rustc_middle/ty/print/
pretty.rs

1use std::cell::Cell;
2use std::fmt::{self, Write as _};
3use std::iter;
4use std::ops::{Deref, DerefMut};
5
6use rustc_abi::{ExternAbi, Size};
7use rustc_apfloat::Float;
8use rustc_apfloat::ieee::{Double, Half, Quad, Single};
9use rustc_data_structures::fx::{FxIndexMap, IndexEntry};
10use rustc_data_structures::unord::UnordMap;
11use rustc_hir as hir;
12use rustc_hir::LangItem;
13use rustc_hir::def::{self, CtorKind, DefKind, Namespace};
14use rustc_hir::def_id::{DefIdMap, DefIdSet, LOCAL_CRATE, ModDefId};
15use rustc_hir::definitions::{DefKey, DefPathDataName};
16use rustc_macros::{Lift, extension};
17use rustc_session::Limit;
18use rustc_session::cstore::{ExternCrate, ExternCrateSource};
19use rustc_span::{FileNameDisplayPreference, Ident, Symbol, kw, sym};
20use rustc_type_ir::{Upcast as _, elaborate};
21use smallvec::SmallVec;
22
23// `pretty` is a separate module only for organization.
24use super::*;
25use crate::mir::interpret::{AllocRange, GlobalAlloc, Pointer, Provenance, Scalar};
26use crate::query::{IntoQueryParam, Providers};
27use crate::ty::{
28    ConstInt, Expr, GenericArgKind, ParamConst, ScalarInt, Term, TermKind, TraitPredicate,
29    TypeFoldable, TypeSuperFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
30};
31
32thread_local! {
33    static FORCE_IMPL_FILENAME_LINE: Cell<bool> = const { Cell::new(false) };
34    static SHOULD_PREFIX_WITH_CRATE: Cell<bool> = const { Cell::new(false) };
35    static NO_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
36    static FORCE_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
37    static REDUCED_QUERIES: Cell<bool> = const { Cell::new(false) };
38    static NO_VISIBLE_PATH: Cell<bool> = const { Cell::new(false) };
39    static NO_VISIBLE_PATH_IF_DOC_HIDDEN: Cell<bool> = const { Cell::new(false) };
40    static RTN_MODE: Cell<RtnMode> = const { Cell::new(RtnMode::ForDiagnostic) };
41}
42
43/// Rendering style for RTN types.
44#[derive(Copy, Clone, PartialEq, Eq, Debug)]
45pub enum RtnMode {
46    /// Print the RTN type as an impl trait with its path, i.e.e `impl Sized { T::method(..) }`.
47    ForDiagnostic,
48    /// Print the RTN type as an impl trait, i.e. `impl Sized`.
49    ForSignature,
50    /// Print the RTN type as a value path, i.e. `T::method(..): ...`.
51    ForSuggestion,
52}
53
54macro_rules! define_helper {
55    ($($(#[$a:meta])* fn $name:ident($helper:ident, $tl:ident);)+) => {
56        $(
57            #[must_use]
58            pub struct $helper(bool);
59
60            impl $helper {
61                pub fn new() -> $helper {
62                    $helper($tl.replace(true))
63                }
64            }
65
66            $(#[$a])*
67            pub macro $name($e:expr) {
68                {
69                    let _guard = $helper::new();
70                    $e
71                }
72            }
73
74            impl Drop for $helper {
75                fn drop(&mut self) {
76                    $tl.set(self.0)
77                }
78            }
79
80            pub fn $name() -> bool {
81                $tl.get()
82            }
83        )+
84    }
85}
86
87define_helper!(
88    /// Avoids running select queries during any prints that occur
89    /// during the closure. This may alter the appearance of some
90    /// types (e.g. forcing verbose printing for opaque types).
91    /// This method is used during some queries (e.g. `explicit_item_bounds`
92    /// for opaque types), to ensure that any debug printing that
93    /// occurs during the query computation does not end up recursively
94    /// calling the same query.
95    fn with_reduced_queries(ReducedQueriesGuard, REDUCED_QUERIES);
96    /// Force us to name impls with just the filename/line number. We
97    /// normally try to use types. But at some points, notably while printing
98    /// cycle errors, this can result in extra or suboptimal error output,
99    /// so this variable disables that check.
100    fn with_forced_impl_filename_line(ForcedImplGuard, FORCE_IMPL_FILENAME_LINE);
101    /// Adds the `crate::` prefix to paths where appropriate.
102    fn with_crate_prefix(CratePrefixGuard, SHOULD_PREFIX_WITH_CRATE);
103    /// Prevent path trimming if it is turned on. Path trimming affects `Display` impl
104    /// of various rustc types, for example `std::vec::Vec` would be trimmed to `Vec`,
105    /// if no other `Vec` is found.
106    fn with_no_trimmed_paths(NoTrimmedGuard, NO_TRIMMED_PATH);
107    fn with_forced_trimmed_paths(ForceTrimmedGuard, FORCE_TRIMMED_PATH);
108    /// Prevent selection of visible paths. `Display` impl of DefId will prefer
109    /// visible (public) reexports of types as paths.
110    fn with_no_visible_paths(NoVisibleGuard, NO_VISIBLE_PATH);
111    /// Prevent selection of visible paths if the paths are through a doc hidden path.
112    fn with_no_visible_paths_if_doc_hidden(NoVisibleIfDocHiddenGuard, NO_VISIBLE_PATH_IF_DOC_HIDDEN);
113);
114
115#[must_use]
116pub struct RtnModeHelper(RtnMode);
117
118impl RtnModeHelper {
119    pub fn with(mode: RtnMode) -> RtnModeHelper {
120        RtnModeHelper(RTN_MODE.with(|c| c.replace(mode)))
121    }
122}
123
124impl Drop for RtnModeHelper {
125    fn drop(&mut self) {
126        RTN_MODE.with(|c| c.set(self.0))
127    }
128}
129
130/// Print types for the purposes of a suggestion.
131///
132/// Specifically, this will render RPITITs as `T::method(..)` which is suitable for
133/// things like where-clauses.
134pub macro with_types_for_suggestion($e:expr) {{
135    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSuggestion);
136    $e
137}}
138
139/// Print types for the purposes of a signature suggestion.
140///
141/// Specifically, this will render RPITITs as `impl Trait` rather than `T::method(..)`.
142pub macro with_types_for_signature($e:expr) {{
143    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSignature);
144    $e
145}}
146
147/// Avoids running any queries during prints.
148pub macro with_no_queries($e:expr) {{
149    $crate::ty::print::with_reduced_queries!($crate::ty::print::with_forced_impl_filename_line!(
150        $crate::ty::print::with_no_trimmed_paths!($crate::ty::print::with_no_visible_paths!(
151            $crate::ty::print::with_forced_impl_filename_line!($e)
152        ))
153    ))
154}}
155
156#[derive(Copy, Clone, Debug, PartialEq, Eq)]
157pub enum WrapBinderMode {
158    ForAll,
159    Unsafe,
160}
161impl WrapBinderMode {
162    pub fn start_str(self) -> &'static str {
163        match self {
164            WrapBinderMode::ForAll => "for<",
165            WrapBinderMode::Unsafe => "unsafe<",
166        }
167    }
168}
169
170/// The "region highlights" are used to control region printing during
171/// specific error messages. When a "region highlight" is enabled, it
172/// gives an alternate way to print specific regions. For now, we
173/// always print those regions using a number, so something like "`'0`".
174///
175/// Regions not selected by the region highlight mode are presently
176/// unaffected.
177#[derive(Copy, Clone, Default)]
178pub struct RegionHighlightMode<'tcx> {
179    /// If enabled, when we see the selected region, use "`'N`"
180    /// instead of the ordinary behavior.
181    highlight_regions: [Option<(ty::Region<'tcx>, usize)>; 3],
182
183    /// If enabled, when printing a "free region" that originated from
184    /// the given `ty::BoundRegionKind`, print it as "`'1`". Free regions that would ordinarily
185    /// have names print as normal.
186    ///
187    /// This is used when you have a signature like `fn foo(x: &u32,
188    /// y: &'a u32)` and we want to give a name to the region of the
189    /// reference `x`.
190    highlight_bound_region: Option<(ty::BoundRegionKind, usize)>,
191}
192
193impl<'tcx> RegionHighlightMode<'tcx> {
194    /// If `region` and `number` are both `Some`, invokes
195    /// `highlighting_region`.
196    pub fn maybe_highlighting_region(
197        &mut self,
198        region: Option<ty::Region<'tcx>>,
199        number: Option<usize>,
200    ) {
201        if let Some(k) = region
202            && let Some(n) = number
203        {
204            self.highlighting_region(k, n);
205        }
206    }
207
208    /// Highlights the region inference variable `vid` as `'N`.
209    pub fn highlighting_region(&mut self, region: ty::Region<'tcx>, number: usize) {
210        let num_slots = self.highlight_regions.len();
211        let first_avail_slot =
212            self.highlight_regions.iter_mut().find(|s| s.is_none()).unwrap_or_else(|| {
213                bug!("can only highlight {} placeholders at a time", num_slots,)
214            });
215        *first_avail_slot = Some((region, number));
216    }
217
218    /// Convenience wrapper for `highlighting_region`.
219    pub fn highlighting_region_vid(
220        &mut self,
221        tcx: TyCtxt<'tcx>,
222        vid: ty::RegionVid,
223        number: usize,
224    ) {
225        self.highlighting_region(ty::Region::new_var(tcx, vid), number)
226    }
227
228    /// Returns `Some(n)` with the number to use for the given region, if any.
229    fn region_highlighted(&self, region: ty::Region<'tcx>) -> Option<usize> {
230        self.highlight_regions.iter().find_map(|h| match h {
231            Some((r, n)) if *r == region => Some(*n),
232            _ => None,
233        })
234    }
235
236    /// Highlight the given bound region.
237    /// We can only highlight one bound region at a time. See
238    /// the field `highlight_bound_region` for more detailed notes.
239    pub fn highlighting_bound_region(&mut self, br: ty::BoundRegionKind, number: usize) {
240        assert!(self.highlight_bound_region.is_none());
241        self.highlight_bound_region = Some((br, number));
242    }
243}
244
245/// Trait for printers that pretty-print using `fmt::Write` to the printer.
246pub trait PrettyPrinter<'tcx>: Printer<'tcx> + fmt::Write {
247    /// Like `print_def_path` but for value paths.
248    fn pretty_print_value_path(
249        &mut self,
250        def_id: DefId,
251        args: &'tcx [GenericArg<'tcx>],
252    ) -> Result<(), PrintError> {
253        self.print_def_path(def_id, args)
254    }
255
256    fn pretty_print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
257    where
258        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
259    {
260        value.as_ref().skip_binder().print(self)
261    }
262
263    fn wrap_binder<T, F: FnOnce(&T, &mut Self) -> Result<(), fmt::Error>>(
264        &mut self,
265        value: &ty::Binder<'tcx, T>,
266        _mode: WrapBinderMode,
267        f: F,
268    ) -> Result<(), PrintError>
269    where
270        T: TypeFoldable<TyCtxt<'tcx>>,
271    {
272        f(value.as_ref().skip_binder(), self)
273    }
274
275    /// Prints comma-separated elements.
276    fn comma_sep<T>(&mut self, mut elems: impl Iterator<Item = T>) -> Result<(), PrintError>
277    where
278        T: Print<'tcx, Self>,
279    {
280        if let Some(first) = elems.next() {
281            first.print(self)?;
282            for elem in elems {
283                self.write_str(", ")?;
284                elem.print(self)?;
285            }
286        }
287        Ok(())
288    }
289
290    /// Prints `{f: t}` or `{f as t}` depending on the `cast` argument
291    fn typed_value(
292        &mut self,
293        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
294        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
295        conversion: &str,
296    ) -> Result<(), PrintError> {
297        self.write_str("{")?;
298        f(self)?;
299        self.write_str(conversion)?;
300        t(self)?;
301        self.write_str("}")?;
302        Ok(())
303    }
304
305    /// Prints `(...)` around what `f` prints.
306    fn parenthesized(
307        &mut self,
308        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
309    ) -> Result<(), PrintError> {
310        self.write_str("(")?;
311        f(self)?;
312        self.write_str(")")?;
313        Ok(())
314    }
315
316    /// Prints `(...)` around what `f` prints if `parenthesized` is true, otherwise just prints `f`.
317    fn maybe_parenthesized(
318        &mut self,
319        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
320        parenthesized: bool,
321    ) -> Result<(), PrintError> {
322        if parenthesized {
323            self.parenthesized(f)?;
324        } else {
325            f(self)?;
326        }
327        Ok(())
328    }
329
330    /// Prints `<...>` around what `f` prints.
331    fn generic_delimiters(
332        &mut self,
333        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
334    ) -> Result<(), PrintError>;
335
336    fn should_truncate(&mut self) -> bool {
337        false
338    }
339
340    /// Returns `true` if the region should be printed in
341    /// optional positions, e.g., `&'a T` or `dyn Tr + 'b`.
342    /// This is typically the case for all non-`'_` regions.
343    fn should_print_region(&self, region: ty::Region<'tcx>) -> bool;
344
345    fn reset_type_limit(&mut self) {}
346
347    // Defaults (should not be overridden):
348
349    /// If possible, this returns a global path resolving to `def_id` that is visible
350    /// from at least one local module, and returns `true`. If the crate defining `def_id` is
351    /// declared with an `extern crate`, the path is guaranteed to use the `extern crate`.
352    fn try_print_visible_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
353        if with_no_visible_paths() {
354            return Ok(false);
355        }
356
357        let mut callers = Vec::new();
358        self.try_print_visible_def_path_recur(def_id, &mut callers)
359    }
360
361    // Given a `DefId`, produce a short name. For types and traits, it prints *only* its name,
362    // For associated items on traits it prints out the trait's name and the associated item's name.
363    // For enum variants, if they have an unique name, then we only print the name, otherwise we
364    // print the enum name and the variant name. Otherwise, we do not print anything and let the
365    // caller use the `print_def_path` fallback.
366    fn force_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
367        let key = self.tcx().def_key(def_id);
368        let visible_parent_map = self.tcx().visible_parent_map(());
369        let kind = self.tcx().def_kind(def_id);
370
371        let get_local_name = |this: &Self, name, def_id, key: DefKey| {
372            if let Some(visible_parent) = visible_parent_map.get(&def_id)
373                && let actual_parent = this.tcx().opt_parent(def_id)
374                && let DefPathData::TypeNs(_) = key.disambiguated_data.data
375                && Some(*visible_parent) != actual_parent
376            {
377                this.tcx()
378                    // FIXME(typed_def_id): Further propagate ModDefId
379                    .module_children(ModDefId::new_unchecked(*visible_parent))
380                    .iter()
381                    .filter(|child| child.res.opt_def_id() == Some(def_id))
382                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
383                    .map(|child| child.ident.name)
384                    .unwrap_or(name)
385            } else {
386                name
387            }
388        };
389        if let DefKind::Variant = kind
390            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
391        {
392            // If `Assoc` is unique, we don't want to talk about `Trait::Assoc`.
393            self.write_str(get_local_name(self, *symbol, def_id, key).as_str())?;
394            return Ok(true);
395        }
396        if let Some(symbol) = key.get_opt_name() {
397            if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = kind
398                && let Some(parent) = self.tcx().opt_parent(def_id)
399                && let parent_key = self.tcx().def_key(parent)
400                && let Some(symbol) = parent_key.get_opt_name()
401            {
402                // Trait
403                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
404                self.write_str("::")?;
405            } else if let DefKind::Variant = kind
406                && let Some(parent) = self.tcx().opt_parent(def_id)
407                && let parent_key = self.tcx().def_key(parent)
408                && let Some(symbol) = parent_key.get_opt_name()
409            {
410                // Enum
411
412                // For associated items and variants, we want the "full" path, namely, include
413                // the parent type in the path. For example, `Iterator::Item`.
414                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
415                self.write_str("::")?;
416            } else if let DefKind::Struct
417            | DefKind::Union
418            | DefKind::Enum
419            | DefKind::Trait
420            | DefKind::TyAlias
421            | DefKind::Fn
422            | DefKind::Const
423            | DefKind::Static { .. } = kind
424            {
425            } else {
426                // If not covered above, like for example items out of `impl` blocks, fallback.
427                return Ok(false);
428            }
429            self.write_str(get_local_name(self, symbol, def_id, key).as_str())?;
430            return Ok(true);
431        }
432        Ok(false)
433    }
434
435    /// Try to see if this path can be trimmed to a unique symbol name.
