Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
1
ff
Vd
Ve
θd
fo
PLL - PHASE LOOP LOCKED - Lazos Enganchados en Fase
General
• Es un circuito que permite que una señal de referencia externa, controle la frecuencia y la
fase de un oscilador.
• El primer uso documentado de un PLL fue en 1932, en un receptor homodino o
sincrodino, pero no fue hasta los años 60, con la aparición de los circuitos integrados que
se los comenzó a usar profusamente.
Diagrama en bloques y principio de funcionamiento
• El VCO (Voltage Controlled Oscilator) oscila libremente a una frecuencia, determinada
por una red RC o LC, llamada frecuencia de corrida libre ff (free frequency). Esta
frecuencia es comparada con la frecuencia fS de una señal de referencia en el detector de
fase (que se comporta como un mezclador cuando excede su rango lineal, esto se
demostrará en la próxima sección), el cual entrega la mezcla de ambas fS-fO o fO-fS
dependiendo cual es mayor. Los productos de alta frecuencia tal como fS+fO, 2fS, 2fO, etc.
son eliminados por el filtro pasabajos F(s).
• Si la frecuencia de la señal Ve (fS-fO o fO-fS) es lo suficientemente baja para que el filtro
pasabajos no la atenúe ni la desfasaje en exceso, Vd
controlará el VCO, tendiendo a reducir la diferencia de
frecuencias hasta que se igualen.
• Una vez que se sincronizan VO y VS, esto es fO=fS, el
detector de fase entrega una tensión Ve, con una
componente continua estable necesaria para que el VCO
iguale la frecuencia de la señal de referencia. En este caso
se establece una diferencia de fase θd para producir la
tensión Ve antedicha.
Detector de
Fase
kd
Filtro
Pasabajos
F(s)
Oscilador
controlado por
tensión
kO
VS, fS, VS
θd=θS -θO
Vd
fS-fO
fS-fO
Ve
Ve
pen=kd
Vd
B
0db
-3db
ω
F(ω)
VO, fO, VO
Vd
fO
ff
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
2
Demostración de que el comparador de fase se comporta como un mezclador
cuando se excede su rango lineal
• La frecuencia fundamental de Ve(t) es la diferencia fS-fO.
Estados de funcionamiento
Estado de corrida libre
• Esta condición ocurre cuando no hay señal de entrada o hay una señal de entrada a la cual
el lazo no tiene posibilidades de enganchar. En esta condición, generalmente Vd=0 o Vd≈
VDD /2, cuando el chip es alimentado con una fuente de tensión VDD no partida.
Estado fijo
• Es el que corresponde cuando el lazo está enganchado en fase. fO=fS salvo una diferencia
finita de fase θd.
Ve Ve
Comparador de fase ideal
π/2-π/2 3π/2π-π-3π/2
Comparador de fase real
Rango lineal
θdθd=θS -θO
θd
Vd=Δωt
2π
T
T
t
t
T
1
ff
T
2π
ωωΔω
T
2π
Δω
2πΔωT
0S
0S
=−
=−=
=
=
θd
Ve Ve
tiempoelconmonótonacrecequeΔωtθ
0forzamossi-Δωtθ-θθ
)θtcos(ω)ΘΔωttcos(ωV
queexpresarpuedeseentoncesΔωttωtωΔωωωsi
)tcos(ωVy)tcos(ωVSea
d
0S0S0Sd
S0S0S
0s0s
SSS000
=
=Θ=ΘΘΘ+==
+=++=
+=∴+=
Θ+=Θ+=
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
3
• Cuando un lazo está enganchado por cada ciclo de la señal de entrada, hay uno y solo un
ciclo de la señal de salida. Si el comparador de fase no excede su rango lineal se asegura
el cumplimiento de esta condición.
Estado de captura
• Es el estado previo al fijo, es cuando el VCO está cambiando de frecuencia, intentando
enganchar la frecuencia de la señal de referencia.
Rangos de funcionamiento
• Es conveniente definir los rangos de funcionamiento a partir de las variaciones de Vd
cuando se varía la frecuencia de la señal de referencia.
ff: frecuencia de corrida libre
2fC: rango de captura
2fP: rango de tracción
2fL: rango de seguimiento
siempre se cumple que 2fC < 2fP < 2fL
• El rango de seguimiento 2fL no depende de las características del filtro. Los límites
superior y/o inferior quedan definidos por el dispositivo que primero se sature, puede ser
el comparador de fase, el VCO o algún otro dispositivo activo del lazo.
• El rango de captura 2fC y el rango de tracción 2fP dependen entre otras cosas, del filtro
pasabajos.
• Las características del filtro, entre otras cosas, limitan la rapidez en que el estado fijo
puede ser alcanzado, ya que la tensión del capacitor del filtro pasabajos no puede cambiar
instantáneamente, oficiando el capacitor de memoria, asegurando una rápida recaptura de
la señal, si el sistema sale de sincronismo por un transitorio de ruido.
• El proceso de adquisición del estado fijo, es complicado, no lineal, y de difícil análisis,
por lo cual acá solo se analizará el PLL ya en estado fijo.
Vd máx
fS
Vd mín 2fP
2fL
ff
2fC
captura en forma instantánea
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
4
Vs
VO
Ve
Ve(promedio)
π 2π0
Q
θd
VDD
t
t
t
t
t
Ve
VS
VO
VO
Ve
Ve(promedio)
Ve(baja frecuencia)
fO-fS
24
2π/ωs
θd/ωs
• Una vez que el proceso de corrección (o adquisición del sincronismo en el lazo, o fijación
del lazo) se ha completado, el PLL va a seguir automáticamente las variaciones de la señal
de entrada.
• Si esta señal es más bien estable, con poco ruido y disturbios, el lazo necesita muy poca
información para reproducirla fielmente. En este caso, un filtro de ancho de banda muy
pequeño (puede ser tan angosto como 1 o 2Hz) es suficiente. El uso del PLL reduce
tremendamente el contenido de ruido de la señal de entrada.
• El lazo funciona como un filtro de frecuencia variable y de pequeño ancho de banda, que
puede seguir automáticamente una señal de referencia, aun cuando esta posea una relación
señal a ruido muy pobre.
• A la luz de los razonamientos anteriores, se concluye que dentro del rango de captura sólo
es posible un estado de equilibrio, correspondiente al PLL enganchado. Fuera del rango de
captura pero dentro del rango de tracción, son posibles dos situaciones: enganchado u
oscilando a la frecuencia libre, dependiendo si se entra en esa región estando el PLL
enganchado o no.
• Finalmente, fuera del rango de seguimiento, sólo funcionará desenganchado.
Aplicaciones del PLL
• Los PLL se usan básicamente para:
-Generadores de portadoras para emisión con modulación de ángulo o no.
-Generación de osciladores locales en recepción.
-Sintetizadores de frecuencia.
-Demoduladores de señales moduladas en ángulo.
-Recuperación de impulsos de reloj en transmisiones digitales.
-Circuitos de sincronismo para barrido horizontal y vertical en receptores de televisión.
-Recepción de señales satelitales de satélites no geoestacionarios.
-etc.
• Más adelante se analizarán algunas
aplicaciones específicas.
Detectores de fase
Detector de fase con puerta XOR
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
5
• La puerta XOR es un comparador de desigualdad, cuando sus entradas tienen niveles
lógicos distintos la salida es alta.
• Es sensible a los cambios del ciclo de trabajo (duty cycle).
• Da un valor de continua estable para armónicos de la señal de entrada, posibilitando que el
PLL sincronice con armónicos.
Detector de fase controlado por flancos
• Tiene el doble de rango lineal que la puerta XOR, por lo tanto el PLL tiene mejor captura
y seguimiento.
• Es sensible a armónicos de la señal de entrada.
• Esta versión, demasiado simple, es sensible al cambio del duty cycle, resultando extráneos
errores.
Ck Q
74HC74
D Cl
Ck Q
74HC74
D Cl
VDD
VO
Ve
Vs
Ve(promedio)
Vs
VO
θd/ωS
Ve
t
t
t
Ve(promedio)
2π0
VDD
θd
2π
kd=VDD/2π
π
V
k
θ-θθ
θkV
DD
d
OSd
dde
=
=
⋅=
24
1
8
1
6
1
ff
6
1
f
8
1
f
SO
O
=−=−
==S
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
6
• Para evitar la sensibilidad al duty cycle, y a los armónicos, existen detectores de fase más
elaborados como el MC4044(4π radianes) o como el comparador II del CD4046 que está
elaborado con 4 flip flops. Normalmente cuanto más complicados son los detectores,
menor es la máxima frecuencia de trabajo.
Multiplicador como detector de fase (MC1496)
• Este circuito se usa en una gran variedad de PLL integrados, y también tiene aplicación
como modulador balanceado, mezclador y detector de producto.
• Este circuito no necesita que las señales sean cuadradas, mientras una, o ambas sean lo
suficientemente intensas como para que los transistores trabajen en una zona no lineal.
• En una aplicación del PLL como demodulador de FM, la entrada del VCO, puede ser
cuadrada, mientras que la señal de FI puede ser senoidal, la función de transferencia
resulta en vez de triangular, cosenoidal.
Comparador con bomba de carga
Ve(promedio)
Vs
VO
θd/ωS
Ve
t
t
t
Ve(promedio)
2π0
θd
VDD
π-π
kd=VDD/π
Ve
+
-
+
-
VO
-
+
-
+
Vs
-
-
+
+
VCC
VBB
+
Vs
-
+
VO
-
ver
MC1357
MC3357
MC3359
MC1496
Ley del
producto
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
7
• El comparador II del CD4046 es un comparador con bomba de carga. En la siguiente
figura se muestra un diagrama simplificado del circuito. Nótese que el comparador con FF
accionado por flancos, conecta las fuentes de corrientes solo durante el desfasaje entre Vs
y Vo. La rampa de i se produce por la corrientes I o –I inyectadas al capacitor. La tensión
Ve del capacitor se mantiene constante cuando no se producen las corrientes mencionadas,
ya que no tiene un circuito de descarga.
• Formalmente, el comparador no admite una función de transferencia ya que no es
invariante en el tiempo. A continuación se muestra un circuito lineal no invariante en el
tiempo, como es este comparador, y un circuito invariante en el tiempo pero alineal.
• Sin embargo se le puede atribuir una función de transferencia que produzca los mismos
resultados prácticos. Se muestra una situación hipotética donde el andar tipo escalera de
Ve se reemplaza por una recta con efecto equivalente.
∫= Idt
C
1
Ve discontinua integrada durante
sω
θd
segundos por período equivale a una
∫∫ ⋅
== dtθ
C2
I
dt
2π
θ
I
C
1
V d
d
e
π
continua integrada durante todo el tiempo, aplicando la
transformada de Laplace a la expresión anterior
s
)(θ
C2π
I
(s)V d
e
s
⋅
= por lo tanto
s
1
C2π
I
(s)θ
(s)V
F(s)
d
e
⋅
==
s
k
F(s) = el comparador ya no es más una constante, se comporta como un integrador
Ve
θd Comp.
c/FF
VDD
I
I
i
C
θo
θs
θd
Vs
Vo
I
-I
i
Ve
R
1 2
R
D
Vs
Vo
θd /ωs
Pen=I/C
Ve 2π
θd
C
I
Pen =
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
8
• La introducción de un nuevo integrador, ya que como veremos el VCO actúa para la fase
como un integrador, cambia totalmente el comportamiento del PLL. Es fácil comprender
que no puede existir ningún desfasaje constante en la entrada del comparador, ya que la
acción integradora provoca una rampa a la salida del mismo obligando a realizar un
barrido al VCO. Esto explica que en el laboratorio no se pueda medir ningún desfasaje
entre Ve y Vo.
• En la hoja de datos del CD4046 se indica que para el Comparador II, el rango de captura
es igual al rango de seguimiento. La existencia de un desfasaje provoca grandes
excursiones a la salida del comparador provocando un barrido del VCO hasta que este se
aproxima a la fs produciéndose el enganche.
Osciladores controlados por tensión (VCO)
• Hay muchos tipos de VCO, pero los más comunes son los astables o de relajación y el
oscilador senoidal LC sintonizado por diodo varicap.
Multivibrador astable controlado por tensión (MC4324, LM566, XR-2206, 8038, etc.)
• La variación de la frecuencia con la tensión es bastante lineal y la salida del VCO es una
onda cuadrada, lo cual es una ventaja para el comparador de fase por los flancos abruptos.
