Skip to main content
Advertisement

< Back to Article

Genetic dissection of assortative mating behavior

Fig 4

QTL effects in consideration of the Beavis effect.

(A) Proportion of “significant” simulations that would be smaller than our empirically measured effects for preference QTLs on Chromosome 1 (blue), Chromosome 17 (black), and Chromosome 18 (orange). 10,000 simulations were run for effect sizes corresponding to between 5% and 40% of the difference in male preference behavior between the parental species. In each case, the distribution of sample effect sizes was determined for those simulations that reached the genome-wide significance threshold determined through permutation (Fig 2). Underlying data can be found in the online Dryad repository doi.10.5061/dryad.4b240j4, specifically derived_data/QTL_1_sim_results.csv, derived_data/QTL_17_sim_results.csv, and derived_data/QTL_18_sim_results.csv. (B) Proportion of time males court H. melpomene (as opposed to H. cydno) females for each of the two genotypes for white (homozygous = CYD:CYD) and red (heterozygous = CYD:MEL) hybrid males for which we were unable to generate RAD-seq data (so which were not included in our initial QTL analysis). Error bars represent 95% confidence intervals. Lower dashed blue and upper orange bars represent mean phenotypes measured in H. cydno and H. melpomene, respectively. Circle size depicts total number of “courtship minutes” for each male. Vertical black bars indicate the percentage of the difference measured in the parental species explained. Underlying data can be found in the online Dryad repository doi.10.5061/dryad.4b240j4, specifically raw_data/IDs_with_pheno_no_RAD.csv. CYD, cydno allele; MEL, melpomene allele; QTL, quantitative trait locus; RAD-seq, restriction site–associated DNA sequencing.

Fig 4

doi: https://doi.org/10.1371/journal.pbio.2005902.g004