436    fn try_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
437        if with_forced_trimmed_paths() && self.force_print_trimmed_def_path(def_id)? {
438            return Ok(true);
439        }
440        if self.tcx().sess.opts.unstable_opts.trim_diagnostic_paths
441            && self.tcx().sess.opts.trimmed_def_paths
442            && !with_no_trimmed_paths()
443            && !with_crate_prefix()
444            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
445        {
446            write!(self, "{}", Ident::with_dummy_span(*symbol))?;
447            Ok(true)
448        } else {
449            Ok(false)
450        }
451    }
452
453    /// Does the work of `try_print_visible_def_path`, building the
454    /// full definition path recursively before attempting to
455    /// post-process it into the valid and visible version that
456    /// accounts for re-exports.
457    ///
458    /// This method should only be called by itself or
459    /// `try_print_visible_def_path`.
460    ///
461    /// `callers` is a chain of visible_parent's leading to `def_id`,
462    /// to support cycle detection during recursion.
463    ///
464    /// This method returns false if we can't print the visible path, so
465    /// `print_def_path` can fall back on the item's real definition path.
466    fn try_print_visible_def_path_recur(
467        &mut self,
468        def_id: DefId,
469        callers: &mut Vec<DefId>,
470    ) -> Result<bool, PrintError> {
471        debug!("try_print_visible_def_path: def_id={:?}", def_id);
472
473        // If `def_id` is a direct or injected extern crate, return the
474        // path to the crate followed by the path to the item within the crate.
475        if let Some(cnum) = def_id.as_crate_root() {
476            if cnum == LOCAL_CRATE {
477                self.print_crate_name(cnum)?;
478                return Ok(true);
479            }
480
481            // In local mode, when we encounter a crate other than
482            // LOCAL_CRATE, execution proceeds in one of two ways:
483            //
484            // 1. For a direct dependency, where user added an
485            //    `extern crate` manually, we put the `extern
486            //    crate` as the parent. So you wind up with
487            //    something relative to the current crate.
488            // 2. For an extern inferred from a path or an indirect crate,
489            //    where there is no explicit `extern crate`, we just prepend
490            //    the crate name.
491            match self.tcx().extern_crate(cnum) {
492                Some(&ExternCrate { src, dependency_of, span, .. }) => match (src, dependency_of) {
493                    (ExternCrateSource::Extern(def_id), LOCAL_CRATE) => {
494                        // NOTE(eddyb) the only reason `span` might be dummy,
495                        // that we're aware of, is that it's the `std`/`core`
496                        // `extern crate` injected by default.
497                        // FIXME(eddyb) find something better to key this on,
498                        // or avoid ending up with `ExternCrateSource::Extern`,
499                        // for the injected `std`/`core`.
500                        if span.is_dummy() {
501                            self.print_crate_name(cnum)?;
502                            return Ok(true);
503                        }
504
505                        // Disable `try_print_trimmed_def_path` behavior within
506                        // the `print_def_path` call, to avoid infinite recursion
507                        // in cases where the `extern crate foo` has non-trivial
508                        // parents, e.g. it's nested in `impl foo::Trait for Bar`
509                        // (see also issues #55779 and #87932).
510                        with_no_visible_paths!(self.print_def_path(def_id, &[])?);
511
512                        return Ok(true);
513                    }
514                    (ExternCrateSource::Path, LOCAL_CRATE) => {
515                        self.print_crate_name(cnum)?;
516                        return Ok(true);
517                    }
518                    _ => {}
519                },
520                None => {
521                    self.print_crate_name(cnum)?;
522                    return Ok(true);
523                }
524            }
525        }
526
527        if def_id.is_local() {
528            return Ok(false);
529        }
530
531        let visible_parent_map = self.tcx().visible_parent_map(());
532
533        let mut cur_def_key = self.tcx().def_key(def_id);
534        debug!("try_print_visible_def_path: cur_def_key={:?}", cur_def_key);
535
536        // For a constructor, we want the name of its parent rather than <unnamed>.
537        if let DefPathData::Ctor = cur_def_key.disambiguated_data.data {
538            let parent = DefId {
539                krate: def_id.krate,
540                index: cur_def_key
541                    .parent
542                    .expect("`DefPathData::Ctor` / `VariantData` missing a parent"),
543            };
544
545            cur_def_key = self.tcx().def_key(parent);
546        }
547
548        let Some(visible_parent) = visible_parent_map.get(&def_id).cloned() else {
549            return Ok(false);
550        };
551
552        if self.tcx().is_doc_hidden(visible_parent) && with_no_visible_paths_if_doc_hidden() {
553            return Ok(false);
554        }
555
556        let actual_parent = self.tcx().opt_parent(def_id);
557        debug!(
558            "try_print_visible_def_path: visible_parent={:?} actual_parent={:?}",
559            visible_parent, actual_parent,
560        );
561
562        let mut data = cur_def_key.disambiguated_data.data;
563        debug!(
564            "try_print_visible_def_path: data={:?} visible_parent={:?} actual_parent={:?}",
565            data, visible_parent, actual_parent,
566        );
567
568        match data {
569            // In order to output a path that could actually be imported (valid and visible),
570            // we need to handle re-exports correctly.
571            //
572            // For example, take `std::os::unix::process::CommandExt`, this trait is actually
573            // defined at `std::sys::unix::ext::process::CommandExt` (at time of writing).
574            //
575            // `std::os::unix` reexports the contents of `std::sys::unix::ext`. `std::sys` is
576            // private so the "true" path to `CommandExt` isn't accessible.
577            //
578            // In this case, the `visible_parent_map` will look something like this:
579            //
580            // (child) -> (parent)
581            // `std::sys::unix::ext::process::CommandExt` -> `std::sys::unix::ext::process`
582            // `std::sys::unix::ext::process` -> `std::sys::unix::ext`
583            // `std::sys::unix::ext` -> `std::os`
584            //
585            // This is correct, as the visible parent of `std::sys::unix::ext` is in fact
586            // `std::os`.
587            //
588            // When printing the path to `CommandExt` and looking at the `cur_def_key` that
589            // corresponds to `std::sys::unix::ext`, we would normally print `ext` and then go
590            // to the parent - resulting in a mangled path like
591            // `std::os::ext::process::CommandExt`.
592            //
593            // Instead, we must detect that there was a re-export and instead print `unix`
594            // (which is the name `std::sys::unix::ext` was re-exported as in `std::os`). To
595            // do this, we compare the parent of `std::sys::unix::ext` (`std::sys::unix`) with
596            // the visible parent (`std::os`). If these do not match, then we iterate over
597            // the children of the visible parent (as was done when computing
598            // `visible_parent_map`), looking for the specific child we currently have and then
599            // have access to the re-exported name.
600            DefPathData::TypeNs(ref mut name) if Some(visible_parent) != actual_parent => {
601                // Item might be re-exported several times, but filter for the one
602                // that's public and whose identifier isn't `_`.
603                let reexport = self
604                    .tcx()
605                    // FIXME(typed_def_id): Further propagate ModDefId
606                    .module_children(ModDefId::new_unchecked(visible_parent))
607                    .iter()
608                    .filter(|child| child.res.opt_def_id() == Some(def_id))
609                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
610                    .map(|child| child.ident.name);
611
612                if let Some(new_name) = reexport {
613                    *name = new_name;
614                } else {
615                    // There is no name that is public and isn't `_`, so bail.
616                    return Ok(false);
617                }
618            }
619            // Re-exported `extern crate` (#43189).
620            DefPathData::CrateRoot => {
621                data = DefPathData::TypeNs(self.tcx().crate_name(def_id.krate));
622            }
623            _ => {}
624        }
625        debug!("try_print_visible_def_path: data={:?}", data);
626
627        if callers.contains(&visible_parent) {
628            return Ok(false);
629        }
630        callers.push(visible_parent);
631        // HACK(eddyb) this bypasses `print_path_with_simple`'s prefix printing to avoid
632        // knowing ahead of time whether the entire path will succeed or not.
633        // To support printers that do not implement `PrettyPrinter`, a `Vec` or
634        // linked list on the stack would need to be built, before any printing.
635        match self.try_print_visible_def_path_recur(visible_parent, callers)? {
636            false => return Ok(false),
637            true => {}
638        }
639        callers.pop();
640        self.print_path_with_simple(
641            |_| Ok(()),
642            &DisambiguatedDefPathData { data, disambiguator: 0 },
643        )?;
644        Ok(true)
645    }
646
647    fn pretty_print_path_with_qualified(
648        &mut self,
649        self_ty: Ty<'tcx>,
650        trait_ref: Option<ty::TraitRef<'tcx>>,
651    ) -> Result<(), PrintError> {
652        if trait_ref.is_none() {
653            // Inherent impls. Try to print `Foo::bar` for an inherent
654            // impl on `Foo`, but fallback to `<Foo>::bar` if self-type is
655            // anything other than a simple path.
656            match self_ty.kind() {
657                ty::Adt(..)
658                | ty::Foreign(_)
659                | ty::Bool
660                | ty::Char
661                | ty::Str
662                | ty::Int(_)
663                | ty::Uint(_)
664                | ty::Float(_) => {
665                    return self_ty.print(self);
666                }
667
668                _ => {}
669            }
670        }
671
672        self.generic_delimiters(|p| {
673            self_ty.print(p)?;
674            if let Some(trait_ref) = trait_ref {
675                write!(p, " as ")?;
676                trait_ref.print_only_trait_path().print(p)?;
677            }
678            Ok(())
679        })
680    }
681
682    fn pretty_print_path_with_impl(
683        &mut self,
684        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
685        self_ty: Ty<'tcx>,
686        trait_ref: Option<ty::TraitRef<'tcx>>,
687    ) -> Result<(), PrintError> {
688        print_prefix(self)?;
689
690        self.generic_delimiters(|p| {
691            write!(p, "impl ")?;
692            if let Some(trait_ref) = trait_ref {
693                trait_ref.print_only_trait_path().print(p)?;
694                write!(p, " for ")?;
695            }
696            self_ty.print(p)?;
697
698            Ok(())
699        })
700    }
701
702    fn pretty_print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
703        match *ty.kind() {
704            ty::Bool => write!(self, "bool")?,
705            ty::Char => write!(self, "char")?,
706            ty::Int(t) => write!(self, "{}", t.name_str())?,
707            ty::Uint(t) => write!(self, "{}", t.name_str())?,
708            ty::Float(t) => write!(self, "{}", t.name_str())?,
709            ty::Pat(ty, pat) => {
710                write!(self, "(")?;
711                ty.print(self)?;
712                write!(self, ") is {pat:?}")?;
713            }
714            ty::RawPtr(ty, mutbl) => {
715                write!(self, "*{} ", mutbl.ptr_str())?;
716                ty.print(self)?;
717            }
718            ty::Ref(r, ty, mutbl) => {
719                write!(self, "&")?;
720                if self.should_print_region(r) {
721                    r.print(self)?;
722                    write!(self, " ")?;
723                }
724                ty::TypeAndMut { ty, mutbl }.print(self)?;
725            }
726            ty::Never => write!(self, "!")?,
727            ty::Tuple(tys) => {
728                write!(self, "(")?;
729                self.comma_sep(tys.iter())?;
730                if tys.len() == 1 {
731                    write!(self, ",")?;
732                }
733                write!(self, ")")?;
734            }
735            ty::FnDef(def_id, args) => {
736                if with_reduced_queries() {
737                    self.print_def_path(def_id, args)?;
738                } else {
739                    let mut sig = self.tcx().fn_sig(def_id).instantiate(self.tcx(), args);
740                    if self.tcx().codegen_fn_attrs(def_id).safe_target_features {
741                        write!(self, "#[target_features] ")?;
742                        sig = sig.map_bound(|mut sig| {
743                            sig.safety = hir::Safety::Safe;
744                            sig
745                        });
746                    }
747                    sig.print(self)?;
748                    write!(self, " {{")?;
749                    self.pretty_print_value_path(def_id, args)?;
750                    write!(self, "}}")?;
751                }
752            }
753            ty::FnPtr(ref sig_tys, hdr) => sig_tys.with(hdr).print(self)?,
754            ty::UnsafeBinder(ref bound_ty) => {
755                self.wrap_binder(bound_ty, WrapBinderMode::Unsafe, |ty, p| {
756                    p.pretty_print_type(*ty)
757                })?;
758            }
759            ty::Infer(infer_ty) => {
760                if self.should_print_verbose() {
761                    write!(self, "{:?}", ty.kind())?;
762                    return Ok(());
763                }
764
765                if let ty::TyVar(ty_vid) = infer_ty {
766                    if let Some(name) = self.ty_infer_name(ty_vid) {
767                        write!(self, "{name}")?;
768                    } else {
769                        write!(self, "{infer_ty}")?;
770                    }
771                } else {
772                    write!(self, "{infer_ty}")?;
773                }
774            }
775            ty::Error(_) => write!(self, "{{type error}}")?,
776            ty::Param(ref param_ty) => param_ty.print(self)?,
777            ty::Bound(debruijn, bound_ty) => match bound_ty.kind {
778                ty::BoundTyKind::Anon => {
779                    rustc_type_ir::debug_bound_var(self, debruijn, bound_ty.var)?
780                }
781                ty::BoundTyKind::Param(def_id) => match self.should_print_verbose() {
782                    true => write!(self, "{:?}", ty.kind())?,
783                    false => write!(self, "{}", self.tcx().item_name(def_id))?,
784                },
785            },
786            ty::Adt(def, args) => self.print_def_path(def.did(), args)?,
787            ty::Dynamic(data, r, repr) => {
788                let print_r = self.should_print_region(r);
789                if print_r {
790                    write!(self, "(")?;
791                }
792                match repr {
793                    ty::Dyn => write!(self, "dyn ")?,
794                }
795                data.print(self)?;
796                if print_r {
797                    write!(self, " + ")?;
798                    r.print(self)?;
799                    write!(self, ")")?;
800                }
801            }
802            ty::Foreign(def_id) => self.print_def_path(def_id, &[])?,
803            ty::Alias(ty::Projection | ty::Inherent | ty::Free, ref data) => data.print(self)?,
804            ty::Placeholder(placeholder) => placeholder.print(self)?,
805            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
806                // We use verbose printing in 'NO_QUERIES' mode, to
807                // avoid needing to call `predicates_of`. This should
808                // only affect certain debug messages (e.g. messages printed
809                // from `rustc_middle::ty` during the computation of `tcx.predicates_of`),
810                // and should have no effect on any compiler output.
811                // [Unless `-Zverbose-internals` is used, e.g. in the output of
812                // `tests/ui/nll/ty-outlives/impl-trait-captures.rs`, for
813                // example.]
814                if self.should_print_verbose() {
815                    // FIXME(eddyb) print this with `print_def_path`.
816                    write!(self, "Opaque({:?}, {})", def_id, args.print_as_list())?;
817                    return Ok(());
818                }
819
820                let parent = self.tcx().parent(def_id);
821                match self.tcx().def_kind(parent) {
822                    DefKind::TyAlias | DefKind::AssocTy => {
823                        // NOTE: I know we should check for NO_QUERIES here, but it's alright.
824                        // `type_of` on a type alias or assoc type should never cause a cycle.
825                        if let ty::Alias(ty::Opaque, ty::AliasTy { def_id: d, .. }) =
826                            *self.tcx().type_of(parent).instantiate_identity().kind()
827                        {
828                            if d == def_id {
829                                // If the type alias directly starts with the `impl` of the
830                                // opaque type we're printing, then skip the `::{opaque#1}`.
831                                self.print_def_path(parent, args)?;
832                                return Ok(());
833                            }
834                        }
835                        // Complex opaque type, e.g. `type Foo = (i32, impl Debug);`
836                        self.print_def_path(def_id, args)?;
837                        return Ok(());
838                    }
839                    _ => {
840                        if with_reduced_queries() {
841                            self.print_def_path(def_id, &[])?;
842                            return Ok(());
843                        } else {
844                            return self.pretty_print_opaque_impl_type(def_id, args);
845                        }
846                    }
847                }
848            }
849            ty::Str => write!(self, "str")?,
850            ty::Coroutine(did, args) => {
851                write!(self, "{{")?;
852                let coroutine_kind = self.tcx().coroutine_kind(did).unwrap();
853                let should_print_movability = self.should_print_verbose()
854                    || matches!(coroutine_kind, hir::CoroutineKind::Coroutine(_));
855
856                if should_print_movability {
857                    match coroutine_kind.movability() {
858                        hir::Movability::Movable => {}
859                        hir::Movability::Static => write!(self, "static ")?,
860                    }
861                }
862
863                if !self.should_print_verbose() {
864                    write!(self, "{coroutine_kind}")?;
865                    if coroutine_kind.is_fn_like() {
866                        // If we are printing an `async fn` coroutine type, then give the path
867                        // of the fn, instead of its span, because that will in most cases be
868                        // more helpful for the reader than just a source location.