• La mayoría son de capacitor único, pero muchos
más complicados que el que se muestra en figura,
pero se basan en el mismo principio.
• En los circuitos utilizados, las Re se substituyen
por fuentes de corriente, lo que hace que las
exponenciales de carga y descarga del capacitor C,
se transforman en rampas, resultando que el
período T sea una función lineal de la tensión de
control Vd.
Oscilador LC sintonizado con diodo varicap
• Se usan en alta frecuencia, o cuando se desea una forma de onda senoidal.
• También se usa osciladores a cristal sintonizado por diodo varicap, para casos muy
específicos, donde se desea alta estabilidad y bajo ruido, pero adolecen de tener un rango
de sintonía muy limitado.
R1
Rc
Rc
R2 R2
Re Re
C
Q1 Q2
R1
VCC
Vd
VCC
VO
Colppits
1 7
4
6
MC12148
3
5 8 2
Vd
.1μ
L
C
Vd
0V
d
5V
VDD
100μ.01 .1μ
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
9
• El MC12148 (tecnología MOSAIC III)es el reemplazo directo del MC1648 (obsoleto),
llega a 1100MHz con onda cuadrada (en realidad trapezoidal)
Función de transferencia del PLL
• Las funciones de transferencia, son aplicables solo a sistemas lineales invariantes en el
tiempo.
• En los PLL, al igual que la polarización de los transistores, algunos valores de reposo, no
están vinculados en forma lineal. Por lo tanto se buscará un modelo equivalente lineal
válido únicamente en un restringido rango de operación.
• Un sistema lineal invariante en el tiempo, está definido por la siguiente ecuación
diferencial lineal:
xbxb...xbxbyaya...yaya m1-m
1)-(m
1
(m)
0n1-n
1)-(n
1
(n)
0 ++++=++++ &&
donde n ≥ m, transformado por Laplace a ambos miembros,
n1-n
1-n
1
n
0
m1-m
1-m
1
m
0
asa...sasa
bsb...sbsb
x(s)
y(s)
F(s)
++++
++++
== Función de transferencia
F(s), es una propiedad del sistema, el valor de n da el orden del sistema.
• El siguiente detector de fase, no tiene una función de transferencia, ni aún para la línea
punteada:
xbVya
(t)kdV(t)
mDDn
DDDE
+−=
+−= θV
La última ecuación no satisface la ecuación
diferencial lineal exigida.
• Sin embargo si se intenta encontrar la función de
transferencia de todos modos, transformando por
Laplace la ecuación de la recta:
(s)s
V
kd
(s)
(s)
F(s)
(s)kd
s
V
(s)
D
DD
D
E
D
DD
E
θθ
θ
−==
+−=
V
V
la posible función de transferencia no es tal, ya que depende de la entrada.
• Por esta razón, solo se desarrollará un modelo matemático para variaciones alrededor del
punto de trabajo Q. A diferencia de los transistores, las relaciones de pequeña señal no
Sistema lineal
invariante en
el tiempo
x y
Ve
2π0 π-π
pen=kd
VDD
-VDD
θd
Q'
Q
Q''
ΘD
ΘD
VE
VE
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
10
dependen del punto de trabajo Q, por ser tramos lineales, tanto en el detector como en el
VCO, siempre y cuando el PLL no salga de su estado fijo (ver Q, Q' y Q'').
Función de transferencia del detector
k
(s)θ
(s)V
(s)θk(s)V(t),θk(t)V d
d
e
ddedde =∴==
Función de transferencia del VCO
(s)V
s
ko
(s)θ
(t)dtVko(t)θ
(t)dtω(t)θ
dt
(t)dθ
(t)ω
(t)Vk(t)ω
d0
d0
00
0
0
dO0
=
=
=∴=
=
∫
∫
• El VCO, actúa para la fase como un integrador, por lo tanto ningún error estático (Ve y θd)
puede mantenerse en el tiempo debido a este efecto.
• También puede advertirse que el efecto promediador (integrador) del VCO ayuda a
mantener constante la fase de salida θO, durante perturbaciones momentáneas en la
entrada θS.
Función de transferencia total
• Combinando todos los bloques constitutivos se obtiene la función de transferencia :
(s)(s)A1
A(s)
θ
θ
S
O
β+
=
N
F(s)kk
s
F(s)kk
sN
F(s)kk
1
s
F(s)kk
θ
θ
Od
Od
Od
Od
S
O
+
=
+
=
Filtro pasabajos (FPB)
• El filtro pasabajos tiene dos importantes funciones. Primero, elimina el ruido y cualquier
componente de alta frecuencia de la salida del detector de fase, tales como fS+fO,
armónicas de fS y fO, etc., dejando pasar solo la componente de baja frecuencia fS-fO o fO-
fS cuando se está adquiriendo el estado fijo, una continua, o pequeñas variaciones cuando
el PLL ya está en estado fijo.
• Segundo, es el bloque más importante en la determinación de las características dinámicas
del lazo, rango de captura, respuesta en frecuencia y respuesta transitoria.
kd
θd(s) Ve(s)
ωO
pen=ko
VdQ
VD
VD
ΩO
ΩO
kd F(s) kO/s
1/N
θd
Ve Vd
θO /N
θO
A(s)
β(s)
θOθS θS ++
--
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
11
• Los filtros pasabajos más comunes usados en PLL son los siguientes:
CRTyCRTdonde
sT
sT1
(s)F
)Ts(T1
sT1
(s)F
sT1
1
(s)F
2211
1
2
C
21
2
B
1
A
==
+
=
++
+
=
+
=
Función de transferencia del PLL con FPB FB(s)
• El tipo de respuesta queda fundamentalmente definido por los coeficientes del polinomio
denominador. Las características de las respuestas de las funciones de transferencia de 2do
orden se especifican en función del coeficiente de amortiguamiento ζ y la frecuencia
natural ωn.
• No debe establecerse ninguna relación entre el ω de la función de transferencia y el ωs o
ωo, frecuencias de entrada y salida del PLL. Son absolutamente independientes y
normalmente ωn << ωs.
• Se sabe de la teoría de los servomecanismos que:
2
nn
2
2
21
Od
S
O
s2s
1sT
TT
kk
ω+ξω+
+
+
=
θ
θ
por comparación
)TN(T
kk
21
Od
n
+
=ω
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
++
=ξ
21
2Od
Od
21
TT
N/Tkk1
kk
)TN(T
2
1
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
+
=ξ
)TT(N
kk
T
)TT(kk
N
2
1
21
Od
2
21Od
queda ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
=ξ
Od
2
21
Od
kk
N
T
)TT(N
kk
2
1
entonces ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
ω
=ξ
Od
2
n
kk
N
T
2
despejando
Odn
2
kk
N2
T −
ω
ξ
=
0dB
-20dB/dec
20logR2/(R1+R2)
1/T1 1/T1 1/T1
0dB
|FA(jω)|dB |FB(jω)|dB
-20dB/dec
-20dB/dec
20logR2/R1
1/(T1+T2)
ω ω ω
|FC(jω)|dB
)TN(T
kokd
TT
/NTkk1
ss
sT1
TT
kk
N
)sT(1kk
)T(Tss
)sT(1kk
θ
θ
2121
2Od2
2
21
Od
2Od
21
2
2Od
S
0
+
+
+
+
+
+
+
=
+
+++
+
=
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
12
• El tipo de un sistema es el número de polos en el origen de la función de transferencia a
lazo abierto. Con el FA(s) y FB(s) el sistema es de 2do
orden tipo 1, pero con el filtro FC(s),
el sistema es de 2do
orden tipo 2. Esta clasificación está relacionada con el error de fase
para distintos tipos de señal de entrada.
el teorema del valor final expresa que
[ ] [ ]
0s
)s(slim
t
)t(lim dd
→
θ
=
∞→
θ
donde )s(
)s()s(A1
1
)s( Sd θ
β+
=θ
si se aplica un escalón de posición C)t( PS =θ para t ≥ 0
transformando por Laplace
s
C
)s( P
S =θ
si se aplica un escalón de velocidad tC)t( VS =θ para t ≥ 0
transformando por Laplace 2
V
S
s
C
)s( =θ
si se aplica un escalón de aceleración tC)t( 2
AS =θ para t ≥ 0
transformando por Laplace 3
A
S
s
C2
)s( =θ
• Las expresiones de la ganancia de lazo abierto para un filtro pasabajos tipo B y tipo C son
respectivamente
)TT(s1
sT1
sN
kk
)s()s(A
21
2Od
++
+
=β
1
2Od
sT
sT1
sN
kk
)s()s(A
+
=β
la primera es de tipo 1 y la segunda de tipo 2. Aplicando el teorema del valor final a la
ganancia de lazo tipo 1, para un escalón de posición no hay error de régimen:
[ ] [ ]
0s
)s(
)s()s(A1
1
slim
0s
)s(slim
t
)t(lim Sdd
→
⎥
⎦
⎤
⎢
⎣
⎡
θ
β+=
→
θ
=
∞→
θ
[ ]
0s
0C
sN
kk
1
1
lim
0s
s
C
)TT(s1
sT1
sN
kk
1
1
slim
t
)t(lim P
Od
P
21
2Od
d
→
=
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
+
=
→
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
++
+
+
=
∞→
θ
• Nótese que para un escalón de velocidad, lo que equivale a un escalón de frecuencia, el
error de régimen es constante, proporcional a la amplitud del escalón e inversamente
proporcional al producto de las ganancias del detector y del VCO:
[ ]
Od
Vd
kk
NC
t
)t(lim
=
∞→
θ
Se puede resumir los errores de régimen θd en una tabla:
Entrada Tipo 1 Tipo 2 Tipo 3
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
13
Escalón de posición 0 0 0
Escalón de velocidad Constante 0 0
Escalón de
aceleración
Se incrementa
constantemente
Constante 0
Diseño del FPB
• La exigencia más usual que se le hace a un PLL, es que ante un cambio de la frecuencia
de entrada (escalón de velocidad de fase), la frecuencia de salida se establezca en su
nuevo valor en un tiempo determinado. Esto condiciona fundamentalmente el valor de ωn.
Un efecto equivalente se produce en un sintetizador al cambiar N.
• Se debe tener en cuenta que la función de transferencia para las fases es igual que la
correspondiente a las frecuencias como se muestra a continuación:
dt
)t(d
)t( O
O
θ
=ω transformando )s(s)s( OO θ=ω y )s(s)s( SS θ=ω
por lo tanto )s(F
)s(
)s(
)s(
)s(
S
O
S
O
=
θ
θ
=
ω
ω
igual función de transferencia
• La información de la respuesta a un escalón para sistemas de 2do
orden tipo 1 está
normalizada para escalones unitarios, y el tiempo con la inversa de ωn, para distintos
valores de amortiguamiento ξ.
Ejemplo: En un PLL con FPB tipo B, determine T1 y T2 para ξ=0.5 y un tiempo de respuesta
t=10ms (±%10).
La gráfica muestra la respuesta normalizada a un escalón de un sistema tipo 1 de 2do
orden
para ξ=0.5.
T1 y T2 se despejan de
)TN(T
kk
21
Od
n
+
=ω
N
kk
TT 2
n
Od
21
ω
=+
y de ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
ω
=ξ
Od
2
n
kk
N
T
2
se despeja
Odn
2
kk
N2
T −
ω
ξ
=
Nótese que de haberse utilizado un filtro como FA(s), donde T2=0, no es posible la elección
independiente de ξ y ωn, ya que fijado ξ queda fijado ωn o viceversa.
ωnt
ξ=0.5
1.1
1.0
0.9
4.5
s
rad
450
ms10
5.4
5.4t
n
n
==ω
=ω
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
14
0Tsi
kk
N
2
2
Od
n
=
ω
=ξ
Normalmente N, kd y ko no son valores que el diseñador pueda cambiar a voluntad.
