, Naoum ; Kalaitzi, Dimitra.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:248:y:2022:i:c:s0925527322000597.

    Full description at Econpapers || Download paper

  8. Reducing Food Waste in the Retail Supply Chains by Improving Efficiency of Logistics Operations. (2021). Nikolicic, Svetlana ; Bojic, Sanja ; Kilibarda, Milorad ; Maslaric, Marinko ; Mircetic, Dejan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:12:p:6511-:d:570660.

    Full description at Econpapers || Download paper

  9. A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining. (2020). Kő, Andrea ; Gillani, Saira ; Ko, Andrea.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:19:y:2020:i:01:n:s0219622019300076.

    Full description at Econpapers || Download paper

  10. Values, challenges and future directions of big data analytics in healthcare: A systematic review. (2019). Kumar, S ; Galetsi, P ; Katsaliaki, K.
    In: Social Science & Medicine.
    RePEc:eee:socmed:v:241:y:2019:i:c:s0277953619305271.

    Full description at Econpapers || Download paper

  11. Performance cause and effect studies: Analyzing high performance manufacturing companies. (2019). Gouvea, Sergio Eduardo ; de Lima, Edson Pinheiro ; Okoshi, Cleina Yayoe.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:210:y:2019:i:c:p:27-41.

    Full description at Econpapers || Download paper

  12. Business analytics use in CRM: A nomological net from IT competence to CRM performance. (2019). Lee, Jun Yeong ; Nam, Dalwoo.
    In: International Journal of Information Management.
    RePEc:eee:ininma:v:45:y:2019:i:c:p:233-245.

    Full description at Econpapers || Download paper

  13. Big data on the shop-floor: sensor-based decision-support for manual processes. (2018). Stein, Nikolai ; Meller, Jan ; Flath, Christoph M.
    In: Journal of Business Economics.
    RePEc:spr:jbecon:v:88:y:2018:i:5:d:10.1007_s11573-017-0890-4.

    Full description at Econpapers || Download paper

  14. Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era. (2018). Yi, Shu-Ping ; Liu, Pan.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-018-2783-5.

    Full description at Econpapers || Download paper

  15. A study on supply chain investment decision-making and coordination in the Big Data environment. (2018). Yi, Shu-Ping ; Liu, Pan.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-017-2424-4.

    Full description at Econpapers || Download paper

  16. Distribution network design with big data: model and analysis. (2018). Wang, Gang ; Gunasekaran, Angappa.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2263-8.

    Full description at Econpapers || Download paper

  17. Big Data and supply chain management: a review and bibliometric analysis. (2018). Papadopoulos, Thanos ; Childe, Stephen J ; Mishra, Deepa ; Gunasekaran, Angappa.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2236-y.

    Full description at Econpapers || Download paper

  18. Back in business: operations research in support of big data analytics for operations and supply chain management. (2018). Hill, Raymond R ; Skipper, Joseph B ; Boone, Christopher A ; Hazen, Benjamin T.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2226-0.

    Full description at Econpapers || Download paper

  19. Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. (2018). Kumar, Niraj ; Kawalek, John Paul ; Arunachalam, Deepak.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:114:y:2018:i:c:p:416-436.

    Full description at Econpapers || Download paper

  20. Business intelligence & analytics in management accounting research: Status and future focus. (2018). Rikhardsson, Pall ; Yigitbasioglu, Ogan.
    In: International Journal of Accounting Information Systems.
    RePEc:eee:ijoais:v:29:y:2018:i:c:p:37-58.

    Full description at Econpapers || Download paper

  21. Einsatzpotentiale von Cognitive Computing zur Unterstützung der Entscheidungsfindung im Supply Chain Management. (2017). Peretzke, Julia ; Sandhaus, Gregor .
    In: ild Schriftenreihe.
    RePEc:zbw:fomild:53.

    Full description at Econpapers || Download paper

  22. Decision-Making in a Real-Time Business Simulation Game: Cultural and Demographic Aspects in Small Group Dynamics. (2017). Seppala, Tomi ; Lainema, Timo ; Malo, Pekka ; Bragge, Johanna ; Kallio, Henrik.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:16:y:2017:i:03:n:s0219622017500171.

    Full description at Econpapers || Download paper

  23. Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain. (2017). Venkatesh, Mani ; Delgado, Catarina ; Mani, Venkatesh ; Patel, Purvishkumar ; Hazen, Benjamin T.
    In: Sustainability.
    RePEc:gam:jsusta:v:9:y:2017:i:4:p:608-:d:95798.

    Full description at Econpapers || Download paper

  24. Impact of business analytics and enterprise systems on managerial accounting. (2017). Yan, Zhaokai ; Vasarhelyi, Miklos ; Appelbaum, Deniz ; Kogan, Alexander.
    In: International Journal of Accounting Information Systems.
    RePEc:eee:ijoais:v:25:y:2017:i:c:p:29-44.

    Full description at Econpapers || Download paper

  25. Hierarchical Fuzzy Hidden Markov Chain for Web Applications. (2016). Rajalaxmi, T M ; Sujatha, R.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:15:y:2016:i:01:n:s0219622015500376.

    Full description at Econpapers || Download paper

  26. An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses. (2016). Dull, Richard ; Rikhardsson, Pall.
    In: International Journal of Accounting Information Systems.
    RePEc:eee:ijoais:v:20:y:2016:i:c:p:26-37.

    Full description at Econpapers || Download paper

  27. Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. (2015). Chae, Bongsug.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:165:y:2015:i:c:p:247-259.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 05:24:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.