869                        //
870                        // This will look like:
871                        //    {async fn body of some_fn()}
872                        let did_of_the_fn_item = self.tcx().parent(did);
873                        write!(self, " of ")?;
874                        self.print_def_path(did_of_the_fn_item, args)?;
875                        write!(self, "()")?;
876                    } else if let Some(local_did) = did.as_local() {
877                        let span = self.tcx().def_span(local_did);
878                        write!(
879                            self,
880                            "@{}",
881                            // This may end up in stderr diagnostics but it may also be emitted
882                            // into MIR. Hence we use the remapped path if available
883                            self.tcx().sess.source_map().span_to_embeddable_string(span)
884                        )?;
885                    } else {
886                        write!(self, "@")?;
887                        self.print_def_path(did, args)?;
888                    }
889                } else {
890                    self.print_def_path(did, args)?;
891                    write!(self, " upvar_tys=")?;
892                    args.as_coroutine().tupled_upvars_ty().print(self)?;
893                    write!(self, " resume_ty=")?;
894                    args.as_coroutine().resume_ty().print(self)?;
895                    write!(self, " yield_ty=")?;
896                    args.as_coroutine().yield_ty().print(self)?;
897                    write!(self, " return_ty=")?;
898                    args.as_coroutine().return_ty().print(self)?;
899                }
900
901                write!(self, "}}")?
902            }
903            ty::CoroutineWitness(did, args) => {
904                write!(self, "{{")?;
905                if !self.tcx().sess.verbose_internals() {
906                    write!(self, "coroutine witness")?;
907                    if let Some(did) = did.as_local() {
908                        let span = self.tcx().def_span(did);
909                        write!(
910                            self,
911                            "@{}",
912                            // This may end up in stderr diagnostics but it may also be emitted
913                            // into MIR. Hence we use the remapped path if available
914                            self.tcx().sess.source_map().span_to_embeddable_string(span)
915                        )?;
916                    } else {
917                        write!(self, "@")?;
918                        self.print_def_path(did, args)?;
919                    }
920                } else {
921                    self.print_def_path(did, args)?;
922                }
923
924                write!(self, "}}")?
925            }
926            ty::Closure(did, args) => {
927                write!(self, "{{")?;
928                if !self.should_print_verbose() {
929                    write!(self, "closure")?;
930                    if self.should_truncate() {
931                        write!(self, "@...}}")?;
932                        return Ok(());
933                    } else {
934                        if let Some(did) = did.as_local() {
935                            if self.tcx().sess.opts.unstable_opts.span_free_formats {
936                                write!(self, "@")?;
937                                self.print_def_path(did.to_def_id(), args)?;
938                            } else {
939                                let span = self.tcx().def_span(did);
940                                let preference = if with_forced_trimmed_paths() {
941                                    FileNameDisplayPreference::Short
942                                } else {
943                                    FileNameDisplayPreference::Remapped
944                                };
945                                write!(
946                                    self,
947                                    "@{}",
948                                    // This may end up in stderr diagnostics but it may also be
949                                    // emitted into MIR. Hence we use the remapped path if
950                                    // available
951                                    self.tcx().sess.source_map().span_to_string(span, preference)
952                                )?;
953                            }
954                        } else {
955                            write!(self, "@")?;
956                            self.print_def_path(did, args)?;
957                        }
958                    }
959                } else {
960                    self.print_def_path(did, args)?;
961                    write!(self, " closure_kind_ty=")?;
962                    args.as_closure().kind_ty().print(self)?;
963                    write!(self, " closure_sig_as_fn_ptr_ty=")?;
964                    args.as_closure().sig_as_fn_ptr_ty().print(self)?;
965                    write!(self, " upvar_tys=")?;
966                    args.as_closure().tupled_upvars_ty().print(self)?;
967                }
968                write!(self, "}}")?;
969            }
970            ty::CoroutineClosure(did, args) => {
971                write!(self, "{{")?;
972                if !self.should_print_verbose() {
973                    match self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(did)).unwrap()
974                    {
975                        hir::CoroutineKind::Desugared(
976                            hir::CoroutineDesugaring::Async,
977                            hir::CoroutineSource::Closure,
978                        ) => write!(self, "async closure")?,
979                        hir::CoroutineKind::Desugared(
980                            hir::CoroutineDesugaring::AsyncGen,
981                            hir::CoroutineSource::Closure,
982                        ) => write!(self, "async gen closure")?,
983                        hir::CoroutineKind::Desugared(
984                            hir::CoroutineDesugaring::Gen,
985                            hir::CoroutineSource::Closure,
986                        ) => write!(self, "gen closure")?,
987                        _ => unreachable!(
988                            "coroutine from coroutine-closure should have CoroutineSource::Closure"
989                        ),
990                    }
991                    if let Some(did) = did.as_local() {
992                        if self.tcx().sess.opts.unstable_opts.span_free_formats {
993                            write!(self, "@")?;
994                            self.print_def_path(did.to_def_id(), args)?;
995                        } else {
996                            let span = self.tcx().def_span(did);
997                            let preference = if with_forced_trimmed_paths() {
998                                FileNameDisplayPreference::Short
999                            } else {
1000                                FileNameDisplayPreference::Remapped
1001                            };
1002                            write!(
1003                                self,
1004                                "@{}",
1005                                // This may end up in stderr diagnostics but it may also be emitted
1006                                // into MIR. Hence we use the remapped path if available
1007                                self.tcx().sess.source_map().span_to_string(span, preference)
1008                            )?;
1009                        }
1010                    } else {
1011                        write!(self, "@")?;
1012                        self.print_def_path(did, args)?;
1013                    }
1014                } else {
1015                    self.print_def_path(did, args)?;
1016                    write!(self, " closure_kind_ty=")?;
1017                    args.as_coroutine_closure().kind_ty().print(self)?;
1018                    write!(self, " signature_parts_ty=")?;
1019                    args.as_coroutine_closure().signature_parts_ty().print(self)?;
1020                    write!(self, " upvar_tys=")?;
1021                    args.as_coroutine_closure().tupled_upvars_ty().print(self)?;
1022                    write!(self, " coroutine_captures_by_ref_ty=")?;
1023                    args.as_coroutine_closure().coroutine_captures_by_ref_ty().print(self)?;
1024                }
1025                write!(self, "}}")?;
1026            }
1027            ty::Array(ty, sz) => {
1028                write!(self, "[")?;
1029                ty.print(self)?;
1030                write!(self, "; ")?;
1031                sz.print(self)?;
1032                write!(self, "]")?;
1033            }
1034            ty::Slice(ty) => {
1035                write!(self, "[")?;
1036                ty.print(self)?;
1037                write!(self, "]")?;
1038            }
1039        }
1040
1041        Ok(())
1042    }
1043
1044    fn pretty_print_opaque_impl_type(
1045        &mut self,
1046        def_id: DefId,
1047        args: ty::GenericArgsRef<'tcx>,
1048    ) -> Result<(), PrintError> {
1049        let tcx = self.tcx();
1050
1051        // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
1052        // by looking up the projections associated with the def_id.
1053        let bounds = tcx.explicit_item_bounds(def_id);
1054
1055        let mut traits = FxIndexMap::default();
1056        let mut fn_traits = FxIndexMap::default();
1057        let mut lifetimes = SmallVec::<[ty::Region<'tcx>; 1]>::new();
1058
1059        let mut has_sized_bound = false;
1060        let mut has_negative_sized_bound = false;
1061        let mut has_meta_sized_bound = false;
1062
1063        for (predicate, _) in bounds.iter_instantiated_copied(tcx, args) {
1064            let bound_predicate = predicate.kind();
1065
1066            match bound_predicate.skip_binder() {
1067                ty::ClauseKind::Trait(pred) => {
1068                    // With `feature(sized_hierarchy)`, don't print `?Sized` as an alias for
1069                    // `MetaSized`, and skip sizedness bounds to be added at the end.
1070                    match tcx.as_lang_item(pred.def_id()) {
1071                        Some(LangItem::Sized) => match pred.polarity {
1072                            ty::PredicatePolarity::Positive => {
1073                                has_sized_bound = true;
1074                                continue;
1075                            }
1076                            ty::PredicatePolarity::Negative => has_negative_sized_bound = true,
1077                        },
1078                        Some(LangItem::MetaSized) => {
1079                            has_meta_sized_bound = true;
1080                            continue;
1081                        }
1082                        Some(LangItem::PointeeSized) => {
1083                            bug!("`PointeeSized` is removed during lowering");
1084                        }
1085                        _ => (),
1086                    }
1087
1088                    self.insert_trait_and_projection(
1089                        bound_predicate.rebind(pred),
1090                        None,
1091                        &mut traits,
1092                        &mut fn_traits,
1093                    );
1094                }
1095                ty::ClauseKind::Projection(pred) => {
1096                    let proj = bound_predicate.rebind(pred);
1097                    let trait_ref = proj.map_bound(|proj| TraitPredicate {
1098                        trait_ref: proj.projection_term.trait_ref(tcx),
1099                        polarity: ty::PredicatePolarity::Positive,
1100                    });
1101
1102                    self.insert_trait_and_projection(
1103                        trait_ref,
1104                        Some((proj.item_def_id(), proj.term())),
1105                        &mut traits,
1106                        &mut fn_traits,
1107                    );
1108                }
1109                ty::ClauseKind::TypeOutlives(outlives) => {
1110                    lifetimes.push(outlives.1);
1111                }
1112                _ => {}
1113            }
1114        }
1115
1116        write!(self, "impl ")?;
1117
1118        let mut first = true;
1119        // Insert parenthesis around (Fn(A, B) -> C) if the opaque ty has more than one other trait
1120        let paren_needed = fn_traits.len() > 1 || traits.len() > 0 || !has_sized_bound;
1121
1122        for ((bound_args_and_self_ty, is_async), entry) in fn_traits {
1123            write!(self, "{}", if first { "" } else { " + " })?;
1124            write!(self, "{}", if paren_needed { "(" } else { "" })?;
1125
1126            let trait_def_id = if is_async {
1127                tcx.async_fn_trait_kind_to_def_id(entry.kind).expect("expected AsyncFn lang items")
1128            } else {
1129                tcx.fn_trait_kind_to_def_id(entry.kind).expect("expected Fn lang items")
1130            };
1131
1132            if let Some(return_ty) = entry.return_ty {
1133                self.wrap_binder(
1134                    &bound_args_and_self_ty,
1135                    WrapBinderMode::ForAll,
1136                    |(args, _), p| {
1137                        write!(p, "{}", tcx.item_name(trait_def_id))?;
1138                        write!(p, "(")?;
1139
1140                        for (idx, ty) in args.iter().enumerate() {
1141                            if idx > 0 {
1142                                write!(p, ", ")?;
1143                            }
1144                            ty.print(p)?;
1145                        }
1146
1147                        write!(p, ")")?;
1148                        if let Some(ty) = return_ty.skip_binder().as_type() {
1149                            if !ty.is_unit() {
1150                                write!(p, " -> ")?;
1151                                return_ty.print(p)?;
1152                            }
1153                        }
1154                        write!(p, "{}", if paren_needed { ")" } else { "" })?;
1155
1156                        first = false;
1157                        Ok(())
1158                    },
1159                )?;
1160            } else {
1161                // Otherwise, render this like a regular trait.
1162                traits.insert(
1163                    bound_args_and_self_ty.map_bound(|(args, self_ty)| ty::TraitPredicate {
1164                        polarity: ty::PredicatePolarity::Positive,
1165                        trait_ref: ty::TraitRef::new(
1166                            tcx,
1167                            trait_def_id,
1168                            [self_ty, Ty::new_tup(tcx, args)],
1169                        ),
1170                    }),
1171                    FxIndexMap::default(),
1172                );
1173            }
1174        }
1175
1176        // Print the rest of the trait types (that aren't Fn* family of traits)
1177        for (trait_pred, assoc_items) in traits {
1178            write!(self, "{}", if first { "" } else { " + " })?;
1179
1180            self.wrap_binder(&trait_pred, WrapBinderMode::ForAll, |trait_pred, p| {
1181                if trait_pred.polarity == ty::PredicatePolarity::Negative {
1182                    write!(p, "!")?;
1183                }
1184                trait_pred.trait_ref.print_only_trait_name().print(p)?;
1185
1186                let generics = tcx.generics_of(trait_pred.def_id());
1187                let own_args = generics.own_args_no_defaults(tcx, trait_pred.trait_ref.args);
1188
1189                if !own_args.is_empty() || !assoc_items.is_empty() {
1190                    let mut first = true;
1191
1192                    for ty in own_args {
1193                        if first {
1194                            write!(p, "<")?;
1195                            first = false;
1196                        } else {
1197                            write!(p, ", ")?;
1198                        }
1199                        ty.print(p)?;
1200                    }
1201
1202                    for (assoc_item_def_id, term) in assoc_items {
1203                        if first {
1204                            write!(p, "<")?;
1205                            first = false;
1206                        } else {
1207                            write!(p, ", ")?;
1208                        }
1209
1210                        write!(p, "{} = ", tcx.associated_item(assoc_item_def_id).name())?;
1211
1212                        match term.skip_binder().kind() {
1213                            TermKind::Ty(ty) => ty.print(p)?,
1214                            TermKind::Const(c) => c.print(p)?,
1215                        };
1216                    }
1217
1218                    if !first {
1219                        write!(p, ">")?;
1220                    }
1221                }
1222
1223                first = false;
1224                Ok(())
1225            })?;
1226        }
1227
1228        let using_sized_hierarchy = self.tcx().features().sized_hierarchy();
1229        let add_sized = has_sized_bound && (first || has_negative_sized_bound);
1230        let add_maybe_sized =
1231            has_meta_sized_bound && !has_negative_sized_bound && !using_sized_hierarchy;
1232        // Set `has_pointee_sized_bound` if there were no `Sized` or `MetaSized` bounds.
1233        let has_pointee_sized_bound =
1234            !has_sized_bound && !has_meta_sized_bound && !has_negative_sized_bound;
1235        if add_sized || add_maybe_sized {
1236            if !first {
1237                write!(self, " + ")?;
1238            }
1239            if add_maybe_sized {
1240                write!(self, "?")?;
1241            }
1242            write!(self, "Sized")?;
1243        } else if has_meta_sized_bound && using_sized_hierarchy {
1244            if !first {
1245                write!(self, " + ")?;
1246            }
1247            write!(self, "MetaSized")?;
1248        } else if has_pointee_sized_bound && using_sized_hierarchy {
1249            if !first {
1250                write!(self, " + ")?;
1251            }
1252            write!(self, "PointeeSized")?;
1253        }
1254
1255        if !with_forced_trimmed_paths() {
1256            for re in lifetimes {
1257                write!(self, " + ")?;
1258                self.print_region(re)?;
1259            }
1260        }
1261
1262        Ok(())
1263    }
1264
1265    /// Insert the trait ref and optionally a projection type associated with it into either the
1266    /// traits map or fn_traits map, depending on if the trait is in the Fn* family of traits.
1267    fn insert_trait_and_projection(
1268        &mut self,
1269        trait_pred: ty::PolyTraitPredicate<'tcx>,
1270        proj_ty: Option<(DefId, ty::Binder<'tcx, Term<'tcx>>)>,
1271        traits: &mut FxIndexMap<
1272            ty::PolyTraitPredicate<'tcx>,
1273            FxIndexMap<DefId, ty::Binder<'tcx, Term<'tcx>>>,
1274        >,
1275        fn_traits: &mut FxIndexMap<
1276            (ty::Binder<'tcx, (&'tcx ty::List<Ty<'tcx>>, Ty<'tcx>)>, bool),
1277            OpaqueFnEntry<'tcx>,
1278        >,
1279    ) {
1280        let tcx = self.tcx();
1281        let trait_def_id = trait_pred.def_id();
1282
1283        let fn_trait_and_async = if let Some(kind) = tcx.fn_trait_kind_from_def_id(trait_def_id) {
1284            Some((kind, false))
1285        } else if let Some(kind) = tcx.async_fn_trait_kind_from_def_id(trait_def_id) {
1286            Some((kind, true))
1287        } else {
1288            None
1289        };
1290
1291        if trait_pred.polarity() == ty::PredicatePolarity::Positive
1292            && let Some((kind, is_async)) = fn_trait_and_async
1293            && let ty::Tuple(types) = *trait_pred.skip_binder().trait_ref.args.type_at(1).kind()
1294        {
1295            let entry = fn_traits
1296                .entry((trait_pred.rebind((types, trait_pred.skip_binder().self_ty())), is_async))
1297                .or_insert_with(|| OpaqueFnEntry { kind, return_ty: None });
1298            if kind.extends(entry.kind) {
1299                entry.kind = kind;
1300            }
1301            if let Some((proj_def_id, proj_ty)) = proj_ty
1302                && tcx.item_name(proj_def_id) == sym::Output
1303            {
1304                entry.return_ty = Some(proj_ty);
1305            }
1306            return;
1307        }
1308
1309        // Otherwise, just group our traits and projection types.