Ancho de Banda
• Si en la función de transferencia del PLL realizado con el filtro pasabajos tipo B, se hace
T2=0, la función de transferencia para el filtro FA(s) queda:
2
nn
2
1
Od
S
O
s2s
1
T
kk
ω+ξω+
=
θ
θ
Para condición de régimen, esto es SO Nθθ,0s =→ por lo tanto la función queda:
2
nn
2
2
n
S
O
s2s
N
ω+ξω+
ω
=
θ
θ
La respuesta en frecuencia se encuentra reemplazando s por jω
2
nn
2
2
n
S
O
2j-
N
ω+ωξω+ω
ω
=
θ
θ
ωξω+ωω
ω
=
θ
θ
n
22
n
2
n
S
O
2j-
N
Consideraremos al ancho de banda, como la frecuencia correspondiente a -3dB por
debajo del valor de la función para ω=0 que llamaremos ω3dB, entonces:
N
0S
O
=
=ωθ
θ
2
N
dB3S
O
=
ω=ωθ
θ
2
dB3
2
n
222
dB3
2
n
4
n 4)(2 ωωξ+ω−ω=ω
4
n
2
dB3
2
n
24
dB3
2
dB3
2
n
4
n 2420 ω−ωωξ+ω+ωω−ω=
4
n
2
n
22
n
2
dB3
4
dB3 )42(0 ω−ωξ+ω−ω+ω=
4
n
4
n
222
n
22
n
2
dB3 )21(2 ω+ωξ−±ωξ−ω=ω
1)21(21 222
2
n
dB3
+ξ−±ξ−=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ω
ω
1)21(21 222
ndB3 +ξ−±ξ−ω=ω
para ξ=0.5 ω3dB=1.27ωn
• Es interesante relacionar el rango de captura con el ancho de banda. Si aceptamos como
válida la expresión del rango de captura para un FPB tipo A, que figura en las hojas de
datos del PLL CD4046, podemos comparar a ωC con ωn y con ω3dB para un ξ dado.
las hojas de datos indican para el FPB tipo A y comparador XOR que el rango de captura
es
1
L
C
T
f21
f2
π
π
≈ reemplazando 2πf por ω queda
1
L
C
T
ω
≈ω
dDD kV π= y DDOL Vk2 =ω
dOL kk2 π=ω , dOL kk
2
π
=ω
n
1
dO
C 25.1
T
kk
2
ω=
π
=ω
De esto se deduce que para ξ~0.5 ω3dB~ωC
VDD
kd
θd
π
Ve
2ωL
kO
Vd
VDD
ωO
ω/ωn
ξ=1
ξ=0.2
ξ=0.5
0dB
-3dB
1.27ωn
⏐θO/θS⏐dB
ωn
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
15
• Analicemos el significado del ancho de banda ω3dB.Un PLL bien diseñado debe ser
inmune a las variaciones de amplitud de la señal de entrada. Trabaja con la fase y la
frecuencia de la señal.
( ) ( )ωtcosθmaxtθs ⋅= ( ) ( ) ( )[ ]( )jωFfaseωtcosθmaxjωFtθo +⋅=
Como la función de transferencia para las frecuencias es la misma que para la de las fases,
entonces las relaciones temporales para una variación senoidal de la frecuencia de entrada
son las siguientes
( ) ( )ωtcosΔfmaxtfs ⋅= y ( ) ( ) ( )[ ]( )jωFfaseωtcosfmaxjωFtfo +⋅Δ=
Gráficamente,
Para ω= ω3dB la amplitud de fo(t) es el 70.7% (-3dB) de la amplitud de fs(t), siempre y
cuando fs(t) sea senoidal.
Aplicaciones de los PLL- Sintetizadores
Sintetizador básico
• Normalmente, es conveniente que la frecuencia de referencia fS, sea lo más alta posible,
para que sea removida fácilmente por el FPB, y no sea la frecuencia de referencia fS, la
que obligue a fijar la frecuencia de corte del FPB.
• Generalmente la frecuencia de corte del FPB quede definida por la frecuencia natural ωn y
el coeficiente de amortiguamiento ξ.
Δfmax
|F(jω)|Δfmax
fase[F(jω)]
t
frecuencia
media
f
fs(t)
fo(t)
kd FPB VCO
1/N
fO/N
ffS
divisor programable
programación digital
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
16
• La energía en frecuencia de referencia que alcanza al VCO, lo modula, y se traduce en
bandas laterales espurias llamadas bandas laterales de referencia.
• Otra causa que justifica la conveniencia de seleccionar una frecuencia de referencia lo más
alta posible, es que la corrección de la tensión de control solo puede realizarse una vez
cada ciclo de la señal de entrada. Por ejemplo si la frecuencia de referencia es de 1kHz la
corrección es cada 1ms.
• Cuando la fo es elevada, no siempre es simple y económico la realización del divisor
programable. A continuación se analizarán dos técnicas para resolver este problema.
Sintetizador tipo "down converter"
• Para disminuir la frecuencia del divisor programable se heterodina la fO con la de un
oscilador a cristal de cuarzo, de frecuencia fija fH.
• Se analizará sobre un ejemplo de un sintetizador para el oscilador local de un receptor de
FM de 200 canales separados cada 100kHz, desde 88 a 108MHz, se usa una frecuencia
intermedia FI=10.7MHz.
• Parece aceptable exigir al circuito que cuando N2 cambie en una unidad fO cambie en un
canal fCH.
2
H
S
N
ffo
f
−
= , si se incrementa el OL para el canal siguiente
1N
fff
f
2
HCHO
S
+
−+
=
despejando de la primera HS2O ffNf += y reemplazando en la segunda
HCHHS2S2 ffffNf)1N( −++=+ simplificando queda CHS ff =
• Para el caso numérico kHz100ff CHS ==
si se elije a MHz1fX = , 10
f
f
N
S
X
1 ==
se elije MHz98fH = , la fH máxima es 98.6MHz
es conveniente que fH sea lo más grande posible para que fMIX sea posible dividirla con un
divisor programable convencional (CMOS o TTL), para este caso fMIX va de 0.7 a
20.7MHz
207
1.0
987.118
f
fmáxf
máxN
S
HO
2 =
−
=
−
=
fo
Comp
Fase
FPB
fMIX/N2
divisor programable
(ejemplo 74192)
VCO
Mez-
clador
1/N2
1/N1
Oscilador
Heterodinaje
Oscilador
de Referencia fS OL
98.7MHz
118.7MHz
fCH=100kHz
fH
fX
programación
digital
fmix
fMIX=fo-fH
200 canales
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
17
7
1.0
987.98
f
fmínf
mínN
S
HO
2 =
−
=
−
=
Sintetizador tipo "prescaling"
• Esta otra alternativa, emplea un divisor fijo de alta frecuencia o prescaler, el cual antecede
al divisor programable.
• Si se plantea la misma exigencia, cuando N2 cambie en una unidad fo cambie en un canal
fCH
2
S
KN
fo
f = , si se incrementa el OL para el canal siguiente
)1N(K
ff
f
2
CHO
S
+
+
=
despejando de la primera S2O fKNf = y reemplazando en la segunda
CHS2SS2 ffKNKffKN +=+ simplificando queda
K
f
f CH
S =
Se puede demostrar fácilmente que si se plantea que N2 cambie dos unidades por cambio
de canal, el resultado es
K2
f
f CH
S = , con lo cual resulta una fs a la mitad.
• Para el caso numérico dado, se elige K=10 lo que da una MHz87.11
K
fO
= como máximo,
que puede ser aceptada sin inconvenientes por cualquier divisor programable de lógica
convencional.
si MHz1fX = , 10
f
f
N
S
X
1 ==
1187
1.0
7.118
Kf
máxf
máxN
S
O
2 ===
987
1.0
7.98
Kf
mínf
mínN
S
O
2 ===
• Nótese, que si K=1 fS=fCH. Es posible obtener un divisor programable N2 que soporte altas
frecuencias y sea económicamente aceptable, usando un divisor programable de doble
módulo. Esto evita el uso del prescaler fijo (equivale a K=1) y la consecuente disminución
de la frecuencia de referencia (
K
f
f CH
S = ).
fO/(KN2)
Comp
Fase
FPB fVCO
K
Prescaler
1/N2
1/N1Oscilador
de Referencia fS OL
98.7MHz
118.7MHz
fCH=100kHz
fX
programación
digital
fO/K
200 canales
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
18
Divisor programable de doble módulo
• Es una técnica que se utiliza en sintetizadores de VHF con lógica convencional, para no
reducir la frecuencia de referencia a un valor inaceptable por el uso de un prescaler fijo.
• El corazón del divisor programable de doble módulo es un prescaler de doble módulo.
Este circuito ECL (u otra lógica rápida), divide por dos factores que difieren en uno,
dependiendo de una entrada de control.
• Para sintetizadores programados en BCD es conveniente la relación 10/11. Algunas
relaciones normalizadas son: 5/6, 8/9, 16/17, 20/21, 32/33, 64/65, 128/129, etc.
• Está compuesto por dos contadores decrecientes con entradas de preset, uno cuenta desde
M y otro desde A, y siempre M ≥A.
• Supóngase que el prescaler comienza dividiendo por N+1, entonces deben ser aplicados
(N+1)A pulsos en la entrada para que el contador de abajo llegue a cero, y el prescaler
comience a dividir por N, después deben ser aplicados N(M-A) pulsos a la entrada para
que el contador de arriba llegue a cero y haya un pulso a la salida y se reinicie el ciclo.
• Para un ciclo es necesario (N+1)A+N(M-A)=MN+A pulsos a la entrada, por lo tanto el
divisor programable de doble módulo divide por MN+A.
• Ya se mencionó una restricción, que M sea mayor o igual que A. Existe otra, el mínimo
factor de división es N(N-1). Por ejemplo para N=10, el mínimo factor por el cual divide
es 90. Para probar esta afirmación intente determinar los valores de M y A para que divida
por 89.
• Se resuelve a continuación el sintetizador ya planteado con un divisor programable de
doble módulo.
SalidaCk
Preset
Detector
de Cero
Entrada
Ck
Preset
Detector
de Cero
1N
N
+
÷
Prescaler de doble módulo
M (entrada de programación)
A (entrada de programación)
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
19
30 7545
rango de RF
rango del OL
filtro de FI
en 45 MHz
frecuencia
en MHz
• Se ha optado por un prescaler de doble módulo 20/21. Resulta de esta elección, que la
máxima frecuencia de entrada de los contadores descendentes es 118.7MHz/20=5.9MHz,
suficientemente baja para cualquier lógica convencional.
• El mínimo factor de división del divisor programable de doble módulo es
98.7MHz/100kH=987, que es mayor que el mínimo factor posible N(N-1)=20*19=380.
• Un juego de valores posibles para las entradas de programación M y A se muestran en la
siguiente tabla. Como referencia 987/20=49.35 y 49*20=980.
M A M*20+A
49 7..19 987...999
50 0..19 1000...1019
... ... ..
58 0..19 1160...1179
59 0..7 1180...1187
Ejemplo sintetizador de HF
• En los receptores modernos de HF
(0.1 a 30MHz) se usa una primera
FI alta, por ejemplo 45MHz o
mayor, fuera de la banda de
recepción, y un OL por encima
de la FI, resultando que varíe menos de una octava. Se usa una resolución de 100Hz o
menor para clarificar señales de BLU apropiadamente.
Comp
Fase
FPB
49..59 0..19
fVCO
DPDM
Precaler 20/21
1/10Oscilador
de Referencia
fS=100kHz
OL
98.7MHz
118.7MHz
fCH=100kHz
fX=1MHz
.987..1187
AM
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
20
• En el ejemplo que se muestra, el sintetizador genera 60000 frecuencias separadas 50Hz,
con solo dos osciladores a cristal. La salida es el OL de un receptor de HF. Consta de tres
lazos, y dos divisores programables, que probablemente, por cuestión de costos, deban ser
resueltos como divisores programables de doble módulo.
• Nótese que el divisor por 50 eleva la frecuencia de referencia del primer lazo de 50Hz a
2.5kHz para agilizar la respuesta del mismo.
Comp
Fase
FPB VCO2.5kHz
245.0025MHz
250.0000MHz
1/50
1/(98001
-10000)
4.900050MHz
5.000000MHz
2000x50Hz=100k
Comp
Fase
FPB VCO
Mezclador
Comp
Fase
FPB
OL
45.000000MHz
74.999950MHz
60000x50Hz=30MHz
VCO100kHz
50.0MHz
79.9MHz
300x0.1MHz=30MH1/(500-799)
x10 kHz
x1 kHz
x0.1 kHz
x0.05 kHz
x10 MHz
x1 MHz
x0.1 MHz
Rango de f1= f2-fo,
100kHz
Filtro pasabajos
Rango de fo, 30MHz
Rango de f2, 30MHz
21 3
300
1 2 2000
45MHz
74.999950MHz
OL
50Hz
f1
fo
f2
f2-f1
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
21
• El empleo del segundo PLL, en vez de un mezclador simple, facilita el filtrado mediante
un sencillo filtro pasabajos. De emplearse un mezclador para obtener fo a partir de f2 y f1,
debería seguir a este un complejo filtro pasabanda sintonizado a f2-f1.