1310        traits.entry(trait_pred).or_default().extend(proj_ty);
1311    }
1312
1313    fn pretty_print_inherent_projection(
1314        &mut self,
1315        alias_ty: ty::AliasTerm<'tcx>,
1316    ) -> Result<(), PrintError> {
1317        let def_key = self.tcx().def_key(alias_ty.def_id);
1318        self.print_path_with_generic_args(
1319            |p| {
1320                p.print_path_with_simple(
1321                    |p| p.print_path_with_qualified(alias_ty.self_ty(), None),
1322                    &def_key.disambiguated_data,
1323                )
1324            },
1325            &alias_ty.args[1..],
1326        )
1327    }
1328
1329    fn pretty_print_rpitit(
1330        &mut self,
1331        def_id: DefId,
1332        args: ty::GenericArgsRef<'tcx>,
1333    ) -> Result<(), PrintError> {
1334        let fn_args = if self.tcx().features().return_type_notation()
1335            && let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) =
1336                self.tcx().opt_rpitit_info(def_id)
1337            && let ty::Alias(_, alias_ty) =
1338                self.tcx().fn_sig(fn_def_id).skip_binder().output().skip_binder().kind()
1339            && alias_ty.def_id == def_id
1340            && let generics = self.tcx().generics_of(fn_def_id)
1341            // FIXME(return_type_notation): We only support lifetime params for now.
1342            && generics.own_params.iter().all(|param| matches!(param.kind, ty::GenericParamDefKind::Lifetime))
1343        {
1344            let num_args = generics.count();
1345            Some((fn_def_id, &args[..num_args]))
1346        } else {
1347            None
1348        };
1349
1350        match (fn_args, RTN_MODE.with(|c| c.get())) {
1351            (Some((fn_def_id, fn_args)), RtnMode::ForDiagnostic) => {
1352                self.pretty_print_opaque_impl_type(def_id, args)?;
1353                write!(self, " {{ ")?;
1354                self.print_def_path(fn_def_id, fn_args)?;
1355                write!(self, "(..) }}")?;
1356            }
1357            (Some((fn_def_id, fn_args)), RtnMode::ForSuggestion) => {
1358                self.print_def_path(fn_def_id, fn_args)?;
1359                write!(self, "(..)")?;
1360            }
1361            _ => {
1362                self.pretty_print_opaque_impl_type(def_id, args)?;
1363            }
1364        }
1365
1366        Ok(())
1367    }
1368
1369    fn ty_infer_name(&self, _: ty::TyVid) -> Option<Symbol> {
1370        None
1371    }
1372
1373    fn const_infer_name(&self, _: ty::ConstVid) -> Option<Symbol> {
1374        None
1375    }
1376
1377    fn pretty_print_dyn_existential(
1378        &mut self,
1379        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1380    ) -> Result<(), PrintError> {
1381        // Generate the main trait ref, including associated types.
1382        let mut first = true;
1383
1384        if let Some(bound_principal) = predicates.principal() {
1385            self.wrap_binder(&bound_principal, WrapBinderMode::ForAll, |principal, p| {
1386                p.print_def_path(principal.def_id, &[])?;
1387
1388                let mut resugared = false;
1389
1390                // Special-case `Fn(...) -> ...` and re-sugar it.
1391                let fn_trait_kind = p.tcx().fn_trait_kind_from_def_id(principal.def_id);
1392                if !p.should_print_verbose() && fn_trait_kind.is_some() {
1393                    if let ty::Tuple(tys) = principal.args.type_at(0).kind() {
1394                        let mut projections = predicates.projection_bounds();
1395                        if let (Some(proj), None) = (projections.next(), projections.next()) {
1396                            p.pretty_print_fn_sig(
1397                                tys,
1398                                false,
1399                                proj.skip_binder().term.as_type().expect("Return type was a const"),
1400                            )?;
1401                            resugared = true;
1402                        }
1403                    }
1404                }
1405
1406                // HACK(eddyb) this duplicates `FmtPrinter`'s `print_path_with_generic_args`,
1407                // in order to place the projections inside the `<...>`.
1408                if !resugared {
1409                    let principal_with_self =
1410                        principal.with_self_ty(p.tcx(), p.tcx().types.trait_object_dummy_self);
1411
1412                    let args = p
1413                        .tcx()
1414                        .generics_of(principal_with_self.def_id)
1415                        .own_args_no_defaults(p.tcx(), principal_with_self.args);
1416
1417                    let bound_principal_with_self = bound_principal
1418                        .with_self_ty(p.tcx(), p.tcx().types.trait_object_dummy_self);
1419
1420                    let clause: ty::Clause<'tcx> = bound_principal_with_self.upcast(p.tcx());
1421                    let super_projections: Vec<_> = elaborate::elaborate(p.tcx(), [clause])
1422                        .filter_only_self()
1423                        .filter_map(|clause| clause.as_projection_clause())
1424                        .collect();
1425
1426                    let mut projections: Vec<_> = predicates
1427                        .projection_bounds()
1428                        .filter(|&proj| {
1429                            // Filter out projections that are implied by the super predicates.
1430                            let proj_is_implied = super_projections.iter().any(|&super_proj| {
1431                                let super_proj = super_proj.map_bound(|super_proj| {
1432                                    ty::ExistentialProjection::erase_self_ty(p.tcx(), super_proj)
1433                                });
1434
1435                                // This function is sometimes called on types with erased and
1436                                // anonymized regions, but the super projections can still
1437                                // contain named regions. So we erase and anonymize everything
1438                                // here to compare the types modulo regions below.
1439                                let proj = p.tcx().erase_regions(proj);
1440                                let super_proj = p.tcx().erase_regions(super_proj);
1441
1442                                proj == super_proj
1443                            });
1444                            !proj_is_implied
1445                        })
1446                        .map(|proj| {
1447                            // Skip the binder, because we don't want to print the binder in
1448                            // front of the associated item.
1449                            proj.skip_binder()
1450                        })
1451                        .collect();
1452
1453                    projections
1454                        .sort_by_cached_key(|proj| p.tcx().item_name(proj.def_id).to_string());
1455
1456                    if !args.is_empty() || !projections.is_empty() {
1457                        p.generic_delimiters(|p| {
1458                            p.comma_sep(args.iter().copied())?;
1459                            if !args.is_empty() && !projections.is_empty() {
1460                                write!(p, ", ")?;
1461                            }
1462                            p.comma_sep(projections.iter().copied())
1463                        })?;
1464                    }
1465                }
1466                Ok(())
1467            })?;
1468
1469            first = false;
1470        }
1471
1472        // Builtin bounds.
1473        // FIXME(eddyb) avoid printing twice (needed to ensure
1474        // that the auto traits are sorted *and* printed via p).
1475        let mut auto_traits: Vec<_> = predicates.auto_traits().collect();
1476
1477        // The auto traits come ordered by `DefPathHash`. While
1478        // `DefPathHash` is *stable* in the sense that it depends on
1479        // neither the host nor the phase of the moon, it depends
1480        // "pseudorandomly" on the compiler version and the target.
1481        //
1482        // To avoid causing instabilities in compiletest
1483        // output, sort the auto-traits alphabetically.
1484        auto_traits.sort_by_cached_key(|did| with_no_trimmed_paths!(self.tcx().def_path_str(*did)));
1485
1486        for def_id in auto_traits {
1487            if !first {
1488                write!(self, " + ")?;
1489            }
1490            first = false;
1491
1492            self.print_def_path(def_id, &[])?;
1493        }
1494
1495        Ok(())
1496    }
1497
1498    fn pretty_print_fn_sig(
1499        &mut self,
1500        inputs: &[Ty<'tcx>],
1501        c_variadic: bool,
1502        output: Ty<'tcx>,
1503    ) -> Result<(), PrintError> {
1504        write!(self, "(")?;
1505        self.comma_sep(inputs.iter().copied())?;
1506        if c_variadic {
1507            if !inputs.is_empty() {
1508                write!(self, ", ")?;
1509            }
1510            write!(self, "...")?;
1511        }
1512        write!(self, ")")?;
1513        if !output.is_unit() {
1514            write!(self, " -> ")?;
1515            output.print(self)?;
1516        }
1517
1518        Ok(())
1519    }
1520
1521    fn pretty_print_const(
1522        &mut self,
1523        ct: ty::Const<'tcx>,
1524        print_ty: bool,
1525    ) -> Result<(), PrintError> {
1526        if self.should_print_verbose() {
1527            write!(self, "{ct:?}")?;
1528            return Ok(());
1529        }
1530
1531        match ct.kind() {
1532            ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
1533                match self.tcx().def_kind(def) {
1534                    DefKind::Const | DefKind::AssocConst => {
1535                        self.pretty_print_value_path(def, args)?;
1536                    }
1537                    DefKind::AnonConst => {
1538                        if def.is_local()
1539                            && let span = self.tcx().def_span(def)
1540                            && let Ok(snip) = self.tcx().sess.source_map().span_to_snippet(span)
1541                        {
1542                            write!(self, "{snip}")?;
1543                        } else {
1544                            // Do not call `pretty_print_value_path` as if a parent of this anon
1545                            // const is an impl it will attempt to print out the impl trait ref
1546                            // i.e. `<T as Trait>::{constant#0}`. This would cause printing to
1547                            // enter an infinite recursion if the anon const is in the self type
1548                            // i.e. `impl<T: Default> Default for [T; 32 - 1 - 1 - 1] {` where we
1549                            // would try to print `<[T; /* print constant#0 again */] as //
1550                            // Default>::{constant#0}`.
1551                            write!(
1552                                self,
1553                                "{}::{}",
1554                                self.tcx().crate_name(def.krate),
1555                                self.tcx().def_path(def).to_string_no_crate_verbose()
1556                            )?;
1557                        }
1558                    }
1559                    defkind => bug!("`{:?}` has unexpected defkind {:?}", ct, defkind),
1560                }
1561            }
1562            ty::ConstKind::Infer(infer_ct) => match infer_ct {
1563                ty::InferConst::Var(ct_vid) if let Some(name) = self.const_infer_name(ct_vid) => {
1564                    write!(self, "{name}")?;
1565                }
1566                _ => write!(self, "_")?,
1567            },
1568            ty::ConstKind::Param(ParamConst { name, .. }) => write!(self, "{name}")?,
1569            ty::ConstKind::Value(cv) => {
1570                return self.pretty_print_const_valtree(cv, print_ty);
1571            }
1572
1573            ty::ConstKind::Bound(debruijn, bound_var) => {
1574                rustc_type_ir::debug_bound_var(self, debruijn, bound_var)?
1575            }
1576            ty::ConstKind::Placeholder(placeholder) => write!(self, "{placeholder:?}")?,
1577            // FIXME(generic_const_exprs):
1578            // write out some legible representation of an abstract const?
1579            ty::ConstKind::Expr(expr) => self.pretty_print_const_expr(expr, print_ty)?,
1580            ty::ConstKind::Error(_) => write!(self, "{{const error}}")?,
1581        };
1582        Ok(())
1583    }
1584
1585    fn pretty_print_const_expr(
1586        &mut self,
1587        expr: Expr<'tcx>,
1588        print_ty: bool,
1589    ) -> Result<(), PrintError> {
1590        match expr.kind {
1591            ty::ExprKind::Binop(op) => {
1592                let (_, _, c1, c2) = expr.binop_args();
1593
1594                let precedence = |binop: crate::mir::BinOp| binop.to_hir_binop().precedence();
1595                let op_precedence = precedence(op);
1596                let formatted_op = op.to_hir_binop().as_str();
1597                let (lhs_parenthesized, rhs_parenthesized) = match (c1.kind(), c2.kind()) {
1598                    (
1599                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1600                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1601                    ) => (precedence(lhs_op) < op_precedence, precedence(rhs_op) < op_precedence),
1602                    (
1603                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1604                        ty::ConstKind::Expr(_),
1605                    ) => (precedence(lhs_op) < op_precedence, true),
1606                    (
1607                        ty::ConstKind::Expr(_),
1608                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1609                    ) => (true, precedence(rhs_op) < op_precedence),
1610                    (ty::ConstKind::Expr(_), ty::ConstKind::Expr(_)) => (true, true),
1611                    (
1612                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1613                        _,
1614                    ) => (precedence(lhs_op) < op_precedence, false),
1615                    (
1616                        _,
1617                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1618                    ) => (false, precedence(rhs_op) < op_precedence),
1619                    (ty::ConstKind::Expr(_), _) => (true, false),
1620                    (_, ty::ConstKind::Expr(_)) => (false, true),
1621                    _ => (false, false),
1622                };
1623
1624                self.maybe_parenthesized(
1625                    |this| this.pretty_print_const(c1, print_ty),
1626                    lhs_parenthesized,
1627                )?;
1628                write!(self, " {formatted_op} ")?;
1629                self.maybe_parenthesized(
1630                    |this| this.pretty_print_const(c2, print_ty),
1631                    rhs_parenthesized,
1632                )?;
1633            }
1634            ty::ExprKind::UnOp(op) => {
1635                let (_, ct) = expr.unop_args();
1636
1637                use crate::mir::UnOp;
1638                let formatted_op = match op {
1639                    UnOp::Not => "!",
1640                    UnOp::Neg => "-",
1641                    UnOp::PtrMetadata => "PtrMetadata",
1642                };
1643                let parenthesized = match ct.kind() {
1644                    _ if op == UnOp::PtrMetadata => true,
1645                    ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::UnOp(c_op), .. }) => {
1646                        c_op != op
1647                    }
1648                    ty::ConstKind::Expr(_) => true,
1649                    _ => false,
1650                };
1651                write!(self, "{formatted_op}")?;
1652                self.maybe_parenthesized(
1653                    |this| this.pretty_print_const(ct, print_ty),
1654                    parenthesized,
1655                )?
1656            }
1657            ty::ExprKind::FunctionCall => {
1658                let (_, fn_def, fn_args) = expr.call_args();
1659
1660                write!(self, "(")?;
1661                self.pretty_print_const(fn_def, print_ty)?;
1662                write!(self, ")(")?;
1663                self.comma_sep(fn_args)?;
1664                write!(self, ")")?;
1665            }
1666            ty::ExprKind::Cast(kind) => {
1667                let (_, value, to_ty) = expr.cast_args();
1668
1669                use ty::abstract_const::CastKind;
1670                if kind == CastKind::As || (kind == CastKind::Use && self.should_print_verbose()) {
1671                    let parenthesized = match value.kind() {
1672                        ty::ConstKind::Expr(ty::Expr {
1673                            kind: ty::ExprKind::Cast { .. }, ..
1674                        }) => false,
1675                        ty::ConstKind::Expr(_) => true,
1676                        _ => false,
1677                    };
1678                    self.maybe_parenthesized(
1679                        |this| {
1680                            this.typed_value(
1681                                |this| this.pretty_print_const(value, print_ty),
1682                                |this| this.pretty_print_type(to_ty),
1683                                " as ",
1684                            )
1685                        },
1686                        parenthesized,
1687                    )?;
1688                } else {
1689                    self.pretty_print_const(value, print_ty)?