Ejercicio: Plantée una solución para el divisor programable de doble módulo del tercer lazo.
Sea N=16, fmáx=79.9MHz/16=4.99MHz es adecuada para un divisor de lógica convencional
Se verifica que N(N-1)=240 es menor que 500 que es el divisor mínimo
Cálulos auxiliares: 500/16=31.25 y 799/16=49.93
M A M*16+A
31 4..15 500...511
32 0..15 512...527
... ... ..
49 0..15 784...799
Pruebe con otras soluciones.
Receptor Homodino o Sincrodino
• Como se comentó al inicio, la primera aplicación documentada de un PLL data de 1932 y
se refiere a la recepción sincrónica de señales de radio moduladas en AM.
• Para demodular sincrónicamente una señal de AM hay que mezclarla con una portadora
con la misma frecuencia y fase. Las señales de radio frecuentemente se desvanecen o son
acompañadas por ruido. El PLL puede recuperar la portadora aún con altos niveles de
ruido.
Barrido horizontal de televisión
• Fue la primera aplicación comercial generalizada.
• La forma antigua de sincronizar el barrido horizontal (y vertical también) de televisión se
hacía mediante el uso de un oscilador astable. Este oscilador cuando oscila libremente
tiene un período ligeramente mayor al período del barrido horizontal.
• Cuando se recibe una señal adecuada, un circuito separa los pulsos de sincronismo
horizontal, que redisparan el oscilador astable prematuramente, antes que finalice su
período natural.
PLL Filtro
Pasabajo
⎟
⎠
⎞
⎜
⎝
⎛
+ωω+=ωωω+
2
1
t2cos
2
1
)tcosm1(Vtcostcos)tcosm1(V CmCCCmC
)tcosm1(
2
V
m
C
ω+
tcos)tcosm1(V CmC ωω+ tcos Cω
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
22
• Este sistema funciona bien cuando la señal de televisión tiene buena relación señal a ruido
y está libre de interferencias, ya que cualquier señal impulsiva puede ser interpretada
como un pulso de sincronismo.
• El uso de un PLL ajusta la frecuencia y fase de los circuitos de barrido en base al
promedio de cientos de pulsos de sincronismo. La ausencia de pulsos en la señal de
entrada o la presencia de ruido impulsivo, solo puede afectar al sincronismo cuando se
produce en grandes cantidades.
Recepción de señales satelitales
• El uso del PLL en el espacio, comienza con el lanzamiento del primer satélite artificial de
Estados Unidos de América (década del 60). Estos vehículos transportaban un transmisor
de baja potencia (10mW) de onda continua interrumpida (CW). Las señales recibidas
resultan en consecuencia muy débiles.
• La frecuencia de la señal recibida desde estos satélites de órbita baja, sufre un corrimiento
hacia arriba cuando se aproximan al receptor terrestre, y hacia abajo cuando se alejan,
debido al efecto Doppler. Un fenómeno similar ocurre con las señales recibidas por el
satélite.
• Para fijar ideas, consideremos el caso de un satélite de órbita baja, que órbita la tierra cada
dos horas, cuya frecuencia de transmisión es de 108MHz. Supóngase que la información
que transmite el satélite necesita un ancho de banda muy pequeño, como puede ser el
necesario para transmitir la información de telemetría. Se considera que con un ancho de
banda de 4Hz es suficiente.
h/km20000
h2
km40000
horas2
vuelta1
V ===
RuidoPulsos de sincronismo horizontal
Oscilador astable redisparable Perdida de sincronismo
debido al ruido
L=40000km
V=20000km/h
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
23
dB30
4
k4
log10
kTBN
Hz4B
kHz4B
kHz2
6.3x10x3
2000010x108
f
C
V
ffDopplerEfecto
NINFORMACIÓ
SISTEMA
8
6
d
d
=
=
=
=
=
×
=
=
• Si el PLL tiene un ancho de banda de 4Hz, y este opera como un filtro sintonizable, se
mejora la relación señal ruido en 30db. De no usarse el PLL se debería aumentar la
potencia del transmisor en 30dB, esto es de 10mW a 10W para producir la misma relación
señal a ruido en un receptor con 4kHz de ancho de banda.
Modulador de frecuencia
• La función de transferencia de lazo cerrado H(s) de un PLL, es parecida a la de un filtro
pasabajos (esto es exacto si ξ < 1). Si la frecuencia de la señal moduladora Vf es mucho
mayor que la frecuencia de corte de H(s), el lazo no reaccionará, la salida del filtro
pasabajos no variará, por lo tanto se comportará como un modulador de frecuencia, esto es
)s(Vk)s( f0O =ω .
• Se demostrará esto suponiendo por simplicidad que F(s)=FA(s).
si (s)FF(s) A=
s2s
N
H(s) 2
nn
2
2
n
ω+ξω+
ω
= normalizando 2
nn
2
2
n
s2s
(s)H'
ω+ξω+
ω
=
pero
)s(F
sN
kk
1
)s(F
sN
kk
)s('H
A
Od
A
Od
+
= por lo tanto
)s(F
N
kk
s
s
)s('H1
A
Od
+
=−
kd F(s) ko/s
1/N
Vf(s) señal moduladora
θO(s), ωO(s)++
θS(s)
VCOComparador Pasabajo
ω/ωn
ξ=1
0dB ~1dB
|H'(jω)|dB
-6dB
1
ξ=0.1
ξ=0.5
~14dB
-40dB/dec
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
24
[ ])s('H1
s
k
)s(F
N
kk
s
k
)s(F
sN
kk
1
s
k
)s(V
)s( 0
A
Od
O
A
Od
O
f
O
−=
+
=
+
=
θ
como )s(s)s( OO θ=ω , [ ])s('H1k
)s(V
)s(
0
f
O
−=
ω
• Si la frecuencia de modulación es mucho mayor que la frecuencia de corte del
modulador, esto es ωmod>>ω1, la ganancia del modulador vale O
f
O
k
V
=
ω
.
• Para modulación de frecuencia sin distorsión, se debe cumplir que ωmod(mín)>ω1. Este
último valor es del orden de la frecuencia natural del lazo ωn.
Modulador de fase
• Si la frecuencia de la señal moduladora es mucho menor que la frecuencia de corte del
lazo H(s), el lazo reacciona muy rápido manteniendo la frecuencia de salida, pero la fase
se modifica para compensar el efecto de Vf.
• Se demostrará esto, partiendo de los resultados obtenidos del modulador de frecuencia.
[ ] 2
nn
2
n
O2
nn
2
2
n00
f
O
s2s
2s
k
s2s
1
s
k
)s('H1
s
k
)s(V
)s(
ω+ξω+
ξω+
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
ω+ξω+
ω
−=−=
θ
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
ξω
+
ω
ξ
=
ω+ξω+
ωξω+
ω
=
θ
nn
0
2
nn
2
2
nn
2
n
0
f
O
2
s
1)s('H
k2
s2s
)2s(k
)s(V
)s(
1
ξ=0.5
|H'(jω)|dB |1-H'(jω)|dB0dB
-3dB
ω/ωn
ω1/ωn
-40dB/dec
40dB/dec
1
ξ=0.5
0dB
-3dB
ω/ωn
ω1/ωn
| H'(jω) |dB
| 1+jω/(2ξωn) |dB
| H'(jω)[1+jω/(2ξωn)] |dB
20dB/dec
-40dB/dec
-20dB/dec
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
25
• Para modulación de fase sin distorsión, se debe cumplir que ωmod(máx)<ω1. Este último
valor es del orden de la frecuencia natural del lazo ωn.
• La ganancia del modulador de fase para frecuencias bajas de modulación es
n
0
f
O k2
V ω
ξ
=
θ
pero para F(s)=FA(s)
0d
n
kk2
ω
=ξ por lo tanto
df
O
k
N
V
=
θ
Demodulador de frecuencia
para frecuencia modulada m(t)k)t(S ⋅=ω , donde m(t) señal moduladora
pero m(t)k)t(
dt
)t(d
S
S
⋅=ω=
θ
transformando por Laplace m(s)
s
k
)s(S ⋅=θ
sea
)s(
)s(
)s(H
S
O
θ
θ
= la función de transferencia del PLL, entonces
)s(m
s
k
)s(H)s()s(H)s( SO ⋅=θ⋅=θ pero como
s
k
)s(V)s( 0
dO ⋅=θ
queda )s(
k
s
)s(V O
0
d θ= por lo tanto
)s(m
k
k
)s(H)s(V
0
d =
• La respuesta en frecuencia de H(s) es parecida a la de un filtro pasabajos, especialmente
para ξ mayores que uno, donde la frecuencia de corte depende fundamentalmente de la
frecuencia natural ωn y también del ξ.
kd F(s) ko/s
1/N
Vd(s) señal demodulada
VCOComparador Pasabajo
θO(s), ωO(s)
θS(s), ωS(s)
ξ=1
0dB
|H'(jω)|dB
-3dB
1
ξ=0.1
ξ=0.5
-40dB/dec
ω/ωn
ω1/ωn
Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006
26
• Para demodulación de frecuencia sin distorsión, se debe cumplir que ωmod(máx)<ω1,
siendo ω1 del orden de ωn.
• La ganancia del demodulador para bajas frecuencias de modulación es
0
d
k
k
N
m
V
= .