1690                }
1691            }
1692        }
1693        Ok(())
1694    }
1695
1696    fn pretty_print_const_scalar(
1697        &mut self,
1698        scalar: Scalar,
1699        ty: Ty<'tcx>,
1700    ) -> Result<(), PrintError> {
1701        match scalar {
1702            Scalar::Ptr(ptr, _size) => self.pretty_print_const_scalar_ptr(ptr, ty),
1703            Scalar::Int(int) => {
1704                self.pretty_print_const_scalar_int(int, ty, /* print_ty */ true)
1705            }
1706        }
1707    }
1708
1709    fn pretty_print_const_scalar_ptr(
1710        &mut self,
1711        ptr: Pointer,
1712        ty: Ty<'tcx>,
1713    ) -> Result<(), PrintError> {
1714        let (prov, offset) = ptr.prov_and_relative_offset();
1715        match ty.kind() {
1716            // Byte strings (&[u8; N])
1717            ty::Ref(_, inner, _) => {
1718                if let ty::Array(elem, ct_len) = inner.kind()
1719                    && let ty::Uint(ty::UintTy::U8) = elem.kind()
1720                    && let Some(len) = ct_len.try_to_target_usize(self.tcx())
1721                {
1722                    match self.tcx().try_get_global_alloc(prov.alloc_id()) {
1723                        Some(GlobalAlloc::Memory(alloc)) => {
1724                            let range = AllocRange { start: offset, size: Size::from_bytes(len) };
1725                            if let Ok(byte_str) =
1726                                alloc.inner().get_bytes_strip_provenance(&self.tcx(), range)
1727                            {
1728                                self.pretty_print_byte_str(byte_str)?;
1729                            } else {
1730                                write!(self, "<too short allocation>")?;
1731                            }
1732                        }
1733                        // FIXME: for statics, vtables, and functions, we could in principle print more detail.
1734                        Some(GlobalAlloc::Static(def_id)) => {
1735                            write!(self, "<static({def_id:?})>")?;
1736                        }
1737                        Some(GlobalAlloc::Function { .. }) => write!(self, "<function>")?,
1738                        Some(GlobalAlloc::VTable(..)) => write!(self, "<vtable>")?,
1739                        Some(GlobalAlloc::TypeId { .. }) => write!(self, "<typeid>")?,
1740                        None => write!(self, "<dangling pointer>")?,
1741                    }
1742                    return Ok(());
1743                }
1744            }
1745            ty::FnPtr(..) => {
1746                // FIXME: We should probably have a helper method to share code with the "Byte strings"
1747                // printing above (which also has to handle pointers to all sorts of things).
1748                if let Some(GlobalAlloc::Function { instance, .. }) =
1749                    self.tcx().try_get_global_alloc(prov.alloc_id())
1750                {
1751                    self.typed_value(
1752                        |this| this.pretty_print_value_path(instance.def_id(), instance.args),
1753                        |this| this.print_type(ty),
1754                        " as ",
1755                    )?;
1756                    return Ok(());
1757                }
1758            }
1759            _ => {}
1760        }
1761        // Any pointer values not covered by a branch above
1762        self.pretty_print_const_pointer(ptr, ty)?;
1763        Ok(())
1764    }
1765
1766    fn pretty_print_const_scalar_int(
1767        &mut self,
1768        int: ScalarInt,
1769        ty: Ty<'tcx>,
1770        print_ty: bool,
1771    ) -> Result<(), PrintError> {
1772        match ty.kind() {
1773            // Bool
1774            ty::Bool if int == ScalarInt::FALSE => write!(self, "false")?,
1775            ty::Bool if int == ScalarInt::TRUE => write!(self, "true")?,
1776            // Float
1777            ty::Float(fty) => match fty {
1778                ty::FloatTy::F16 => {
1779                    let val = Half::try_from(int).unwrap();
1780                    write!(self, "{}{}f16", val, if val.is_finite() { "" } else { "_" })?;
1781                }
1782                ty::FloatTy::F32 => {
1783                    let val = Single::try_from(int).unwrap();
1784                    write!(self, "{}{}f32", val, if val.is_finite() { "" } else { "_" })?;
1785                }
1786                ty::FloatTy::F64 => {
1787                    let val = Double::try_from(int).unwrap();
1788                    write!(self, "{}{}f64", val, if val.is_finite() { "" } else { "_" })?;
1789                }
1790                ty::FloatTy::F128 => {
1791                    let val = Quad::try_from(int).unwrap();
1792                    write!(self, "{}{}f128", val, if val.is_finite() { "" } else { "_" })?;
1793                }
1794            },
1795            // Int
1796            ty::Uint(_) | ty::Int(_) => {
1797                let int =
1798                    ConstInt::new(int, matches!(ty.kind(), ty::Int(_)), ty.is_ptr_sized_integral());
1799                if print_ty { write!(self, "{int:#?}")? } else { write!(self, "{int:?}")? }
1800            }
1801            // Char
1802            ty::Char if char::try_from(int).is_ok() => {
1803                write!(self, "{:?}", char::try_from(int).unwrap())?;
1804            }
1805            // Pointer types
1806            ty::Ref(..) | ty::RawPtr(_, _) | ty::FnPtr(..) => {
1807                let data = int.to_bits(self.tcx().data_layout.pointer_size());
1808                self.typed_value(
1809                    |this| {
1810                        write!(this, "0x{data:x}")?;
1811                        Ok(())
1812                    },
1813                    |this| this.print_type(ty),
1814                    " as ",
1815                )?;
1816            }
1817            ty::Pat(base_ty, pat) if self.tcx().validate_scalar_in_layout(int, ty) => {
1818                self.pretty_print_const_scalar_int(int, *base_ty, print_ty)?;
1819                write!(self, " is {pat:?}")?;
1820            }
1821            // Nontrivial types with scalar bit representation
1822            _ => {
1823                let print = |this: &mut Self| {
1824                    if int.size() == Size::ZERO {
1825                        write!(this, "transmute(())")?;
1826                    } else {
1827                        write!(this, "transmute(0x{int:x})")?;
1828                    }
1829                    Ok(())
1830                };
1831                if print_ty {
1832                    self.typed_value(print, |this| this.print_type(ty), ": ")?
1833                } else {
1834                    print(self)?
1835                };
1836            }
1837        }
1838        Ok(())
1839    }
1840
1841    /// This is overridden for MIR printing because we only want to hide alloc ids from users, not
1842    /// from MIR where it is actually useful.
1843    fn pretty_print_const_pointer<Prov: Provenance>(
1844        &mut self,
1845        _: Pointer<Prov>,
1846        ty: Ty<'tcx>,
1847    ) -> Result<(), PrintError> {
1848        self.typed_value(
1849            |this| {
1850                this.write_str("&_")?;
1851                Ok(())
1852            },
1853            |this| this.print_type(ty),
1854            ": ",
1855        )
1856    }
1857
1858    fn pretty_print_byte_str(&mut self, byte_str: &'tcx [u8]) -> Result<(), PrintError> {
1859        write!(self, "b\"{}\"", byte_str.escape_ascii())?;
1860        Ok(())
1861    }
1862
1863    fn pretty_print_const_valtree(
1864        &mut self,
1865        cv: ty::Value<'tcx>,
1866        print_ty: bool,
1867    ) -> Result<(), PrintError> {
1868        if with_reduced_queries() || self.should_print_verbose() {
1869            write!(self, "ValTree({:?}: ", cv.valtree)?;
1870            cv.ty.print(self)?;
1871            write!(self, ")")?;
1872            return Ok(());
1873        }
1874
1875        let u8_type = self.tcx().types.u8;
1876        match (*cv.valtree, *cv.ty.kind()) {
1877            (ty::ValTreeKind::Branch(_), ty::Ref(_, inner_ty, _)) => match inner_ty.kind() {
1878                ty::Slice(t) if *t == u8_type => {
1879                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1880                        bug!(
1881                            "expected to convert valtree {:?} to raw bytes for type {:?}",
1882                            cv.valtree,
1883                            t
1884                        )
1885                    });
1886                    return self.pretty_print_byte_str(bytes);
1887                }
1888                ty::Str => {
1889                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1890                        bug!("expected to convert valtree to raw bytes for type {:?}", cv.ty)
1891                    });
1892                    write!(self, "{:?}", String::from_utf8_lossy(bytes))?;
1893                    return Ok(());
1894                }
1895                _ => {
1896                    let cv = ty::Value { valtree: cv.valtree, ty: inner_ty };
1897                    write!(self, "&")?;
1898                    self.pretty_print_const_valtree(cv, print_ty)?;
1899                    return Ok(());
1900                }
1901            },
1902            (ty::ValTreeKind::Branch(_), ty::Array(t, _)) if t == u8_type => {
1903                let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1904                    bug!("expected to convert valtree to raw bytes for type {:?}", t)
1905                });
1906                write!(self, "*")?;
1907                self.pretty_print_byte_str(bytes)?;
1908                return Ok(());
1909            }
1910            // Aggregates, printed as array/tuple/struct/variant construction syntax.
1911            (ty::ValTreeKind::Branch(_), ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) => {
1912                let contents = self.tcx().destructure_const(ty::Const::new_value(
1913                    self.tcx(),
1914                    cv.valtree,
1915                    cv.ty,
1916                ));
1917                let fields = contents.fields.iter().copied();
1918                match *cv.ty.kind() {
1919                    ty::Array(..) => {
1920                        write!(self, "[")?;
1921                        self.comma_sep(fields)?;
1922                        write!(self, "]")?;
1923                    }
1924                    ty::Tuple(..) => {
1925                        write!(self, "(")?;
1926                        self.comma_sep(fields)?;
1927                        if contents.fields.len() == 1 {
1928                            write!(self, ",")?;
1929                        }
1930                        write!(self, ")")?;
1931                    }
1932                    ty::Adt(def, _) if def.variants().is_empty() => {
1933                        self.typed_value(
1934                            |this| {
1935                                write!(this, "unreachable()")?;
1936                                Ok(())
1937                            },
1938                            |this| this.print_type(cv.ty),
1939                            ": ",
1940                        )?;
1941                    }
1942                    ty::Adt(def, args) => {
1943                        let variant_idx =
1944                            contents.variant.expect("destructed const of adt without variant idx");
1945                        let variant_def = &def.variant(variant_idx);
1946                        self.pretty_print_value_path(variant_def.def_id, args)?;
1947                        match variant_def.ctor_kind() {
1948                            Some(CtorKind::Const) => {}
1949                            Some(CtorKind::Fn) => {
1950                                write!(self, "(")?;
1951                                self.comma_sep(fields)?;
1952                                write!(self, ")")?;
1953                            }
1954                            None => {
1955                                write!(self, " {{ ")?;
1956                                let mut first = true;
1957                                for (field_def, field) in iter::zip(&variant_def.fields, fields) {
1958                                    if !first {
1959                                        write!(self, ", ")?;
1960                                    }
1961                                    write!(self, "{}: ", field_def.name)?;
1962                                    field.print(self)?;
1963                                    first = false;
1964                                }
1965                                write!(self, " }}")?;
1966                            }
1967                        }
1968                    }
1969                    _ => unreachable!(),
1970                }
1971                return Ok(());
1972            }
1973            (ty::ValTreeKind::Leaf(leaf), ty::Ref(_, inner_ty, _)) => {
1974                write!(self, "&")?;
1975                return self.pretty_print_const_scalar_int(*leaf, inner_ty, print_ty);
1976            }
1977            (ty::ValTreeKind::Leaf(leaf), _) => {
1978                return self.pretty_print_const_scalar_int(*leaf, cv.ty, print_ty);
1979            }
1980            (_, ty::FnDef(def_id, args)) => {
1981                // Never allowed today, but we still encounter them in invalid const args.
1982                self.pretty_print_value_path(def_id, args)?;
1983                return Ok(());
1984            }
1985            // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
1986            // their fields instead of just dumping the memory.
1987            _ => {}
1988        }
1989
1990        // fallback
1991        if cv.valtree.is_zst() {
1992            write!(self, "<ZST>")?;
1993        } else {
1994            write!(self, "{:?}", cv.valtree)?;
1995        }
1996        if print_ty {
1997            write!(self, ": ")?;
1998            cv.ty.print(self)?;
1999        }
2000        Ok(())
2001    }
2002
2003    fn pretty_print_closure_as_impl(
2004        &mut self,
2005        closure: ty::ClosureArgs<TyCtxt<'tcx>>,
2006    ) -> Result<(), PrintError> {
2007        let sig = closure.sig();
2008        let kind = closure.kind_ty().to_opt_closure_kind().unwrap_or(ty::ClosureKind::Fn);
2009
2010        write!(self, "impl ")?;
2011        self.wrap_binder(&sig, WrapBinderMode::ForAll, |sig, p| {
2012            write!(p, "{kind}(")?;
2013            for (i, arg) in sig.inputs()[0].tuple_fields().iter().enumerate() {
2014                if i > 0 {
2015                    write!(p, ", ")?;
2016                }
2017                arg.print(p)?;
2018            }
2019            write!(p, ")")?;
2020
2021            if !sig.output().is_unit() {
2022                write!(p, " -> ")?;
2023                sig.output().print(p)?;
2024            }
2025
2026            Ok(())
2027        })
2028    }
2029
2030    fn pretty_print_bound_constness(
2031        &mut self,
2032        constness: ty::BoundConstness,
2033    ) -> Result<(), PrintError> {
2034        match constness {
2035            ty::BoundConstness::Const => write!(self, "const ")?,
2036            ty::BoundConstness::Maybe => write!(self, "[const] ")?,
2037        }
2038        Ok(())
2039    }
2040
2041    fn should_print_verbose(&self) -> bool {
2042        self.tcx().sess.verbose_internals()
2043    }
2044}
2045
2046pub(crate) fn pretty_print_const<'tcx>(
2047    c: ty::Const<'tcx>,
2048    fmt: &mut fmt::Formatter<'_>,
2049    print_types: bool,
2050) -> fmt::Result {
2051    ty::tls::with(|tcx| {
2052        let literal = tcx.lift(c).unwrap();
2053        let mut p = FmtPrinter::new(tcx, Namespace::ValueNS);
2054        p.print_alloc_ids = true;
2055        p.pretty_print_const(literal, print_types)?;
2056        fmt.write_str(&p.into_buffer())?;
2057        Ok(())
2058    })
2059}
2060
2061// HACK(eddyb) boxed to avoid moving around a large struct by-value.
2062pub struct FmtPrinter<'a, 'tcx>(Box<FmtPrinterData<'a, 'tcx>>);
2063
2064pub struct FmtPrinterData<'a, 'tcx> {
2065    tcx: TyCtxt<'tcx>,
2066    fmt: String,
2067
2068    empty_path: bool,
2069    in_value: bool,
2070    pub print_alloc_ids: bool,
2071
2072    // set of all named (non-anonymous) region names
2073    used_region_names: FxHashSet<Symbol>,
2074
2075    region_index: usize,
2076    binder_depth: usize,
2077    printed_type_count: usize,
2078    type_length_limit: Limit,
2079
2080    pub region_highlight_mode: RegionHighlightMode<'tcx>,
2081
2082    pub ty_infer_name_resolver: Option<Box<dyn Fn(ty::TyVid) -> Option<Symbol> + 'a>>,
2083    pub const_infer_name_resolver: Option<Box<dyn Fn(ty::ConstVid) -> Option<Symbol> + 'a>>,
2084}
2085
2086impl<'a, 'tcx> Deref for FmtPrinter<'a, 'tcx> {
2087    type Target = FmtPrinterData<'a, 'tcx>;
2088    fn deref(&self) -> &Self::Target {
2089        &self.0
2090    }
2091}
2092
2093impl DerefMut for FmtPrinter<'_, '_> {
2094    fn deref_mut(&mut self) -> &mut Self::Target {
2095        &mut self.0
2096    }
2097}
2098
2099impl<'a, 'tcx> FmtPrinter<'a, 'tcx> {
2100    pub fn new(tcx: TyCtxt<'tcx>, ns: Namespace) -> Self {
2101        let limit =
2102            if with_reduced_queries() { Limit::new(1048576) } else { tcx.type_length_limit() };
2103        Self::new_with_limit(tcx, ns, limit)
2104    }
2105
2106    pub fn print_string(
2107        tcx: TyCtxt<'tcx>,
2108        ns: Namespace,
2109        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2110    ) -> Result<String, PrintError> {
2111        let mut c = FmtPrinter::new(tcx, ns);
2112        f(&mut c)?;
2113        Ok(c.into_buffer())
2114    }
2115
2116    pub fn new_with_limit(tcx: TyCtxt<'tcx>, ns: Namespace, type_length_limit: Limit) -> Self {
2117        FmtPrinter(Box::new(FmtPrinterData {
2118            tcx,
2119            // Estimated reasonable capacity to allocate upfront based on a few
2120            // benchmarks.
2121            fmt: String::with_capacity(64),
2122            empty_path: false,
2123            in_value: ns == Namespace::ValueNS,
2124            print_alloc_ids: false,
2125            used_region_names: Default::default(),
2126            region_index: 0,
2127            binder_depth: 0,
2128            printed_type_count: 0,
2129            type_length_limit,
2130            region_highlight_mode: RegionHighlightMode::default(),
2131            ty_infer_name_resolver: None,
2132            const_infer_name_resolver: None,
2133        }))
2134    }
2135
2136    pub fn into_buffer(self) -> String {
2137        self.0.fmt
2138    }
2139}
2140
2141fn guess_def_namespace(tcx: TyCtxt<'_>, def_id: DefId) -> Namespace {
2142    match tcx.def_key(def_id).disambiguated_data.data {
2143        DefPathData::TypeNs(..) | DefPathData::CrateRoot | DefPathData::OpaqueTy => {
2144            Namespace::TypeNS
2145        }
2146
2147        DefPathData::ValueNs(..)
2148        | DefPathData::AnonConst
2149        | DefPathData::Closure
2150        | DefPathData::Ctor => Namespace::ValueNS,
2151
2152        DefPathData::MacroNs(..) => Namespace::MacroNS,
2153
2154        _ => Namespace::TypeNS,
2155    }
2156}
2157
2158impl<'t> TyCtxt<'t> {
2159    /// Returns a string identifying this `DefId`. This string is
2160    /// suitable for user output.
2161    pub fn def_path_str(self, def_id: impl IntoQueryParam<DefId>) -> String {
2162        self.def_path_str_with_args(def_id, &[])
2163    }
2164
2165    /// For this one we determine the appropriate namespace for the `def_id`.
2166    pub fn def_path_str_with_args(
2167        self,
2168        def_id: impl IntoQueryParam<DefId>,
2169        args: &'t [GenericArg<'t>],
2170    ) -> String {
2171        let def_id = def_id.into_query_param();
2172        let ns = guess_def_namespace(self, def_id);
2173        debug!("def_path_str: def_id={:?}, ns={:?}", def_id, ns);
2174
2175        FmtPrinter::print_string(self, ns, |p| p.print_def_path(def_id, args)).unwrap()
2176    }
2177
2178    /// For this one we always use value namespace.
2179    pub fn value_path_str_with_args(
2180        self,
2181        def_id: impl IntoQueryParam<DefId>,
2182        args: &'t [GenericArg<'t>],
2183    ) -> String {
2184        let def_id = def_id.into_query_param();
2185        let ns = Namespace::ValueNS;
2186        debug!("value_path_str: def_id={:?}, ns={:?}", def_id, ns);
2187
2188        FmtPrinter::print_string(self, ns, |p| p.print_def_path(def_id, args)).unwrap()
2189    }
2190}
2191
2192impl fmt::Write for FmtPrinter<'_, '_> {
2193    fn write_str(&mut self, s: &str) -> fmt::Result {
2194        self.fmt.push_str(s);
2195        Ok(())
2196    }
2197}
2198
2199impl<'tcx> Printer<'tcx> for FmtPrinter<'_, 'tcx> {
2200    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
2201        self.tcx
2202    }
2203
2204    fn print_def_path(
2205        &mut self,
2206        def_id: DefId,
2207        args: &'tcx [GenericArg<'tcx>],
2208    ) -> Result<(), PrintError> {
2209        if args.is_empty() {
2210            match self.try_print_trimmed_def_path(def_id)? {
2211                true => return Ok(()),
2212                false => {}
2213            }
2214
2215            match self.try_print_visible_def_path(def_id)? {
2216                true => return Ok(()),
2217                false => {}
2218            }
2219        }
2220
2221        let key = self.tcx.def_key(def_id);
2222        if let DefPathData::Impl = key.disambiguated_data.data {
2223            // Always use types for non-local impls, where types are always
2224            // available, and filename/line-number is mostly uninteresting.
2225            let use_types = !def_id.is_local() || {
2226                // Otherwise, use filename/line-number if forced.
2227                let force_no_types = with_forced_impl_filename_line();
2228                !force_no_types
2229            };
2230
2231            if !use_types {
2232                // If no type info is available, fall back to
2233                // pretty printing some span information. This should
2234                // only occur very early in the compiler pipeline.
2235                let parent_def_id = DefId { index: key.parent.unwrap(), ..def_id };
2236                let span = self.tcx.def_span(def_id);
2237
2238                self.print_def_path(parent_def_id, &[])?;
2239
2240                // HACK(eddyb) copy of `print_path_with_simple` to avoid
2241                // constructing a `DisambiguatedDefPathData`.
2242                if !self.empty_path {
2243                    write!(self, "::")?;
2244                }
2245                write!(
2246                    self,
2247                    "<impl at {}>",
2248                    // This may end up in stderr diagnostics but it may also be emitted
2249                    // into MIR. Hence we use the remapped path if available
2250                    self.tcx.sess.source_map().span_to_embeddable_string(span)
2251                )?;
2252                self.empty_path = false;
2253
2254                return Ok(());
2255            }
2256        }
2257
2258        self.default_print_def_path(def_id, args)
2259    }
2260
2261    fn print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), PrintError> {
2262        self.pretty_print_region(region)
2263    }
2264
2265    fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
2266        match ty.kind() {
2267            ty::Tuple(tys) if tys.len() == 0 && self.should_truncate() => {
2268                // Don't truncate `()`.
2269                self.printed_type_count += 1;
2270                self.pretty_print_type(ty)
2271            }
2272            ty::Adt(..)
2273            | ty::Foreign(_)
2274            | ty::Pat(..)
2275            | ty::RawPtr(..)
2276            | ty::Ref(..)
2277            | ty::FnDef(..)
2278            | ty::FnPtr(..)
2279            | ty::UnsafeBinder(..)
2280            | ty::Dynamic(..)
2281            | ty::Closure(..)
2282            | ty::CoroutineClosure(..)
2283            | ty::Coroutine(..)
2284            | ty::CoroutineWitness(..)
2285            | ty::Tuple(_)
2286            | ty::Alias(..)
2287            | ty::Param(_)
2288            | ty::Bound(..)
2289            | ty::Placeholder(_)
2290            | ty::Error(_)
2291                if self.should_truncate() =>
2292            {
2293                // We only truncate types that we know are likely to be much longer than 3 chars.
2294                // There's no point in replacing `i32` or `!`.
2295                write!(self, "...")?;
2296                Ok(())
2297            }
2298            _ => {
2299                self.printed_type_count += 1;
2300                self.pretty_print_type(ty)
2301            }
2302        }
2303    }
2304
2305    fn print_dyn_existential(
2306        &mut self,
2307        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2308    ) -> Result<(), PrintError> {
2309        self.pretty_print_dyn_existential(predicates)
2310    }
2311
2312    fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
2313        self.pretty_print_const(ct, false)
2314    }
2315
2316    fn print_crate_name(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
2317        self.empty_path = true;
2318        if cnum == LOCAL_CRATE {
2319            if self.tcx.sess.at_least_rust_2018() {
2320                // We add the `crate::` keyword on Rust 2018, only when desired.
2321                if with_crate_prefix() {
2322                    write!(self, "{}", kw::Crate)?;
2323                    self.empty_path = false;
2324                }
2325            }
2326        } else {
2327            write!(self, "{}", self.tcx.crate_name(cnum))?;
2328            self.empty_path = false;
2329        }
2330        Ok(())
2331    }
2332
2333    fn print_path_with_qualified(
2334        &mut self,
2335        self_ty: Ty<'tcx>,
2336        trait_ref: Option<ty::TraitRef<'tcx>>,
2337    ) -> Result<(), PrintError> {
2338        self.pretty_print_path_with_qualified(self_ty, trait_ref)?;
2339        self.empty_path = false;
2340        Ok(())
2341    }
2342
2343    fn print_path_with_impl(
2344        &mut self,
2345        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2346        self_ty: Ty<'tcx>,
2347        trait_ref: Option<ty::TraitRef<'tcx>>,
2348    ) -> Result<(), PrintError> {
2349        self.pretty_print_path_with_impl(
2350            |p| {
2351                print_prefix(p)?;
2352                if !p.empty_path {
2353                    write!(p, "::")?;
2354                }
2355
2356                Ok(())
2357            },
2358            self_ty,
2359            trait_ref,
2360        )?;
2361        self.empty_path = false;
2362        Ok(())
2363    }
2364
2365    fn print_path_with_simple(
2366        &mut self,
2367        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2368        disambiguated_data: &DisambiguatedDefPathData,
2369    ) -> Result<(), PrintError> {
2370        print_prefix(self)?;
2371
2372        // Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
2373        if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
2374            return Ok(());
2375        }
2376
2377        let name = disambiguated_data.data.name();
2378        if !self.empty_path {
2379            write!(self, "::")?;
2380        }
2381
2382        if let DefPathDataName::Named(name) = name {
2383            if Ident::with_dummy_span(name).is_raw_guess() {
2384                write!(self, "r#")?;
2385            }
2386        }
2387
2388        let verbose = self.should_print_verbose();
2389        write!(self, "{}", disambiguated_data.as_sym(verbose))?;
2390
2391        self.empty_path = false;
2392
2393        Ok(())
2394    }
2395
2396    fn print_path_with_generic_args(
2397        &mut self,
2398        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2399        args: &[GenericArg<'tcx>],
2400    ) -> Result<(), PrintError> {
2401        print_prefix(self)?;
2402
2403        if !args.is_empty() {
2404            if self.in_value {
2405                write!(self, "::")?;
2406            }
2407            self.generic_delimiters(|p| p.comma_sep(args.iter().copied()))
2408        } else {
2409            Ok(())
2410        }
2411    }
2412}
2413
2414impl<'tcx> PrettyPrinter<'tcx> for FmtPrinter<'_, 'tcx> {
2415    fn ty_infer_name(&self, id: ty::TyVid) -> Option<Symbol> {
2416        self.0.ty_infer_name_resolver.as_ref().and_then(|func| func(id))
2417    }
2418
2419    fn reset_type_limit(&mut self) {
2420        self.printed_type_count = 0;
2421    }
2422
2423    fn const_infer_name(&self, id: ty::ConstVid) -> Option<Symbol> {
2424        self.0.const_infer_name_resolver.as_ref().and_then(|func| func(id))
2425    }
2426
2427    fn pretty_print_value_path(
2428        &mut self,
2429        def_id: DefId,
2430        args: &'tcx [GenericArg<'tcx>],
2431    ) -> Result<(), PrintError> {
2432        let was_in_value = std::mem::replace(&mut self.in_value, true);
2433        self.print_def_path(def_id, args)?;
2434        self.in_value = was_in_value;
2435
2436        Ok(())
2437    }
2438
2439    fn pretty_print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
2440    where
2441        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
2442    {
2443        self.wrap_binder(value, WrapBinderMode::ForAll, |new_value, this| new_value.print(this))
2444    }
2445
2446    fn wrap_binder<T, C: FnOnce(&T, &mut Self) -> Result<(), PrintError>>(
2447        &mut self,
2448        value: &ty::Binder<'tcx, T>,
2449        mode: WrapBinderMode,
2450        f: C,
2451    ) -> Result<(), PrintError>
2452    where
2453        T: TypeFoldable<TyCtxt<'tcx>>,
2454    {
2455        let old_region_index = self.region_index;
2456        let (new_value, _) = self.name_all_regions(value, mode)?;
2457        f(&new_value, self)?;
2458        self.region_index = old_region_index;
2459        self.binder_depth -= 1;
2460        Ok(())
2461    }
2462
2463    fn typed_value(
2464        &mut self,
2465        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2466        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2467        conversion: &str,
2468    ) -> Result<(), PrintError> {
2469        self.write_str("{")?;
2470        f(self)?;
2471        self.write_str(conversion)?;
2472        let was_in_value = std::mem::replace(&mut self.in_value, false);
2473        t(self)?;
2474        self.in_value = was_in_value;
2475        self.write_str("}")?;
2476        Ok(())
2477    }
2478
2479    fn generic_delimiters(
2480        &mut self,
2481        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2482    ) -> Result<(), PrintError> {
2483        write!(self, "<")?;
2484
2485        let was_in_value = std::mem::replace(&mut self.in_value, false);
2486        f(self)?;
2487        self.in_value = was_in_value;
2488
2489        write!(self, ">")?;
2490        Ok(())
2491    }
2492
2493    fn should_truncate(&mut self) -> bool {
2494        !self.type_length_limit.value_within_limit(self.printed_type_count)
2495    }
2496
2497    fn should_print_region(&self, region: ty::Region<'tcx>) -> bool {
2498        let highlight = self.region_highlight_mode;
2499        if highlight.region_highlighted(region).is_some() {
2500            return true;
2501        }
2502
2503        if self.should_print_verbose() {
2504            return true;
2505        }
2506
2507        if with_forced_trimmed_paths() {
2508            return false;
2509        }
2510
2511        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2512
2513        match region.kind() {
2514            ty::ReEarlyParam(ref data) => data.is_named(),
2515
2516            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => kind.is_named(self.tcx),
2517            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2518            | ty::RePlaceholder(ty::Placeholder {
2519                bound: ty::BoundRegion { kind: br, .. }, ..
2520            }) => {
2521                if br.is_named(self.tcx) {
2522                    return true;
2523                }
2524
2525                if let Some((region, _)) = highlight.highlight_bound_region {
2526                    if br == region {
2527                        return true;
2528                    }
2529                }
2530
2531                false
2532            }
2533
2534            ty::ReVar(_) if identify_regions => true,
2535
2536            ty::ReVar(_) | ty::ReErased | ty::ReError(_) => false,
2537
2538            ty::ReStatic => true,
2539        }
2540    }
2541
2542    fn pretty_print_const_pointer<Prov: Provenance>(
2543        &mut self,
2544        p: Pointer<Prov>,
2545        ty: Ty<'tcx>,
2546    ) -> Result<(), PrintError> {
2547        let print = |this: &mut Self| {
2548            if this.print_alloc_ids {
2549                write!(this, "{p:?}")?;
2550            } else {
2551                write!(this, "&_")?;
2552            }
2553            Ok(())
2554        };
2555        self.typed_value(print, |this| this.print_type(ty), ": ")
2556    }
2557}
2558
2559// HACK(eddyb) limited to `FmtPrinter` because of `region_highlight_mode`.
2560impl<'tcx> FmtPrinter<'_, 'tcx> {
2561    pub fn pretty_print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), fmt::Error> {
2562        // Watch out for region highlights.
2563        let highlight = self.region_highlight_mode;
2564        if let Some(n) = highlight.region_highlighted(region) {
2565            write!(self, "'{n}")?;
2566            return Ok(());
2567        }
2568
2569        if self.should_print_verbose() {
2570            write!(self, "{region:?}")?;
2571            return Ok(());
2572        }
2573
2574        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2575
2576        // These printouts are concise. They do not contain all the information
2577        // the user might want to diagnose an error, but there is basically no way
2578        // to fit that into a short string. Hence the recommendation to use
2579        // `explain_region()` or `note_and_explain_region()`.
2580        match region.kind() {
2581            ty::ReEarlyParam(data) => {
2582                write!(self, "{}", data.name)?;
2583                return Ok(());
2584            }
2585            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => {
2586                if let Some(name) = kind.get_name(self.tcx) {
2587                    write!(self, "{name}")?;
2588                    return Ok(());
2589                }
2590            }
2591            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2592            | ty::RePlaceholder(ty::Placeholder {
2593                bound: ty::BoundRegion { kind: br, .. }, ..
2594            }) => {
2595                if let Some(name) = br.get_name(self.tcx) {
2596                    write!(self, "{name}")?;
2597                    return Ok(());
2598                }
2599
2600                if let Some((region, counter)) = highlight.highlight_bound_region {
2601                    if br == region {
2602                        write!(self, "'{counter}")?;
2603                        return Ok(());
2604                    }
2605                }
2606            }
2607            ty::ReVar(region_vid) if identify_regions => {
2608                write!(self, "{region_vid:?}")?;
2609                return Ok(());
2610            }
2611            ty::ReVar(_) => {}
2612            ty::ReErased => {}
2613            ty::ReError(_) => {}
2614            ty::ReStatic => {
2615                write!(self, "'static")?;
2616                return Ok(());
2617            }
2618        }
2619
2620        write!(self, "'_")?;
2621
2622        Ok(())
2623    }
2624}
2625
2626/// Folds through bound vars and placeholders, naming them
2627struct RegionFolder<'a, 'tcx> {
2628    tcx: TyCtxt<'tcx>,
2629    current_index: ty::DebruijnIndex,
2630    region_map: UnordMap<ty::BoundRegion, ty::Region<'tcx>>,
2631    name: &'a mut (
2632                dyn FnMut(
2633        Option<ty::DebruijnIndex>, // Debruijn index of the folded late-bound region
2634        ty::DebruijnIndex,         // Index corresponding to binder level
2635        ty::BoundRegion,
2636    ) -> ty::Region<'tcx>
2637                    + 'a
2638            ),
2639}
2640
2641impl<'a, 'tcx> ty::TypeFolder<TyCtxt<'tcx>> for RegionFolder<'a, 'tcx> {
2642    fn cx(&self) -> TyCtxt<'tcx> {
2643        self.tcx
2644    }
2645
2646    fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
2647        &mut self,
2648        t: ty::Binder<'tcx, T>,
2649    ) -> ty::Binder<'tcx, T> {
2650        self.current_index.shift_in(1);
2651        let t = t.super_fold_with(self);
2652        self.current_index.shift_out(1);
2653        t
2654    }
2655
2656    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
2657        match *t.kind() {
2658            _ if t.has_vars_bound_at_or_above(self.current_index) || t.has_placeholders() => {
2659                return t.super_fold_with(self);
2660            }
2661            _ => {}
2662        }
2663        t
2664    }
2665
2666    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
2667        let name = &mut self.name;
2668        let region = match r.kind() {
2669            ty::ReBound(db, br) if db >= self.current_index => {
2670                *self.region_map.entry(br).or_insert_with(|| name(Some(db), self.current_index, br))
2671            }
2672            ty::RePlaceholder(ty::PlaceholderRegion {
2673                bound: ty::BoundRegion { kind, .. },
2674                ..