Bibliografía
1. Phaselock Techniques/Floyd M. Gardner/John Wiley & Sons, Inc.
2. Lazos de Fijación de Fase/Ernest J. Lazlo/Revista Telegráfica Electrónica/Agosto 75
3. Phase-Locked Loop Design Fundamentals/AN535/Motorola
4. The Phase-Locked Loop Reference Book with Experimentes/Howard M. Berlin/The
Bugbook Reference Series /Titus, Rony, Larsen, & Titus
5. Electrónica Aplicada a las Altas Frecuencias/F. de Dieuleveult/Paraninfo
6. Sistemas de Comunicaciones Electrónicas/Wayne Tomasi/Prentice Hall
7. Manual ARRL 1986

Más contenido relacionado

PDF
problemas amplificador multietapa
PPT
Modulacion AM
PPTX
Antenas y Lineas de Transmisión
PDF
Transistores
PDF
Diseño y Creación de un Transmisor FM
PDF
motores eléctricos variacion de velocidad
PPTX
Mezclador FDM
problemas amplificador multietapa
Modulacion AM
Antenas y Lineas de Transmisión
Transistores
Diseño y Creación de un Transmisor FM
motores eléctricos variacion de velocidad
Mezclador FDM

La actualidad más candente (20)

PDF
Introduccion a las comunicaciones por microondas
PDF
PPTX
Antenas inteligentes
PDF
362082069 circuitos-basicos-de-contactores-y-temporizadores-vicent-lladonosa
PPSX
Amplificadores de potencia
PDF
Modulación AM
PDF
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
DOCX
Señales PAM DigitalesTrabajo de señales pam digitales arreglado
PPTX
Osciladores
PPTX
6. AM y FM Modulación de amplitud y de frecuencia
PDF
Capitulo 2 ruido ucsm
PPT
PDF
Sistemas de Telecomunicaciones cap 3 1
DOCX
Amplitud modulada am
PDF
ELECTRÓNICA ANALÓGICA .Componentes electrónicos
PPTX
Ruido en telecomunicaciones
PDF
30672573 reporte-de-practica-pwm-555
PPTX
Antenas yagi uda
PPT
Mod demod am_2014_1(1)
Introduccion a las comunicaciones por microondas
Antenas inteligentes
362082069 circuitos-basicos-de-contactores-y-temporizadores-vicent-lladonosa
Amplificadores de potencia
Modulación AM
Ejercicios Modulación Análoga & Digital resultados(fam)-rev3
Señales PAM DigitalesTrabajo de señales pam digitales arreglado
Osciladores
6. AM y FM Modulación de amplitud y de frecuencia
Capitulo 2 ruido ucsm
Sistemas de Telecomunicaciones cap 3 1
Amplitud modulada am
ELECTRÓNICA ANALÓGICA .Componentes electrónicos
Ruido en telecomunicaciones
30672573 reporte-de-practica-pwm-555
Antenas yagi uda
Mod demod am_2014_1(1)
Publicidad

Destacado (20)

PDF
Syllabus redes 2016 - Escuela de Ingeniería
PDF
Cap01 osciladores2parte
PDF
Cap03 modulacionam1
PDF
Expo de instrumentacion
PPT
Radiodifusión digital
PPT
Respuesta en frecuencia circuitos amplificadores
PDF
36908974 que-es-el-indice-de-modulacion
PDF
Elementos en Sistemas de telecomunicaciones. Resumen Antenas
PPTX
Tipos de receptores
PPTX
Mezcladores
DOC
ModulacióN De Amplitud
PPTX
PPT
Osciladores
PPT
Mezcladores
PPT
SERIES DE FOURIER
PPTX
Transmisores y receptores RF
PPT
Amplificadores Operacionales
PPTX
Radiodifusion (television y radio)
PPT
Filtros activos
Syllabus redes 2016 - Escuela de Ingeniería
Cap01 osciladores2parte
Cap03 modulacionam1
Expo de instrumentacion
Radiodifusión digital
Respuesta en frecuencia circuitos amplificadores
36908974 que-es-el-indice-de-modulacion
Elementos en Sistemas de telecomunicaciones. Resumen Antenas
Tipos de receptores
Mezcladores
ModulacióN De Amplitud
Osciladores
Mezcladores
SERIES DE FOURIER
Transmisores y receptores RF
Amplificadores Operacionales
Radiodifusion (television y radio)
Filtros activos
Publicidad

Similar a Cap02 redespll (20)

PDF
Demodulador fsk mediante pll
PDF
Sistema fsk
PDF
Practica #15 modulacion - demodulacion FSK
PDF
Lec03 - Comparador Voltaje con OPAMP.pdf
PDF
PPTX
Pll héctor yebra
PPT
Transistores
PDF
Capítulo VI - Microondas - Osciladores
DOCX
Collector
DOCX
Electronica 10%
PDF
Modulador y demodulador_am
PDF
Multivibradores
DOCX
Tipos de Osciladores
PDF
Práctica nº11 sintonizador -
PPTX
El transistor ujt scr
PPT
16a clase otras aplicaciones de comparadores
DOC
Electrónica digital
DOCX
PPTX
Logica de estado solido
PPTX
catalogo de control
Demodulador fsk mediante pll
Sistema fsk
Practica #15 modulacion - demodulacion FSK
Lec03 - Comparador Voltaje con OPAMP.pdf
Pll héctor yebra
Transistores
Capítulo VI - Microondas - Osciladores
Collector
Electronica 10%
Modulador y demodulador_am
Multivibradores
Tipos de Osciladores
Práctica nº11 sintonizador -
El transistor ujt scr
16a clase otras aplicaciones de comparadores
Electrónica digital
Logica de estado solido
catalogo de control

Último (20)

PPT
clase ICC cardiologia medicina humana 2025
PDF
Presentación Propuesta de Proyecto Portfolio Scrapbook Marrón y Negro.pdf
PPTX
Sesión 2 Vigilancia Epidemiológica.pptxt
PPTX
VENTILACIÓN MECÁNICA NO INVASIVA Y CÁNULA NASAL DE.pptx
PPTX
PLATON.pptx[una presentación efectiva]10
PDF
Audicion, sonido del viaje como los sonidos viajan
PPT
TANATOLOGÍA CLASE UNIVERSIDAD NACIONAL DE CAJAMARCA
PPT
articuloexenatide-120215235301-phpapp02.ppt
PPTX
Cancer de ovario y su fisiopatologia completa
PDF
Conferencia Protozoos coccidios (1).pdf medicina
PPTX
Abstraccion para la solucion de problemas .pptx
PPTX
SESIÓN 2 ALIMENTACION Y NUTRICION SALUDABLE JULY.pptx
PPTX
Intoxicación por artrópodos picadores y pulgas
PPTX
CELULAS EUCARIOTAS Y PROCARIOTAS (1).pptx
PPTX
El ciclo del agua en colombia y su magnitud
PPTX
Agar plates de la marca 3M portfolio de usos
PPTX
vasculitis, insuficiencia cardiaca.pptx.
PPTX
HEMORRAGIA DIGESTIVA ALTA edit.pptx (1).pptx
PPT
ASEPSIA Y ANTISEPSIA - DR. CARLOS ALBERTO FLORES
PDF
TEJIDO CARTILAGINOSO. HISTOFISIOLOGÍA. .
clase ICC cardiologia medicina humana 2025
Presentación Propuesta de Proyecto Portfolio Scrapbook Marrón y Negro.pdf
Sesión 2 Vigilancia Epidemiológica.pptxt
VENTILACIÓN MECÁNICA NO INVASIVA Y CÁNULA NASAL DE.pptx
PLATON.pptx[una presentación efectiva]10
Audicion, sonido del viaje como los sonidos viajan
TANATOLOGÍA CLASE UNIVERSIDAD NACIONAL DE CAJAMARCA
articuloexenatide-120215235301-phpapp02.ppt
Cancer de ovario y su fisiopatologia completa
Conferencia Protozoos coccidios (1).pdf medicina
Abstraccion para la solucion de problemas .pptx
SESIÓN 2 ALIMENTACION Y NUTRICION SALUDABLE JULY.pptx
Intoxicación por artrópodos picadores y pulgas
CELULAS EUCARIOTAS Y PROCARIOTAS (1).pptx
El ciclo del agua en colombia y su magnitud
Agar plates de la marca 3M portfolio de usos
vasculitis, insuficiencia cardiaca.pptx.
HEMORRAGIA DIGESTIVA ALTA edit.pptx (1).pptx
ASEPSIA Y ANTISEPSIA - DR. CARLOS ALBERTO FLORES
TEJIDO CARTILAGINOSO. HISTOFISIOLOGÍA. .

Cap02 redespll

  • 1. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 1 ff Vd Ve θd fo PLL - PHASE LOOP LOCKED - Lazos Enganchados en Fase General • Es un circuito que permite que una señal de referencia externa, controle la frecuencia y la fase de un oscilador. • El primer uso documentado de un PLL fue en 1932, en un receptor homodino o sincrodino, pero no fue hasta los años 60, con la aparición de los circuitos integrados que se los comenzó a usar profusamente. Diagrama en bloques y principio de funcionamiento • El VCO (Voltage Controlled Oscilator) oscila libremente a una frecuencia, determinada por una red RC o LC, llamada frecuencia de corrida libre ff (free frequency). Esta frecuencia es comparada con la frecuencia fS de una señal de referencia en el detector de fase (que se comporta como un mezclador cuando excede su rango lineal, esto se demostrará en la próxima sección), el cual entrega la mezcla de ambas fS-fO o fO-fS dependiendo cual es mayor. Los productos de alta frecuencia tal como fS+fO, 2fS, 2fO, etc. son eliminados por el filtro pasabajos F(s). • Si la frecuencia de la señal Ve (fS-fO o fO-fS) es lo suficientemente baja para que el filtro pasabajos no la atenúe ni la desfasaje en exceso, Vd controlará el VCO, tendiendo a reducir la diferencia de frecuencias hasta que se igualen. • Una vez que se sincronizan VO y VS, esto es fO=fS, el detector de fase entrega una tensión Ve, con una componente continua estable necesaria para que el VCO iguale la frecuencia de la señal de referencia. En este caso se establece una diferencia de fase θd para producir la tensión Ve antedicha. Detector de Fase kd Filtro Pasabajos F(s) Oscilador controlado por tensión kO VS, fS, VS θd=θS -θO Vd fS-fO fS-fO Ve Ve pen=kd Vd B 0db -3db ω F(ω) VO, fO, VO Vd fO ff
  • 2. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 2 Demostración de que el comparador de fase se comporta como un mezclador cuando se excede su rango lineal • La frecuencia fundamental de Ve(t) es la diferencia fS-fO. Estados de funcionamiento Estado de corrida libre • Esta condición ocurre cuando no hay señal de entrada o hay una señal de entrada a la cual el lazo no tiene posibilidades de enganchar. En esta condición, generalmente Vd=0 o Vd≈ VDD /2, cuando el chip es alimentado con una fuente de tensión VDD no partida. Estado fijo • Es el que corresponde cuando el lazo está enganchado en fase. fO=fS salvo una diferencia finita de fase θd. Ve Ve Comparador de fase ideal π/2-π/2 3π/2π-π-3π/2 Comparador de fase real Rango lineal θdθd=θS -θO θd Vd=Δωt 2π T T t t T 1 ff T 2π ωωΔω T 2π Δω 2πΔωT 0S 0S =− =−= = = θd Ve Ve tiempoelconmonótonacrecequeΔωtθ 0forzamossi-Δωtθ-θθ )θtcos(ω)ΘΔωttcos(ωV queexpresarpuedeseentoncesΔωttωtωΔωωωsi )tcos(ωVy)tcos(ωVSea d 0S0S0Sd S0S0S 0s0s SSS000 = =Θ=ΘΘΘ+== +=++= +=∴+= Θ+=Θ+=
  • 3. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 3 • Cuando un lazo está enganchado por cada ciclo de la señal de entrada, hay uno y solo un ciclo de la señal de salida. Si el comparador de fase no excede su rango lineal se asegura el cumplimiento de esta condición. Estado de captura • Es el estado previo al fijo, es cuando el VCO está cambiando de frecuencia, intentando enganchar la frecuencia de la señal de referencia. Rangos de funcionamiento • Es conveniente definir los rangos de funcionamiento a partir de las variaciones de Vd cuando se varía la frecuencia de la señal de referencia. ff: frecuencia de corrida libre 2fC: rango de captura 2fP: rango de tracción 2fL: rango de seguimiento siempre se cumple que 2fC < 2fP < 2fL • El rango de seguimiento 2fL no depende de las características del filtro. Los límites superior y/o inferior quedan definidos por el dispositivo que primero se sature, puede ser el comparador de fase, el VCO o algún otro dispositivo activo del lazo. • El rango de captura 2fC y el rango de tracción 2fP dependen entre otras cosas, del filtro pasabajos. • Las características del filtro, entre otras cosas, limitan la rapidez en que el estado fijo puede ser alcanzado, ya que la tensión del capacitor del filtro pasabajos no puede cambiar instantáneamente, oficiando el capacitor de memoria, asegurando una rápida recaptura de la señal, si el sistema sale de sincronismo por un transitorio de ruido. • El proceso de adquisición del estado fijo, es complicado, no lineal, y de difícil análisis, por lo cual acá solo se analizará el PLL ya en estado fijo. Vd máx fS Vd mín 2fP 2fL ff 2fC captura en forma instantánea
  • 4. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 4 Vs VO Ve Ve(promedio) π 2π0 Q θd VDD t t t t t Ve VS VO VO Ve Ve(promedio) Ve(baja frecuencia) fO-fS 24 2π/ωs θd/ωs • Una vez que el proceso de corrección (o adquisición del sincronismo en el lazo, o fijación del lazo) se ha completado, el PLL va a seguir automáticamente las variaciones de la señal de entrada. • Si esta señal es más bien estable, con poco ruido y disturbios, el lazo necesita muy poca información para reproducirla fielmente. En este caso, un filtro de ancho de banda muy pequeño (puede ser tan angosto como 1 o 2Hz) es suficiente. El uso del PLL reduce tremendamente el contenido de ruido de la señal de entrada. • El lazo funciona como un filtro de frecuencia variable y de pequeño ancho de banda, que puede seguir automáticamente una señal de referencia, aun cuando esta posea una relación señal a ruido muy pobre. • A la luz de los razonamientos anteriores, se concluye que dentro del rango de captura sólo es posible un estado de equilibrio, correspondiente al PLL enganchado. Fuera del rango de captura pero dentro del rango de tracción, son posibles dos situaciones: enganchado u oscilando a la frecuencia libre, dependiendo si se entra en esa región estando el PLL enganchado o no. • Finalmente, fuera del rango de seguimiento, sólo funcionará desenganchado. Aplicaciones del PLL • Los PLL se usan básicamente para: -Generadores de portadoras para emisión con modulación de ángulo o no. -Generación de osciladores locales en recepción. -Sintetizadores de frecuencia. -Demoduladores de señales moduladas en ángulo. -Recuperación de impulsos de reloj en transmisiones digitales. -Circuitos de sincronismo para barrido horizontal y vertical en receptores de televisión. -Recepción de señales satelitales de satélites no geoestacionarios. -etc. • Más adelante se analizarán algunas aplicaciones específicas. Detectores de fase Detector de fase con puerta XOR
  • 5. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 5 • La puerta XOR es un comparador de desigualdad, cuando sus entradas tienen niveles lógicos distintos la salida es alta. • Es sensible a los cambios del ciclo de trabajo (duty cycle). • Da un valor de continua estable para armónicos de la señal de entrada, posibilitando que el PLL sincronice con armónicos. Detector de fase controlado por flancos • Tiene el doble de rango lineal que la puerta XOR, por lo tanto el PLL tiene mejor captura y seguimiento. • Es sensible a armónicos de la señal de entrada. • Esta versión, demasiado simple, es sensible al cambio del duty cycle, resultando extráneos errores. Ck Q 74HC74 D Cl Ck Q 74HC74 D Cl VDD VO Ve Vs Ve(promedio) Vs VO θd/ωS Ve t t t Ve(promedio) 2π0 VDD θd 2π kd=VDD/2π π V k θ-θθ θkV DD d OSd dde = = ⋅= 24 1 8 1 6 1 ff 6 1 f 8 1 f SO O =−=− ==S
  • 6. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 6 • Para evitar la sensibilidad al duty cycle, y a los armónicos, existen detectores de fase más elaborados como el MC4044(4π radianes) o como el comparador II del CD4046 que está elaborado con 4 flip flops. Normalmente cuanto más complicados son los detectores, menor es la máxima frecuencia de trabajo. Multiplicador como detector de fase (MC1496) • Este circuito se usa en una gran variedad de PLL integrados, y también tiene aplicación como modulador balanceado, mezclador y detector de producto. • Este circuito no necesita que las señales sean cuadradas, mientras una, o ambas sean lo suficientemente intensas como para que los transistores trabajen en una zona no lineal. • En una aplicación del PLL como demodulador de FM, la entrada del VCO, puede ser cuadrada, mientras que la señal de FI puede ser senoidal, la función de transferencia resulta en vez de triangular, cosenoidal. Comparador con bomba de carga Ve(promedio) Vs VO θd/ωS Ve t t t Ve(promedio) 2π0 θd VDD π-π kd=VDD/π Ve + - + - VO - + - + Vs - - + + VCC VBB + Vs - + VO - ver MC1357 MC3357 MC3359 MC1496 Ley del producto
  • 7. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 7 • El comparador II del CD4046 es un comparador con bomba de carga. En la siguiente figura se muestra un diagrama simplificado del circuito. Nótese que el comparador con FF accionado por flancos, conecta las fuentes de corrientes solo durante el desfasaje entre Vs y Vo. La rampa de i se produce por la corrientes I o –I inyectadas al capacitor. La tensión Ve del capacitor se mantiene constante cuando no se producen las corrientes mencionadas, ya que no tiene un circuito de descarga. • Formalmente, el comparador no admite una función de transferencia ya que no es invariante en el tiempo. A continuación se muestra un circuito lineal no invariante en el tiempo, como es este comparador, y un circuito invariante en el tiempo pero alineal. • Sin embargo se le puede atribuir una función de transferencia que produzca los mismos resultados prácticos. Se muestra una situación hipotética donde el andar tipo escalera de Ve se reemplaza por una recta con efecto equivalente. ∫= Idt C 1 Ve discontinua integrada durante sω θd segundos por período equivale a una ∫∫ ⋅ == dtθ C2 I dt 2π θ I C 1 V d d e π continua integrada durante todo el tiempo, aplicando la transformada de Laplace a la expresión anterior s )(θ C2π I (s)V d e s ⋅ = por lo tanto s 1 C2π I (s)θ (s)V F(s) d e ⋅ == s k F(s) = el comparador ya no es más una constante, se comporta como un integrador Ve θd Comp. c/FF VDD I I i C θo θs θd Vs Vo I -I i Ve R 1 2 R D Vs Vo θd /ωs Pen=I/C Ve 2π θd C I Pen =
  • 8. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 8 • La introducción de un nuevo integrador, ya que como veremos el VCO actúa para la fase como un integrador, cambia totalmente el comportamiento del PLL. Es fácil comprender que no puede existir ningún desfasaje constante en la entrada del comparador, ya que la acción integradora provoca una rampa a la salida del mismo obligando a realizar un barrido al VCO. Esto explica que en el laboratorio no se pueda medir ningún desfasaje entre Ve y Vo. • En la hoja de datos del CD4046 se indica que para el Comparador II, el rango de captura es igual al rango de seguimiento. La existencia de un desfasaje provoca grandes excursiones a la salida del comparador provocando un barrido del VCO hasta que este se aproxima a la fs produciéndose el enganche. Osciladores controlados por tensión (VCO) • Hay muchos tipos de VCO, pero los más comunes son los astables o de relajación y el oscilador senoidal LC sintonizado por diodo varicap. Multivibrador astable controlado por tensión (MC4324, LM566, XR-2206, 8038, etc.) • La variación de la frecuencia con la tensión es bastante lineal y la salida del VCO es una onda cuadrada, lo cual es una ventaja para el comparador de fase por los flancos abruptos. • La mayoría son de capacitor único, pero muchos más complicados que el que se muestra en figura, pero se basan en el mismo principio. • En los circuitos utilizados, las Re se substituyen por fuentes de corriente, lo que hace que las exponenciales de carga y descarga del capacitor C, se transforman en rampas, resultando que el período T sea una función lineal de la tensión de control Vd. Oscilador LC sintonizado con diodo varicap • Se usan en alta frecuencia, o cuando se desea una forma de onda senoidal. • También se usa osciladores a cristal sintonizado por diodo varicap, para casos muy específicos, donde se desea alta estabilidad y bajo ruido, pero adolecen de tener un rango de sintonía muy limitado. R1 Rc Rc R2 R2 Re Re C Q1 Q2 R1 VCC Vd VCC VO Colppits 1 7 4 6 MC12148 3 5 8 2 Vd .1μ L C Vd 0V d 5V VDD 100μ.01 .1μ
  • 9. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 9 • El MC12148 (tecnología MOSAIC III)es el reemplazo directo del MC1648 (obsoleto), llega a 1100MHz con onda cuadrada (en realidad trapezoidal) Función de transferencia del PLL • Las funciones de transferencia, son aplicables solo a sistemas lineales invariantes en el tiempo. • En los PLL, al igual que la polarización de los transistores, algunos valores de reposo, no están vinculados en forma lineal. Por lo tanto se buscará un modelo equivalente lineal válido únicamente en un restringido rango de operación. • Un sistema lineal invariante en el tiempo, está definido por la siguiente ecuación diferencial lineal: xbxb...xbxbyaya...yaya m1-m 1)-(m 1 (m) 0n1-n 1)-(n 1 (n) 0 ++++=++++ && donde n ≥ m, transformado por Laplace a ambos miembros, n1-n 1-n 1 n 0 m1-m 1-m 1 m 0 asa...sasa bsb...sbsb x(s) y(s) F(s) ++++ ++++ == Función de transferencia F(s), es una propiedad del sistema, el valor de n da el orden del sistema. • El siguiente detector de fase, no tiene una función de transferencia, ni aún para la línea punteada: xbVya (t)kdV(t) mDDn DDDE +−= +−= θV La última ecuación no satisface la ecuación diferencial lineal exigida. • Sin embargo si se intenta encontrar la función de transferencia de todos modos, transformando por Laplace la ecuación de la recta: (s)s V kd (s) (s) F(s) (s)kd s V (s) D DD D E D DD E θθ θ −== +−= V V la posible función de transferencia no es tal, ya que depende de la entrada. • Por esta razón, solo se desarrollará un modelo matemático para variaciones alrededor del punto de trabajo Q. A diferencia de los transistores, las relaciones de pequeña señal no Sistema lineal invariante en el tiempo x y Ve 2π0 π-π pen=kd VDD -VDD θd Q' Q Q'' ΘD ΘD VE VE
  • 10. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 10 dependen del punto de trabajo Q, por ser tramos lineales, tanto en el detector como en el VCO, siempre y cuando el PLL no salga de su estado fijo (ver Q, Q' y Q''). Función de transferencia del detector k (s)θ (s)V (s)θk(s)V(t),θk(t)V d d e ddedde =∴== Función de transferencia del VCO (s)V s ko (s)θ (t)dtVko(t)θ (t)dtω(t)θ dt (t)dθ (t)ω (t)Vk(t)ω d0 d0 00 0 0 dO0 = = =∴= = ∫ ∫ • El VCO, actúa para la fase como un integrador, por lo tanto ningún error estático (Ve y θd) puede mantenerse en el tiempo debido a este efecto. • También puede advertirse que el efecto promediador (integrador) del VCO ayuda a mantener constante la fase de salida θO, durante perturbaciones momentáneas en la entrada θS. Función de transferencia total • Combinando todos los bloques constitutivos se obtiene la función de transferencia : (s)(s)A1 A(s) θ θ S O β+ = N F(s)kk s F(s)kk sN F(s)kk 1 s F(s)kk θ θ Od Od Od Od S O + = + = Filtro pasabajos (FPB) • El filtro pasabajos tiene dos importantes funciones. Primero, elimina el ruido y cualquier componente de alta frecuencia de la salida del detector de fase, tales como fS+fO, armónicas de fS y fO, etc., dejando pasar solo la componente de baja frecuencia fS-fO o fO- fS cuando se está adquiriendo el estado fijo, una continua, o pequeñas variaciones cuando el PLL ya está en estado fijo. • Segundo, es el bloque más importante en la determinación de las características dinámicas del lazo, rango de captura, respuesta en frecuencia y respuesta transitoria. kd θd(s) Ve(s) ωO pen=ko VdQ VD VD ΩO ΩO kd F(s) kO/s 1/N θd Ve Vd θO /N θO A(s) β(s) θOθS θS ++ --
  • 11. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 11 • Los filtros pasabajos más comunes usados en PLL son los siguientes: CRTyCRTdonde sT sT1 (s)F )Ts(T1 sT1 (s)F sT1 1 (s)F 2211 1 2 C 21 2 B 1 A == + = ++ + = + = Función de transferencia del PLL con FPB FB(s) • El tipo de respuesta queda fundamentalmente definido por los coeficientes del polinomio denominador. Las características de las respuestas de las funciones de transferencia de 2do orden se especifican en función del coeficiente de amortiguamiento ζ y la frecuencia natural ωn. • No debe establecerse ninguna relación entre el ω de la función de transferencia y el ωs o ωo, frecuencias de entrada y salida del PLL. Son absolutamente independientes y normalmente ωn << ωs. • Se sabe de la teoría de los servomecanismos que: 2 nn 2 2 21 Od S O s2s 1sT TT kk ω+ξω+ + + = θ θ por comparación )TN(T kk 21 Od n + =ω ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + ++ =ξ 21 2Od Od 21 TT N/Tkk1 kk )TN(T 2 1 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + =ξ )TT(N kk T )TT(kk N 2 1 21 Od 2 21Od queda ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + =ξ Od 2 21 Od kk N T )TT(N kk 2 1 entonces ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ω =ξ Od 2 n kk N T 2 despejando Odn 2 kk N2 T − ω ξ = 0dB -20dB/dec 20logR2/(R1+R2) 1/T1 1/T1 1/T1 0dB |FA(jω)|dB |FB(jω)|dB -20dB/dec -20dB/dec 20logR2/R1 1/(T1+T2) ω ω ω |FC(jω)|dB )TN(T kokd TT /NTkk1 ss sT1 TT kk N )sT(1kk )T(Tss )sT(1kk θ θ 2121 2Od2 2 21 Od 2Od 21 2 2Od S 0 + + + + + + + = + +++ + =