2675            }) => {
2676                // If this is an anonymous placeholder, don't rename. Otherwise, in some
2677                // async fns, we get a `for<'r> Send` bound
2678                match kind {
2679                    ty::BoundRegionKind::Anon | ty::BoundRegionKind::ClosureEnv => r,
2680                    _ => {
2681                        // Index doesn't matter, since this is just for naming and these never get bound
2682                        let br = ty::BoundRegion { var: ty::BoundVar::ZERO, kind };
2683                        *self
2684                            .region_map
2685                            .entry(br)
2686                            .or_insert_with(|| name(None, self.current_index, br))
2687                    }
2688                }
2689            }
2690            _ => return r,
2691        };
2692        if let ty::ReBound(debruijn1, br) = region.kind() {
2693            assert_eq!(debruijn1, ty::INNERMOST);
2694            ty::Region::new_bound(self.tcx, self.current_index, br)
2695        } else {
2696            region
2697        }
2698    }
2699}
2700
2701// HACK(eddyb) limited to `FmtPrinter` because of `binder_depth`,
2702// `region_index` and `used_region_names`.
2703impl<'tcx> FmtPrinter<'_, 'tcx> {
2704    pub fn name_all_regions<T>(
2705        &mut self,
2706        value: &ty::Binder<'tcx, T>,
2707        mode: WrapBinderMode,
2708    ) -> Result<(T, UnordMap<ty::BoundRegion, ty::Region<'tcx>>), fmt::Error>
2709    where
2710        T: TypeFoldable<TyCtxt<'tcx>>,
2711    {
2712        fn name_by_region_index(
2713            index: usize,
2714            available_names: &mut Vec<Symbol>,
2715            num_available: usize,
2716        ) -> Symbol {
2717            if let Some(name) = available_names.pop() {
2718                name
2719            } else {
2720                Symbol::intern(&format!("'z{}", index - num_available))
2721            }
2722        }
2723
2724        debug!("name_all_regions");
2725
2726        // Replace any anonymous late-bound regions with named
2727        // variants, using new unique identifiers, so that we can
2728        // clearly differentiate between named and unnamed regions in
2729        // the output. We'll probably want to tweak this over time to
2730        // decide just how much information to give.
2731        if self.binder_depth == 0 {
2732            self.prepare_region_info(value);
2733        }
2734
2735        debug!("self.used_region_names: {:?}", self.used_region_names);
2736
2737        let mut empty = true;
2738        let mut start_or_continue = |p: &mut Self, start: &str, cont: &str| {
2739            let w = if empty {
2740                empty = false;
2741                start
2742            } else {
2743                cont
2744            };
2745            let _ = write!(p, "{w}");
2746        };
2747        let do_continue = |p: &mut Self, cont: Symbol| {
2748            let _ = write!(p, "{cont}");
2749        };
2750
2751        let possible_names = ('a'..='z').rev().map(|s| Symbol::intern(&format!("'{s}")));
2752
2753        let mut available_names = possible_names
2754            .filter(|name| !self.used_region_names.contains(name))
2755            .collect::<Vec<_>>();
2756        debug!(?available_names);
2757        let num_available = available_names.len();
2758
2759        let mut region_index = self.region_index;
2760        let mut next_name = |this: &Self| {
2761            let mut name;
2762
2763            loop {
2764                name = name_by_region_index(region_index, &mut available_names, num_available);
2765                region_index += 1;
2766
2767                if !this.used_region_names.contains(&name) {
2768                    break;
2769                }
2770            }
2771
2772            name
2773        };
2774
2775        // If we want to print verbosely, then print *all* binders, even if they
2776        // aren't named. Eventually, we might just want this as the default, but
2777        // this is not *quite* right and changes the ordering of some output
2778        // anyways.
2779        let (new_value, map) = if self.should_print_verbose() {
2780            for var in value.bound_vars().iter() {
2781                start_or_continue(self, mode.start_str(), ", ");
2782                write!(self, "{var:?}")?;
2783            }
2784            // Unconditionally render `unsafe<>`.
2785            if value.bound_vars().is_empty() && mode == WrapBinderMode::Unsafe {
2786                start_or_continue(self, mode.start_str(), "");
2787            }
2788            start_or_continue(self, "", "> ");
2789            (value.clone().skip_binder(), UnordMap::default())
2790        } else {
2791            let tcx = self.tcx;
2792
2793            let trim_path = with_forced_trimmed_paths();
2794            // Closure used in `RegionFolder` to create names for anonymous late-bound
2795            // regions. We use two `DebruijnIndex`es (one for the currently folded
2796            // late-bound region and the other for the binder level) to determine
2797            // whether a name has already been created for the currently folded region,
2798            // see issue #102392.
2799            let mut name = |lifetime_idx: Option<ty::DebruijnIndex>,
2800                            binder_level_idx: ty::DebruijnIndex,
2801                            br: ty::BoundRegion| {
2802                let (name, kind) = if let Some(name) = br.kind.get_name(tcx) {
2803                    (name, br.kind)
2804                } else {
2805                    let name = next_name(self);
2806                    (name, ty::BoundRegionKind::NamedAnon(name))
2807                };
2808
2809                if let Some(lt_idx) = lifetime_idx {
2810                    if lt_idx > binder_level_idx {
2811                        return ty::Region::new_bound(
2812                            tcx,
2813                            ty::INNERMOST,
2814                            ty::BoundRegion { var: br.var, kind },
2815                        );
2816                    }
2817                }
2818
2819                // Unconditionally render `unsafe<>`.
2820                if !trim_path || mode == WrapBinderMode::Unsafe {
2821                    start_or_continue(self, mode.start_str(), ", ");
2822                    do_continue(self, name);
2823                }
2824                ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion { var: br.var, kind })
2825            };
2826            let mut folder = RegionFolder {
2827                tcx,
2828                current_index: ty::INNERMOST,
2829                name: &mut name,
2830                region_map: UnordMap::default(),
2831            };
2832            let new_value = value.clone().skip_binder().fold_with(&mut folder);
2833            let region_map = folder.region_map;
2834
2835            if mode == WrapBinderMode::Unsafe && region_map.is_empty() {
2836                start_or_continue(self, mode.start_str(), "");
2837            }
2838            start_or_continue(self, "", "> ");
2839
2840            (new_value, region_map)
2841        };
2842
2843        self.binder_depth += 1;
2844        self.region_index = region_index;
2845        Ok((new_value, map))
2846    }
2847
2848    fn prepare_region_info<T>(&mut self, value: &ty::Binder<'tcx, T>)
2849    where
2850        T: TypeFoldable<TyCtxt<'tcx>>,
2851    {
2852        struct RegionNameCollector<'tcx> {
2853            tcx: TyCtxt<'tcx>,
2854            used_region_names: FxHashSet<Symbol>,
2855            type_collector: SsoHashSet<Ty<'tcx>>,
2856        }
2857
2858        impl<'tcx> RegionNameCollector<'tcx> {
2859            fn new(tcx: TyCtxt<'tcx>) -> Self {
2860                RegionNameCollector {
2861                    tcx,
2862                    used_region_names: Default::default(),
2863                    type_collector: SsoHashSet::new(),
2864                }
2865            }
2866        }
2867
2868        impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for RegionNameCollector<'tcx> {
2869            fn visit_region(&mut self, r: ty::Region<'tcx>) {
2870                trace!("address: {:p}", r.0.0);
2871
2872                // Collect all named lifetimes. These allow us to prevent duplication
2873                // of already existing lifetime names when introducing names for
2874                // anonymous late-bound regions.
2875                if let Some(name) = r.get_name(self.tcx) {
2876                    self.used_region_names.insert(name);
2877                }
2878            }
2879
2880            // We collect types in order to prevent really large types from compiling for
2881            // a really long time. See issue #83150 for why this is necessary.
2882            fn visit_ty(&mut self, ty: Ty<'tcx>) {
2883                let not_previously_inserted = self.type_collector.insert(ty);
2884                if not_previously_inserted {
2885                    ty.super_visit_with(self)
2886                }
2887            }
2888        }
2889
2890        let mut collector = RegionNameCollector::new(self.tcx());
2891        value.visit_with(&mut collector);
2892        self.used_region_names = collector.used_region_names;
2893        self.region_index = 0;
2894    }
2895}
2896
2897impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::Binder<'tcx, T>
2898where
2899    T: Print<'tcx, P> + TypeFoldable<TyCtxt<'tcx>>,
2900{
2901    fn print(&self, p: &mut P) -> Result<(), PrintError> {
2902        p.pretty_print_in_binder(self)
2903    }
2904}
2905
2906impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::OutlivesPredicate<'tcx, T>
2907where
2908    T: Print<'tcx, P>,
2909{
2910    fn print(&self, p: &mut P) -> Result<(), PrintError> {
2911        self.0.print(p)?;
2912        write!(p, ": ")?;
2913        self.1.print(p)?;
2914        Ok(())
2915    }
2916}
2917
2918/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2919/// the trait path. That is, it will print `Trait<U>` instead of
2920/// `<T as Trait<U>>`.
2921#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
2922pub struct TraitRefPrintOnlyTraitPath<'tcx>(ty::TraitRef<'tcx>);
2923
2924impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintOnlyTraitPath<'tcx> {
2925    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
2926        ty::tls::with(|tcx| {
2927            let trait_ref = tcx.short_string(self, path);
2928            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
2929        })
2930    }
2931}
2932
2933impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitPath<'tcx> {
2934    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2935        fmt::Display::fmt(self, f)
2936    }
2937}
2938
2939/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2940/// the trait path, and additionally tries to "sugar" `Fn(...)` trait bounds.
2941#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
2942pub struct TraitRefPrintSugared<'tcx>(ty::TraitRef<'tcx>);
2943
2944impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintSugared<'tcx> {
2945    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
2946        ty::tls::with(|tcx| {
2947            let trait_ref = tcx.short_string(self, path);
2948            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
2949        })
2950    }
2951}
2952
2953impl<'tcx> fmt::Debug for TraitRefPrintSugared<'tcx> {
2954    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2955        fmt::Display::fmt(self, f)
2956    }
2957}
2958
2959/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2960/// the trait name. That is, it will print `Trait` instead of
2961/// `<T as Trait<U>>`.
2962#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift)]
2963pub struct TraitRefPrintOnlyTraitName<'tcx>(ty::TraitRef<'tcx>);
2964
2965impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitName<'tcx> {
2966    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2967        fmt::Display::fmt(self, f)
2968    }
2969}
2970
2971#[extension(pub trait PrintTraitRefExt<'tcx>)]
2972impl<'tcx> ty::TraitRef<'tcx> {
2973    fn print_only_trait_path(self) -> TraitRefPrintOnlyTraitPath<'tcx> {
2974        TraitRefPrintOnlyTraitPath(self)
2975    }
2976
2977    fn print_trait_sugared(self) -> TraitRefPrintSugared<'tcx> {
2978        TraitRefPrintSugared(self)
2979    }
2980
2981    fn print_only_trait_name(self) -> TraitRefPrintOnlyTraitName<'tcx> {
2982        TraitRefPrintOnlyTraitName(self)
2983    }
2984}
2985
2986#[extension(pub trait PrintPolyTraitRefExt<'tcx>)]
2987impl<'tcx> ty::Binder<'tcx, ty::TraitRef<'tcx>> {
2988    fn print_only_trait_path(self) -> ty::Binder<'tcx, TraitRefPrintOnlyTraitPath<'tcx>> {
2989        self.map_bound(|tr| tr.print_only_trait_path())
2990    }
2991
2992    fn print_trait_sugared(self) -> ty::Binder<'tcx, TraitRefPrintSugared<'tcx>> {
2993        self.map_bound(|tr| tr.print_trait_sugared())
2994    }
2995}
2996
2997#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
2998pub struct TraitPredPrintModifiersAndPath<'tcx>(ty::TraitPredicate<'tcx>);
2999
3000impl<'tcx> fmt::Debug for TraitPredPrintModifiersAndPath<'tcx> {
3001    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3002        fmt::Display::fmt(self, f)
3003    }
3004}
3005
3006#[extension(pub trait PrintTraitPredicateExt<'tcx>)]
3007impl<'tcx> ty::TraitPredicate<'tcx> {
3008    fn print_modifiers_and_trait_path(self) -> TraitPredPrintModifiersAndPath<'tcx> {
3009        TraitPredPrintModifiersAndPath(self)
3010    }
3011}
3012
3013#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3014pub struct TraitPredPrintWithBoundConstness<'tcx>(
3015    ty::TraitPredicate<'tcx>,
3016    Option<ty::BoundConstness>,
3017);
3018
3019impl<'tcx> fmt::Debug for TraitPredPrintWithBoundConstness<'tcx> {
3020    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3021        fmt::Display::fmt(self, f)
3022    }
3023}
3024
3025#[extension(pub trait PrintPolyTraitPredicateExt<'tcx>)]
3026impl<'tcx> ty::PolyTraitPredicate<'tcx> {
3027    fn print_modifiers_and_trait_path(
3028        self,
3029    ) -> ty::Binder<'tcx, TraitPredPrintModifiersAndPath<'tcx>> {
3030        self.map_bound(TraitPredPrintModifiersAndPath)
3031    }
3032
3033    fn print_with_bound_constness(
3034        self,
3035        constness: Option<ty::BoundConstness>,
3036    ) -> ty::Binder<'tcx, TraitPredPrintWithBoundConstness<'tcx>> {
3037        self.map_bound(|trait_pred| TraitPredPrintWithBoundConstness(trait_pred, constness))
3038    }
3039}
3040
3041#[derive(Debug, Copy, Clone, Lift)]
3042pub struct PrintClosureAsImpl<'tcx> {
3043    pub closure: ty::ClosureArgs<TyCtxt<'tcx>>,
3044}
3045
3046macro_rules! forward_display_to_print {
3047    ($($ty:ty),+) => {
3048        // Some of the $ty arguments may not actually use 'tcx
3049        $(#[allow(unused_lifetimes)] impl<'tcx> fmt::Display for $ty {
3050            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3051                ty::tls::with(|tcx| {
3052                    let mut p = FmtPrinter::new(tcx, Namespace::TypeNS);
3053                    tcx.lift(*self)
3054                        .expect("could not lift for printing")
3055                        .print(&mut p)?;
3056                    f.write_str(&p.into_buffer())?;
3057                    Ok(())
3058                })
3059            }
3060        })+
3061    };
3062}
3063
3064macro_rules! define_print {
3065    (($self:ident, $p:ident): $($ty:ty $print:block)+) => {
3066        $(impl<'tcx, P: PrettyPrinter<'tcx>> Print<'tcx, P> for $ty {
3067            fn print(&$self, $p: &mut P) -> Result<(), PrintError> {
3068                let _: () = $print;
3069                Ok(())
3070            }
3071        })+
3072    };
3073}
3074
3075macro_rules! define_print_and_forward_display {
3076    (($self:ident, $p:ident): $($ty:ty $print:block)+) => {
3077        define_print!(($self, $p): $($ty $print)*);
3078        forward_display_to_print!($($ty),+);
3079    };
3080}
3081
3082forward_display_to_print! {
3083    ty::Region<'tcx>,
3084    Ty<'tcx>,
3085    &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