  • 12. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 12 • El tipo de un sistema es el número de polos en el origen de la función de transferencia a lazo abierto. Con el FA(s) y FB(s) el sistema es de 2do orden tipo 1, pero con el filtro FC(s), el sistema es de 2do orden tipo 2. Esta clasificación está relacionada con el error de fase para distintos tipos de señal de entrada. el teorema del valor final expresa que [ ] [ ] 0s )s(slim t )t(lim dd → θ = ∞→ θ donde )s( )s()s(A1 1 )s( Sd θ β+ =θ si se aplica un escalón de posición C)t( PS =θ para t ≥ 0 transformando por Laplace s C )s( P S =θ si se aplica un escalón de velocidad tC)t( VS =θ para t ≥ 0 transformando por Laplace 2 V S s C )s( =θ si se aplica un escalón de aceleración tC)t( 2 AS =θ para t ≥ 0 transformando por Laplace 3 A S s C2 )s( =θ • Las expresiones de la ganancia de lazo abierto para un filtro pasabajos tipo B y tipo C son respectivamente )TT(s1 sT1 sN kk )s()s(A 21 2Od ++ + =β 1 2Od sT sT1 sN kk )s()s(A + =β la primera es de tipo 1 y la segunda de tipo 2. Aplicando el teorema del valor final a la ganancia de lazo tipo 1, para un escalón de posición no hay error de régimen: [ ] [ ] 0s )s( )s()s(A1 1 slim 0s )s(slim t )t(lim Sdd → ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θ β+= → θ = ∞→ θ [ ] 0s 0C sN kk 1 1 lim 0s s C )TT(s1 sT1 sN kk 1 1 slim t )t(lim P Od P 21 2Od d → = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + = → ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ++ + + = ∞→ θ • Nótese que para un escalón de velocidad, lo que equivale a un escalón de frecuencia, el error de régimen es constante, proporcional a la amplitud del escalón e inversamente proporcional al producto de las ganancias del detector y del VCO: [ ] Od Vd kk NC t )t(lim = ∞→ θ Se puede resumir los errores de régimen θd en una tabla: Entrada Tipo 1 Tipo 2 Tipo 3
  • 13. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 13 Escalón de posición 0 0 0 Escalón de velocidad Constante 0 0 Escalón de aceleración Se incrementa constantemente Constante 0 Diseño del FPB • La exigencia más usual que se le hace a un PLL, es que ante un cambio de la frecuencia de entrada (escalón de velocidad de fase), la frecuencia de salida se establezca en su nuevo valor en un tiempo determinado. Esto condiciona fundamentalmente el valor de ωn. Un efecto equivalente se produce en un sintetizador al cambiar N. • Se debe tener en cuenta que la función de transferencia para las fases es igual que la correspondiente a las frecuencias como se muestra a continuación: dt )t(d )t( O O θ =ω transformando )s(s)s( OO θ=ω y )s(s)s( SS θ=ω por lo tanto )s(F )s( )s( )s( )s( S O S O = θ θ = ω ω igual función de transferencia • La información de la respuesta a un escalón para sistemas de 2do orden tipo 1 está normalizada para escalones unitarios, y el tiempo con la inversa de ωn, para distintos valores de amortiguamiento ξ. Ejemplo: En un PLL con FPB tipo B, determine T1 y T2 para ξ=0.5 y un tiempo de respuesta t=10ms (±%10). La gráfica muestra la respuesta normalizada a un escalón de un sistema tipo 1 de 2do orden para ξ=0.5. T1 y T2 se despejan de )TN(T kk 21 Od n + =ω N kk TT 2 n Od 21 ω =+ y de ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ω =ξ Od 2 n kk N T 2 se despeja Odn 2 kk N2 T − ω ξ = Nótese que de haberse utilizado un filtro como FA(s), donde T2=0, no es posible la elección independiente de ξ y ωn, ya que fijado ξ queda fijado ωn o viceversa. ωnt ξ=0.5 1.1 1.0 0.9 4.5 s rad 450 ms10 5.4 5.4t n n ==ω =ω
  • 14. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 14 0Tsi kk N 2 2 Od n = ω =ξ Normalmente N, kd y ko no son valores que el diseñador pueda cambiar a voluntad. Ancho de Banda • Si en la función de transferencia del PLL realizado con el filtro pasabajos tipo B, se hace T2=0, la función de transferencia para el filtro FA(s) queda: 2 nn 2 1 Od S O s2s 1 T kk ω+ξω+ = θ θ Para condición de régimen, esto es SO Nθθ,0s =→ por lo tanto la función queda: 2 nn 2 2 n S O s2s N ω+ξω+ ω = θ θ La respuesta en frecuencia se encuentra reemplazando s por jω 2 nn 2 2 n S O 2j- N ω+ωξω+ω ω = θ θ ωξω+ωω ω = θ θ n 22 n 2 n S O 2j- N Consideraremos al ancho de banda, como la frecuencia correspondiente a -3dB por debajo del valor de la función para ω=0 que llamaremos ω3dB, entonces: N 0S O = =ωθ θ 2 N dB3S O = ω=ωθ θ 2 dB3 2 n 222 dB3 2 n 4 n 4)(2 ωωξ+ω−ω=ω 4 n 2 dB3 2 n 24 dB3 2 dB3 2 n 4 n 2420 ω−ωωξ+ω+ωω−ω= 4 n 2 n 22 n 2 dB3 4 dB3 )42(0 ω−ωξ+ω−ω+ω= 4 n 4 n 222 n 22 n 2 dB3 )21(2 ω+ωξ−±ωξ−ω=ω 1)21(21 222 2 n dB3 +ξ−±ξ−=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ω ω 1)21(21 222 ndB3 +ξ−±ξ−ω=ω para ξ=0.5 ω3dB=1.27ωn • Es interesante relacionar el rango de captura con el ancho de banda. Si aceptamos como válida la expresión del rango de captura para un FPB tipo A, que figura en las hojas de datos del PLL CD4046, podemos comparar a ωC con ωn y con ω3dB para un ξ dado. las hojas de datos indican para el FPB tipo A y comparador XOR que el rango de captura es 1 L C T f21 f2 π π ≈ reemplazando 2πf por ω queda 1 L C T ω ≈ω dDD kV π= y DDOL Vk2 =ω dOL kk2 π=ω , dOL kk 2 π =ω n 1 dO C 25.1 T kk 2 ω= π =ω De esto se deduce que para ξ~0.5 ω3dB~ωC VDD kd θd π Ve 2ωL kO Vd VDD ωO ω/ωn ξ=1 ξ=0.2 ξ=0.5 0dB -3dB 1.27ωn ⏐θO/θS⏐dB ωn
  • 15. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 15 • Analicemos el significado del ancho de banda ω3dB.Un PLL bien diseñado debe ser inmune a las variaciones de amplitud de la señal de entrada. Trabaja con la fase y la frecuencia de la señal. ( ) ( )ωtcosθmaxtθs ⋅= ( ) ( ) ( )[ ]( )jωFfaseωtcosθmaxjωFtθo +⋅= Como la función de transferencia para las frecuencias es la misma que para la de las fases, entonces las relaciones temporales para una variación senoidal de la frecuencia de entrada son las siguientes ( ) ( )ωtcosΔfmaxtfs ⋅= y ( ) ( ) ( )[ ]( )jωFfaseωtcosfmaxjωFtfo +⋅Δ= Gráficamente, Para ω= ω3dB la amplitud de fo(t) es el 70.7% (-3dB) de la amplitud de fs(t), siempre y cuando fs(t) sea senoidal. Aplicaciones de los PLL- Sintetizadores Sintetizador básico • Normalmente, es conveniente que la frecuencia de referencia fS, sea lo más alta posible, para que sea removida fácilmente por el FPB, y no sea la frecuencia de referencia fS, la que obligue a fijar la frecuencia de corte del FPB. • Generalmente la frecuencia de corte del FPB quede definida por la frecuencia natural ωn y el coeficiente de amortiguamiento ξ. Δfmax |F(jω)|Δfmax fase[F(jω)] t frecuencia media f fs(t) fo(t) kd FPB VCO 1/N fO/N ffS divisor programable programación digital
  • 16. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 16 • La energía en frecuencia de referencia que alcanza al VCO, lo modula, y se traduce en bandas laterales espurias llamadas bandas laterales de referencia. • Otra causa que justifica la conveniencia de seleccionar una frecuencia de referencia lo más alta posible, es que la corrección de la tensión de control solo puede realizarse una vez cada ciclo de la señal de entrada. Por ejemplo si la frecuencia de referencia es de 1kHz la corrección es cada 1ms. • Cuando la fo es elevada, no siempre es simple y económico la realización del divisor programable. A continuación se analizarán dos técnicas para resolver este problema. Sintetizador tipo "down converter" • Para disminuir la frecuencia del divisor programable se heterodina la fO con la de un oscilador a cristal de cuarzo, de frecuencia fija fH. • Se analizará sobre un ejemplo de un sintetizador para el oscilador local de un receptor de FM de 200 canales separados cada 100kHz, desde 88 a 108MHz, se usa una frecuencia intermedia FI=10.7MHz. • Parece aceptable exigir al circuito que cuando N2 cambie en una unidad fO cambie en un canal fCH. 2 H S N ffo f − = , si se incrementa el OL para el canal siguiente 1N fff f 2 HCHO S + −+ = despejando de la primera HS2O ffNf += y reemplazando en la segunda HCHHS2S2 ffffNf)1N( −++=+ simplificando queda CHS ff = • Para el caso numérico kHz100ff CHS == si se elije a MHz1fX = , 10 f f N S X 1 == se elije MHz98fH = , la fH máxima es 98.6MHz es conveniente que fH sea lo más grande posible para que fMIX sea posible dividirla con un divisor programable convencional (CMOS o TTL), para este caso fMIX va de 0.7 a 20.7MHz 207 1.0 987.118 f fmáxf máxN S HO 2 = − = − = fo Comp Fase FPB fMIX/N2 divisor programable (ejemplo 74192) VCO Mez- clador 1/N2 1/N1 Oscilador Heterodinaje Oscilador de Referencia fS OL 98.7MHz 118.7MHz fCH=100kHz fH fX programación digital fmix fMIX=fo-fH 200 canales
  • 17. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 17 7 1.0 987.98 f fmínf mínN S HO 2 = − = − = Sintetizador tipo "prescaling" • Esta otra alternativa, emplea un divisor fijo de alta frecuencia o prescaler, el cual antecede al divisor programable. • Si se plantea la misma exigencia, cuando N2 cambie en una unidad fo cambie en un canal fCH 2 S KN fo f = , si se incrementa el OL para el canal siguiente )1N(K ff f 2 CHO S + + = despejando de la primera S2O fKNf = y reemplazando en la segunda CHS2SS2 ffKNKffKN +=+ simplificando queda K f f CH S = Se puede demostrar fácilmente que si se plantea que N2 cambie dos unidades por cambio de canal, el resultado es K2 f f CH S = , con lo cual resulta una fs a la mitad. • Para el caso numérico dado, se elige K=10 lo que da una MHz87.11 K fO = como máximo, que puede ser aceptada sin inconvenientes por cualquier divisor programable de lógica convencional. si MHz1fX = , 10 f f N S X 1 == 1187 1.0 7.118 Kf máxf máxN S O 2 === 987 1.0 7.98 Kf mínf mínN S O 2 === • Nótese, que si K=1 fS=fCH. Es posible obtener un divisor programable N2 que soporte altas frecuencias y sea económicamente aceptable, usando un divisor programable de doble módulo. Esto evita el uso del prescaler fijo (equivale a K=1) y la consecuente disminución de la frecuencia de referencia ( K f f CH S = ). fO/(KN2) Comp Fase FPB fVCO K Prescaler 1/N2 1/N1Oscilador de Referencia fS OL 98.7MHz 118.7MHz fCH=100kHz fX programación digital fO/K 200 canales
  • 18. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 18 Divisor programable de doble módulo • Es una técnica que se utiliza en sintetizadores de VHF con lógica convencional, para no reducir la frecuencia de referencia a un valor inaceptable por el uso de un prescaler fijo. • El corazón del divisor programable de doble módulo es un prescaler de doble módulo. Este circuito ECL (u otra lógica rápida), divide por dos factores que difieren en uno, dependiendo de una entrada de control. • Para sintetizadores programados en BCD es conveniente la relación 10/11. Algunas relaciones normalizadas son: 5/6, 8/9, 16/17, 20/21, 32/33, 64/65, 128/129, etc. • Está compuesto por dos contadores decrecientes con entradas de preset, uno cuenta desde M y otro desde A, y siempre M ≥A. • Supóngase que el prescaler comienza dividiendo por N+1, entonces deben ser aplicados (N+1)A pulsos en la entrada para que el contador de abajo llegue a cero, y el prescaler comience a dividir por N, después deben ser aplicados N(M-A) pulsos a la entrada para que el contador de arriba llegue a cero y haya un pulso a la salida y se reinicie el ciclo. • Para un ciclo es necesario (N+1)A+N(M-A)=MN+A pulsos a la entrada, por lo tanto el divisor programable de doble módulo divide por MN+A. • Ya se mencionó una restricción, que M sea mayor o igual que A. Existe otra, el mínimo factor de división es N(N-1). Por ejemplo para N=10, el mínimo factor por el cual divide es 90. Para probar esta afirmación intente determinar los valores de M y A para que divida por 89. • Se resuelve a continuación el sintetizador ya planteado con un divisor programable de doble módulo. SalidaCk Preset Detector de Cero Entrada Ck Preset Detector de Cero 1N N + ÷ Prescaler de doble módulo M (entrada de programación) A (entrada de programación)
  • 19. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 19 30 7545 rango de RF rango del OL filtro de FI en 45 MHz frecuencia en MHz • Se ha optado por un prescaler de doble módulo 20/21. Resulta de esta elección, que la máxima frecuencia de entrada de los contadores descendentes es 118.7MHz/20=5.9MHz, suficientemente baja para cualquier lógica convencional. • El mínimo factor de división del divisor programable de doble módulo es 98.7MHz/100kH=987, que es mayor que el mínimo factor posible N(N-1)=20*19=380. • Un juego de valores posibles para las entradas de programación M y A se muestran en la siguiente tabla. Como referencia 987/20=49.35 y 49*20=980. M A M*20+A 49 7..19 987...999 50 0..19 1000...1019 ... ... .. 58 0..19 1160...1179 59 0..7 1180...1187 Ejemplo sintetizador de HF • En los receptores modernos de HF (0.1 a 30MHz) se usa una primera FI alta, por ejemplo 45MHz o mayor, fuera de la banda de recepción, y un OL por encima de la FI, resultando que varíe menos de una octava. Se usa una resolución de 100Hz o menor para clarificar señales de BLU apropiadamente. Comp Fase FPB 49..59 0..19 fVCO DPDM Precaler 20/21 1/10Oscilador de Referencia fS=100kHz OL 98.7MHz 118.7MHz fCH=100kHz fX=1MHz .987..1187 AM
  • 20. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 20 • En el ejemplo que se muestra, el sintetizador genera 60000 frecuencias separadas 50Hz, con solo dos osciladores a cristal. La salida es el OL de un receptor de HF. Consta de tres lazos, y dos divisores programables, que probablemente, por cuestión de costos, deban ser resueltos como divisores programables de doble módulo. • Nótese que el divisor por 50 eleva la frecuencia de referencia del primer lazo de 50Hz a 2.5kHz para agilizar la respuesta del mismo. Comp Fase FPB VCO2.5kHz 245.0025MHz 250.0000MHz 1/50 1/(98001 -10000) 4.900050MHz 5.000000MHz 2000x50Hz=100k Comp Fase FPB VCO Mezclador Comp Fase FPB OL 45.000000MHz 74.999950MHz 60000x50Hz=30MHz VCO100kHz 50.0MHz 79.9MHz 300x0.1MHz=30MH1/(500-799) x10 kHz x1 kHz x0.1 kHz x0.05 kHz x10 MHz x1 MHz x0.1 MHz Rango de f1= f2-fo, 100kHz Filtro pasabajos Rango de fo, 30MHz Rango de f2, 30MHz 21 3 300 1 2 2000 45MHz 74.999950MHz OL 50Hz f1 fo f2 f2-f1
  • 21. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 21 • El empleo del segundo PLL, en vez de un mezclador simple, facilita el filtrado mediante un sencillo filtro pasabajos. De emplearse un mezclador para obtener fo a partir de f2 y f1, debería seguir a este un complejo filtro pasabanda sintonizado a f2-f1. Ejercicio: Plantée una solución para el divisor programable de doble módulo del tercer lazo. Sea N=16, fmáx=79.9MHz/16=4.99MHz es adecuada para un divisor de lógica convencional Se verifica que N(N-1)=240 es menor que 500 que es el divisor mínimo Cálulos auxiliares: 500/16=31.25 y 799/16=49.93 M A M*16+A 31 4..15 500...511 32 0..15 512...527 ... ... .. 49 0..15 784...799 Pruebe con otras soluciones. Receptor Homodino o Sincrodino • Como se comentó al inicio, la primera aplicación documentada de un PLL data de 1932 y se refiere a la recepción sincrónica de señales de radio moduladas en AM. • Para demodular sincrónicamente una señal de AM hay que mezclarla con una portadora con la misma frecuencia y fase. Las señales de radio frecuentemente se desvanecen o son acompañadas por ruido. El PLL puede recuperar la portadora aún con altos niveles de ruido. Barrido horizontal de televisión • Fue la primera aplicación comercial generalizada. • La forma antigua de sincronizar el barrido horizontal (y vertical también) de televisión se hacía mediante el uso de un oscilador astable. Este oscilador cuando oscila libremente tiene un período ligeramente mayor al período del barrido horizontal. • Cuando se recibe una señal adecuada, un circuito separa los pulsos de sincronismo horizontal, que redisparan el oscilador astable prematuramente, antes que finalice su período natural. PLL Filtro Pasabajo ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +ωω+=ωωω+ 2 1 t2cos 2 1 )tcosm1(Vtcostcos)tcosm1(V CmCCCmC )tcosm1( 2 V m C ω+ tcos)tcosm1(V CmC ωω+ tcos Cω
  • 22. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 22 • Este sistema funciona bien cuando la señal de televisión tiene buena relación señal a ruido y está libre de interferencias, ya que cualquier señal impulsiva puede ser interpretada como un pulso de sincronismo. • El uso de un PLL ajusta la frecuencia y fase de los circuitos de barrido en base al promedio de cientos de pulsos de sincronismo. La ausencia de pulsos en la señal de entrada o la presencia de ruido impulsivo, solo puede afectar al sincronismo cuando se produce en grandes cantidades. Recepción de señales satelitales • El uso del PLL en el espacio, comienza con el lanzamiento del primer satélite artificial de Estados Unidos de América (década del 60). Estos vehículos transportaban un transmisor de baja potencia (10mW) de onda continua interrumpida (CW). Las señales recibidas resultan en consecuencia muy débiles. • La frecuencia de la señal recibida desde estos satélites de órbita baja, sufre un corrimiento hacia arriba cuando se aproximan al receptor terrestre, y hacia abajo cuando se alejan, debido al efecto Doppler. Un fenómeno similar ocurre con las señales recibidas por el satélite. • Para fijar ideas, consideremos el caso de un satélite de órbita baja, que órbita la tierra cada dos horas, cuya frecuencia de transmisión es de 108MHz. Supóngase que la información que transmite el satélite necesita un ancho de banda muy pequeño, como puede ser el necesario para transmitir la información de telemetría. Se considera que con un ancho de banda de 4Hz es suficiente. h/km20000 h2 km40000 horas2 vuelta1 V === RuidoPulsos de sincronismo horizontal Oscilador astable redisparable Perdida de sincronismo debido al ruido L=40000km V=20000km/h
  • 23. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 23 dB30 4 k4 log10 kTBN Hz4B kHz4B kHz2 6.3x10x3 2000010x108 f C V ffDopplerEfecto NINFORMACIÓ SISTEMA 8 6 d d = = = = = × = = • Si el PLL tiene un ancho de banda de 4Hz, y este opera como un filtro sintonizable, se mejora la relación señal ruido en 30db. De no usarse el PLL se debería aumentar la potencia del transmisor en 30dB, esto es de 10mW a 10W para producir la misma relación señal a ruido en un receptor con 4kHz de ancho de banda. Modulador de frecuencia • La función de transferencia de lazo cerrado H(s) de un PLL, es parecida a la de un filtro pasabajos (esto es exacto si ξ < 1). Si la frecuencia de la señal moduladora Vf es mucho mayor que la frecuencia de corte de H(s), el lazo no reaccionará, la salida del filtro pasabajos no variará, por lo tanto se comportará como un modulador de frecuencia, esto es )s(Vk)s( f0O =ω . • Se demostrará esto suponiendo por simplicidad que F(s)=FA(s). si (s)FF(s) A= s2s N H(s) 2 nn 2 2 n ω+ξω+ ω = normalizando 2 nn 2 2 n s2s (s)H' ω+ξω+ ω = pero )s(F sN kk 1 )s(F sN kk )s('H A Od A Od + = por lo tanto )s(F N kk s s )s('H1 A Od + =− kd F(s) ko/s 1/N Vf(s) señal moduladora θO(s), ωO(s)++ θS(s) VCOComparador Pasabajo ω/ωn ξ=1 0dB ~1dB |H'(jω)|dB -6dB 1 ξ=0.1 ξ=0.5 ~14dB -40dB/dec
  • 24. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 24 [ ])s('H1 s k )s(F N kk s k )s(F sN kk 1 s k )s(V )s( 0 A Od O A Od O f O −= + = + = θ como )s(s)s( OO θ=ω , [ ])s('H1k )s(V )s( 0 f O −= ω • Si la frecuencia de modulación es mucho mayor que la frecuencia de corte del modulador, esto es ωmod>>ω1, la ganancia del modulador vale O f O k V = ω . • Para modulación de frecuencia sin distorsión, se debe cumplir que ωmod(mín)>ω1. Este último valor es del orden de la frecuencia natural del lazo ωn. Modulador de fase • Si la frecuencia de la señal moduladora es mucho menor que la frecuencia de corte del lazo H(s), el lazo reacciona muy rápido manteniendo la frecuencia de salida, pero la fase se modifica para compensar el efecto de Vf. • Se demostrará esto, partiendo de los resultados obtenidos del modulador de frecuencia. [ ] 2 nn 2 n O2 nn 2 2 n00 f O s2s 2s k s2s 1 s k )s('H1 s k )s(V )s( ω+ξω+ ξω+ =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ω+ξω+ ω −=−= θ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ξω + ω ξ = ω+ξω+ ωξω+ ω = θ nn 0 2 nn 2 2 nn 2 n 0 f O 2 s 1)s('H k2 s2s )2s(k )s(V )s( 1 ξ=0.5 |H'(jω)|dB |1-H'(jω)|dB0dB -3dB ω/ωn ω1/ωn -40dB/dec 40dB/dec 1 ξ=0.5 0dB -3dB ω/ωn ω1/ωn | H'(jω) |dB | 1+jω/(2ξωn) |dB | H'(jω)[1+jω/(2ξωn)] |dB 20dB/dec -40dB/dec -20dB/dec
  • 25. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 25 • Para modulación de fase sin distorsión, se debe cumplir que ωmod(máx)<ω1. Este último valor es del orden de la frecuencia natural del lazo ωn. • La ganancia del modulador de fase para frecuencias bajas de modulación es n 0 f O k2 V ω ξ = θ pero para F(s)=FA(s) 0d n kk2 ω =ξ por lo tanto df O k N V = θ Demodulador de frecuencia para frecuencia modulada m(t)k)t(S ⋅=ω , donde m(t) señal moduladora pero m(t)k)t( dt )t(d S S ⋅=ω= θ transformando por Laplace m(s) s k )s(S ⋅=θ sea )s( )s( )s(H S O θ θ = la función de transferencia del PLL, entonces )s(m s k )s(H)s()s(H)s( SO ⋅=θ⋅=θ pero como s k )s(V)s( 0 dO ⋅=θ queda )s( k s )s(V O 0 d θ= por lo tanto )s(m k k )s(H)s(V 0 d = • La respuesta en frecuencia de H(s) es parecida a la de un filtro pasabajos, especialmente para ξ mayores que uno, donde la frecuencia de corte depende fundamentalmente de la frecuencia natural ωn y también del ξ. kd F(s) ko/s 1/N Vd(s) señal demodulada VCOComparador Pasabajo θO(s), ωO(s) θS(s), ωS(s) ξ=1 0dB |H'(jω)|dB -3dB 1 ξ=0.1 ξ=0.5 -40dB/dec ω/ωn ω1/ωn
  • 26. Electrónica Aplicada III - Teoría de los lazos enganchados en fase ( PLL) - Daniel Rabinovich 2006 26 • Para demodulación de frecuencia sin distorsión, se debe cumplir que ωmod(máx)<ω1, siendo ω1 del orden de ωn. • La ganancia del demodulador para bajas frecuencias de modulación es 0 d k k N m V = . Bibliografía 1. Phaselock Techniques/Floyd M. Gardner/John Wiley & Sons, Inc. 2. Lazos de Fijación de Fase/Ernest J. Lazlo/Revista Telegráfica Electrónica/Agosto 75 3. Phase-Locked Loop Design Fundamentals/AN535/Motorola 4. The Phase-Locked Loop Reference Book with Experimentes/Howard M. Berlin/The Bugbook Reference Series /Titus, Rony, Larsen, & Titus 5. Electrónica Aplicada a las Altas Frecuencias/F. de Dieuleveult/Paraninfo 6. Sistemas de Comunicaciones Electrónicas/Wayne Tomasi/Prentice Hall 7. Manual ARRL 1986