3086    ty::Const<'tcx>
3087}
3088
3089define_print! {
3090    (self, p):
3091
3092    ty::FnSig<'tcx> {
3093        write!(p, "{}", self.safety.prefix_str())?;
3094
3095        if self.abi != ExternAbi::Rust {
3096            write!(p, "extern {} ", self.abi)?;
3097        }
3098
3099        write!(p, "fn")?;
3100        p.pretty_print_fn_sig(self.inputs(), self.c_variadic, self.output())?;
3101    }
3102
3103    ty::TraitRef<'tcx> {
3104        write!(p, "<{} as {}>", self.self_ty(), self.print_only_trait_path())?;
3105    }
3106
3107    ty::AliasTy<'tcx> {
3108        let alias_term: ty::AliasTerm<'tcx> = (*self).into();
3109        alias_term.print(p)?;
3110    }
3111
3112    ty::AliasTerm<'tcx> {
3113        match self.kind(p.tcx()) {
3114            ty::AliasTermKind::InherentTy | ty::AliasTermKind::InherentConst => p.pretty_print_inherent_projection(*self)?,
3115            ty::AliasTermKind::ProjectionTy => {
3116                if !(p.should_print_verbose() || with_reduced_queries())
3117                    && p.tcx().is_impl_trait_in_trait(self.def_id)
3118                {
3119                    p.pretty_print_rpitit(self.def_id, self.args)?;
3120                } else {
3121                    p.print_def_path(self.def_id, self.args)?;
3122                }
3123            }
3124            ty::AliasTermKind::FreeTy
3125            | ty::AliasTermKind::FreeConst
3126            | ty::AliasTermKind::OpaqueTy
3127            | ty::AliasTermKind::UnevaluatedConst
3128            | ty::AliasTermKind::ProjectionConst => {
3129                p.print_def_path(self.def_id, self.args)?;
3130            }
3131        }
3132    }
3133
3134    ty::TraitPredicate<'tcx> {
3135        self.trait_ref.self_ty().print(p)?;
3136        write!(p, ": ")?;
3137        if let ty::PredicatePolarity::Negative = self.polarity {
3138            write!(p, "!")?;
3139        }
3140        self.trait_ref.print_trait_sugared().print(p)?;
3141    }
3142
3143    ty::HostEffectPredicate<'tcx> {
3144        let constness = match self.constness {
3145            ty::BoundConstness::Const => { "const" }
3146            ty::BoundConstness::Maybe => { "[const]" }
3147        };
3148        self.trait_ref.self_ty().print(p)?;
3149        write!(p, ": {constness} ")?;
3150        self.trait_ref.print_trait_sugared().print(p)?;
3151    }
3152
3153    ty::TypeAndMut<'tcx> {
3154        write!(p, "{}", self.mutbl.prefix_str())?;
3155        self.ty.print(p)?;
3156    }
3157
3158    ty::ClauseKind<'tcx> {
3159        match *self {
3160            ty::ClauseKind::Trait(ref data) => data.print(p)?,
3161            ty::ClauseKind::RegionOutlives(predicate) => predicate.print(p)?,
3162            ty::ClauseKind::TypeOutlives(predicate) => predicate.print(p)?,
3163            ty::ClauseKind::Projection(predicate) => predicate.print(p)?,
3164            ty::ClauseKind::HostEffect(predicate) => predicate.print(p)?,
3165            ty::ClauseKind::ConstArgHasType(ct, ty) => {
3166                write!(p, "the constant `")?;
3167                ct.print(p)?;
3168                write!(p, "` has type `")?;
3169                ty.print(p)?;
3170                write!(p, "`")?;
3171            },
3172            ty::ClauseKind::WellFormed(term) => {
3173                term.print(p)?;
3174                write!(p, " well-formed")?;
3175            }
3176            ty::ClauseKind::ConstEvaluatable(ct) => {
3177                write!(p, "the constant `")?;
3178                ct.print(p)?;
3179                write!(p, "` can be evaluated")?;
3180            }
3181            ty::ClauseKind::UnstableFeature(symbol) => {
3182                write!(p, "unstable feature: ")?;
3183                write!(p, "`{symbol}`")?;
3184            }
3185        }
3186    }
3187
3188    ty::PredicateKind<'tcx> {
3189        match *self {
3190            ty::PredicateKind::Clause(data) => data.print(p)?,
3191            ty::PredicateKind::Subtype(predicate) => predicate.print(p)?,
3192            ty::PredicateKind::Coerce(predicate) => predicate.print(p)?,
3193            ty::PredicateKind::DynCompatible(trait_def_id) => {
3194                write!(p, "the trait `")?;
3195                p.print_def_path(trait_def_id, &[])?;
3196                write!(p, "` is dyn-compatible")?;
3197            }
3198            ty::PredicateKind::ConstEquate(c1, c2) => {
3199                write!(p, "the constant `")?;
3200                c1.print(p)?;
3201                write!(p, "` equals `")?;
3202                c2.print(p)?;
3203                write!(p, "`")?;
3204            }
3205            ty::PredicateKind::Ambiguous => write!(p, "ambiguous")?,
3206            ty::PredicateKind::NormalizesTo(data) => data.print(p)?,
3207            ty::PredicateKind::AliasRelate(t1, t2, dir) => {
3208                t1.print(p)?;
3209                write!(p, " {dir} ")?;
3210                t2.print(p)?;
3211            }
3212        }
3213    }
3214
3215    ty::ExistentialPredicate<'tcx> {
3216        match *self {
3217            ty::ExistentialPredicate::Trait(x) => x.print(p)?,
3218            ty::ExistentialPredicate::Projection(x) => x.print(p)?,
3219            ty::ExistentialPredicate::AutoTrait(def_id) => p.print_def_path(def_id, &[])?,
3220        }
3221    }
3222
3223    ty::ExistentialTraitRef<'tcx> {
3224        // Use a type that can't appear in defaults of type parameters.
3225        let dummy_self = Ty::new_fresh(p.tcx(), 0);
3226        let trait_ref = self.with_self_ty(p.tcx(), dummy_self);
3227        trait_ref.print_only_trait_path().print(p)?;
3228    }
3229
3230    ty::ExistentialProjection<'tcx> {
3231        let name = p.tcx().associated_item(self.def_id).name();
3232        // The args don't contain the self ty (as it has been erased) but the corresp.
3233        // generics do as the trait always has a self ty param. We need to offset.
3234        let args = &self.args[p.tcx().generics_of(self.def_id).parent_count - 1..];
3235        p.print_path_with_generic_args(|p| write!(p, "{name}"), args)?;
3236        write!(p, " = ")?;
3237        self.term.print(p)?;
3238    }
3239
3240    ty::ProjectionPredicate<'tcx> {
3241        self.projection_term.print(p)?;
3242        write!(p, " == ")?;
3243        p.reset_type_limit();
3244        self.term.print(p)?;
3245    }
3246
3247    ty::SubtypePredicate<'tcx> {
3248        self.a.print(p)?;
3249        write!(p, " <: ")?;
3250        p.reset_type_limit();
3251        self.b.print(p)?;
3252    }
3253
3254    ty::CoercePredicate<'tcx> {
3255        self.a.print(p)?;
3256        write!(p, " -> ")?;
3257        p.reset_type_limit();
3258        self.b.print(p)?;
3259    }
3260
3261    ty::NormalizesTo<'tcx> {
3262        self.alias.print(p)?;
3263        write!(p, " normalizes-to ")?;
3264        p.reset_type_limit();
3265        self.term.print(p)?;
3266    }
3267}
3268
3269define_print_and_forward_display! {
3270    (self, p):
3271
3272    &'tcx ty::List<Ty<'tcx>> {
3273        write!(p, "{{")?;
3274        p.comma_sep(self.iter())?;
3275        write!(p, "}}")?;
3276    }
3277
3278    TraitRefPrintOnlyTraitPath<'tcx> {
3279        p.print_def_path(self.0.def_id, self.0.args)?;
3280    }
3281
3282    TraitRefPrintSugared<'tcx> {
3283        if !with_reduced_queries()
3284            && p.tcx().trait_def(self.0.def_id).paren_sugar
3285            && let ty::Tuple(args) = self.0.args.type_at(1).kind()
3286        {
3287            write!(p, "{}(", p.tcx().item_name(self.0.def_id))?;
3288            for (i, arg) in args.iter().enumerate() {
3289                if i > 0 {
3290                    write!(p, ", ")?;
3291                }
3292                arg.print(p)?;
3293            }
3294            write!(p, ")")?;
3295        } else {
3296            p.print_def_path(self.0.def_id, self.0.args)?;
3297        }
3298    }
3299
3300    TraitRefPrintOnlyTraitName<'tcx> {
3301        p.print_def_path(self.0.def_id, &[])?;
3302    }
3303
3304    TraitPredPrintModifiersAndPath<'tcx> {
3305        if let ty::PredicatePolarity::Negative = self.0.polarity {
3306            write!(p, "!")?;
3307        }
3308        self.0.trait_ref.print_trait_sugared().print(p)?;
3309    }
3310
3311    TraitPredPrintWithBoundConstness<'tcx> {
3312        self.0.trait_ref.self_ty().print(p)?;
3313        write!(p, ": ")?;
3314        if let Some(constness) = self.1 {
3315            p.pretty_print_bound_constness(constness)?;
3316        }
3317        if let ty::PredicatePolarity::Negative = self.0.polarity {
3318            write!(p, "!")?;
3319        }
3320        self.0.trait_ref.print_trait_sugared().print(p)?;
3321    }
3322
3323    PrintClosureAsImpl<'tcx> {
3324        p.pretty_print_closure_as_impl(self.closure)?;
3325    }
3326
3327    ty::ParamTy {
3328        write!(p, "{}", self.name)?;
3329    }
3330
3331    ty::PlaceholderType {
3332        match self.bound.kind {
3333            ty::BoundTyKind::Anon => write!(p, "{self:?}")?,
3334            ty::BoundTyKind::Param(def_id) => match p.should_print_verbose() {
3335                true => write!(p, "{self:?}")?,
3336                false => write!(p, "{}", p.tcx().item_name(def_id))?,
3337            },
3338        }
3339    }
3340
3341    ty::ParamConst {
3342        write!(p, "{}", self.name)?;
3343    }
3344
3345    ty::Term<'tcx> {
3346      match self.kind() {
3347        ty::TermKind::Ty(ty) => ty.print(p)?,
3348        ty::TermKind::Const(c) => c.print(p)?,
3349      }
3350    }
3351
3352    ty::Predicate<'tcx> {
3353        self.kind().print(p)?;
3354    }
3355
3356    ty::Clause<'tcx> {
3357        self.kind().print(p)?;
3358    }
3359
3360    GenericArg<'tcx> {
3361        match self.kind() {
3362            GenericArgKind::Lifetime(lt) => lt.print(p)?,
3363            GenericArgKind::Type(ty) => ty.print(p)?,
3364            GenericArgKind::Const(ct) => ct.print(p)?,
3365        }
3366    }
3367}
3368
3369fn for_each_def(tcx: TyCtxt<'_>, mut collect_fn: impl for<'b> FnMut(&'b Ident, Namespace, DefId)) {
3370    // Iterate all (non-anonymous) local crate items no matter where they are defined.
3371    for id in tcx.hir_free_items() {
3372        if matches!(tcx.def_kind(id.owner_id), DefKind::Use) {
3373            continue;
3374        }
3375
3376        let item = tcx.hir_item(id);
3377        let Some(ident) = item.kind.ident() else { continue };
3378
3379        let def_id = item.owner_id.to_def_id();
3380        let ns = tcx.def_kind(def_id).ns().unwrap_or(Namespace::TypeNS);
3381        collect_fn(&ident, ns, def_id);
3382    }
3383
3384    // Now take care of extern crate items.
3385    let queue = &mut Vec::new();
3386    let mut seen_defs: DefIdSet = Default::default();
3387
3388    for &cnum in tcx.crates(()).iter() {
3389        // Ignore crates that are not direct dependencies.
3390        match tcx.extern_crate(cnum) {
3391            None => continue,
3392            Some(extern_crate) => {
3393                if !extern_crate.is_direct() {
3394                    continue;
3395                }
3396            }
3397        }
3398
3399        queue.push(cnum.as_def_id());
3400    }
3401
3402    // Iterate external crate defs but be mindful about visibility
3403    while let Some(def) = queue.pop() {
3404        for child in tcx.module_children(def).iter() {
3405            if !child.vis.is_public() {
3406                continue;
3407            }
3408
3409            match child.res {
3410                def::Res::Def(DefKind::AssocTy, _) => {}
3411                def::Res::Def(DefKind::TyAlias, _) => {}
3412                def::Res::Def(defkind, def_id) => {
3413                    if let Some(ns) = defkind.ns() {
3414                        collect_fn(&child.ident, ns, def_id);
3415                    }
3416
3417                    if defkind.is_module_like() && seen_defs.insert(def_id) {
3418                        queue.push(def_id);
3419                    }
3420                }
3421                _ => {}
3422            }
3423        }
3424    }
3425}
3426
3427/// The purpose of this function is to collect public symbols names that are unique across all
3428/// crates in the build. Later, when printing about types we can use those names instead of the
3429/// full exported path to them.
3430///
3431/// So essentially, if a symbol name can only be imported from one place for a type, and as
3432/// long as it was not glob-imported anywhere in the current crate, we can trim its printed
3433/// path and print only the name.
3434///
3435/// This has wide implications on error messages with types, for example, shortening
3436/// `std::vec::Vec` to just `Vec`, as long as there is no other `Vec` importable anywhere.
3437///
3438/// The implementation uses similar import discovery logic to that of 'use' suggestions.
3439///
3440/// See also [`with_no_trimmed_paths!`].
3441// this is pub to be able to intra-doc-link it
3442pub fn trimmed_def_paths(tcx: TyCtxt<'_>, (): ()) -> DefIdMap<Symbol> {
3443    // Trimming paths is expensive and not optimized, since we expect it to only be used for error
3444    // reporting. Record the fact that we did it, so we can abort if we later found it was
3445    // unnecessary.
3446    //
3447    // The `rustc_middle::ty::print::with_no_trimmed_paths` wrapper can be used to suppress this
3448    // checking, in exchange for full paths being formatted.
3449    tcx.sess.record_trimmed_def_paths();
3450
3451    // Once constructed, unique namespace+symbol pairs will have a `Some(_)` entry, while
3452    // non-unique pairs will have a `None` entry.
3453    let unique_symbols_rev: &mut FxIndexMap<(Namespace, Symbol), Option<DefId>> =
3454        &mut FxIndexMap::default();
3455
3456    for symbol_set in tcx.resolutions(()).glob_map.values() {
3457        for symbol in symbol_set {
3458            unique_symbols_rev.insert((Namespace::TypeNS, *symbol), None);
3459            unique_symbols_rev.insert((Namespace::ValueNS, *symbol), None);
3460            unique_symbols_rev.insert((Namespace::MacroNS, *symbol), None);
3461        }
3462    }
3463
3464    for_each_def(tcx, |ident, ns, def_id| match unique_symbols_rev.entry((ns, ident.name)) {
3465        IndexEntry::Occupied(mut v) => match v.get() {
3466            None => {}
3467            Some(existing) => {
3468                if *existing != def_id {
3469                    v.insert(None);
3470                }
3471            }
3472        },
3473        IndexEntry::Vacant(v) => {
3474            v.insert(Some(def_id));
3475        }
3476    });
3477
3478    // Put the symbol from all the unique namespace+symbol pairs into `map`.
3479    let mut map: DefIdMap<Symbol> = Default::default();
3480    for ((_, symbol), opt_def_id) in unique_symbols_rev.drain(..) {
3481        use std::collections::hash_map::Entry::{Occupied, Vacant};
3482
3483        if let Some(def_id) = opt_def_id {
3484            match map.entry(def_id) {
3485                Occupied(mut v) => {
3486                    // A single DefId can be known under multiple names (e.g.,
3487                    // with a `pub use ... as ...;`). We need to ensure that the
3488                    // name placed in this map is chosen deterministically, so
3489                    // if we find multiple names (`symbol`) resolving to the
3490                    // same `def_id`, we prefer the lexicographically smallest
3491                    // name.
3492                    //
3493                    // Any stable ordering would be fine here though.
3494                    if *v.get() != symbol && v.get().as_str() > symbol.as_str() {
3495                        v.insert(symbol);
3496                    }
3497                }
3498                Vacant(v) => {
3499                    v.insert(symbol);
3500                }
3501            }
3502        }
3503    }
3504
3505    map
3506}
3507
3508pub fn provide(providers: &mut Providers) {
3509    *providers = Providers { trimmed_def_paths, ..*providers };
3510}
3511
3512pub struct OpaqueFnEntry<'tcx> {
3513    kind: ty::ClosureKind,
3514    return_ty: Option<ty::Binder<'tcx, Term<'tcx>>>,
3515}