Bioestadística
Introducción a la estadística
¿Para qué sirve la estadística?
 La Ciencia se ocupa en general de fenómenos observables
 La Ciencia se desarrolla observando hechos, formulando leyes que los
explican y realizando experimentos para validar o rechazar dichas leyes
 Los modelos que crea la ciencia son de tipo determinista o aleatorio
(estocástico)
 La Estadística se utiliza como tecnología al servicio de las ciencias
donde la variabilidad y la incertidumbre forman parte de su naturaleza
 “La Bioestadística [...] enseña y ayuda a investigar en todas las áreas de
las Ciencias de la Vida donde la variablidad no es la excepción sino la
regla”
Carrasco de la Peña (1982)
Definición
La Estadística es la Ciencia de la
• Sistematización, recogida, ordenación y
presentación de los datos referentes a un fenómeno
que presenta variabilidad o incertidumbre para su
estudio metódico, con objeto de
• deducir las leyes que rigen esos fenómenos,
• y poder de esa forma hacer previsiones sobre los
mismos, tomar decisiones u obtener conclusiones.
Descriptiva
Probabilidad
Inferencia
Pasos en un estudio estadístico
 Plantear hipótesis sobre una población
 Los fumadores tienen “más bajas” laborales que los no fumadores
 ¿En qué sentido? ¿Mayor número? ¿Tiempo medio?
 Decidir qué datos recoger (diseño de experimentos)
 Qué individuos pertenecerán al estudio (muestras)
 Fumadores y no fumadores en edad laboral.
 Criterios de exclusión ¿Cómo se eligen? ¿Descartamos los que padecen
enfermedades crónicas?
 Qué datos recoger de los mismos (variables)
 Número de bajas
 Tiempo de duración de cada baja
 ¿Sexo? ¿Sector laboral? ¿Otros factores?
 Recoger los datos (muestreo)
 ¿Estratificado? ¿Sistemáticamente?
 Describir (resumir) los datos obtenidos
 tiempo medio de baja en fumadores y no (estadísticos)
 % de bajas por fumadores y sexo (frecuencias), gráficos,...
 Realizar una inferencia sobre la población
 Los fumadores están de baja al menos 10 días/año más de media que los no
fumadores.
 Cuantificar la confianza en la inferencia
 Nivel de confianza del 95%
 Significación del contraste: p=2%
No tenéis que
entenderlo (aún)
Plantear
hipótesis
Obtener
conclusiones
Recoger datos
y analizarlos
Diseñar
experimento
Método científico y estadística
Población y muestra
 Población es el conjunto sobre el que estamos interesados en
obtener conclusiones (hacer inferencia).
 Normalmente es demasiado grande para poder abarcarlo.
 Muestra es un subconjunto suyo al que tenemos acceso y
sobre el que realmente hacemos las observaciones
(mediciones)
 Debería ser “representativo”
 Esta formado por miembros “seleccionados” de la población
(individuos, unidades experimentales).
Variables
 Una variable es una característica observable que varía entre los diferentes
individuos de una población. La información que disponemos de cada individuo
es resumida en variables.
 En los individuos de la población española, de uno
a otro es variable:
 El grupo sanguíneo
 {A, B, AB, O}  Var. Cualitativa
 Su nivel de felicidad “declarado”
 {Deprimido, Ni fu ni fa, Muy Feliz}  Var. Ordinal
 El número de hijos
 {0,1,2,3,...}  Var. Numérica discreta
 La altura
 {1’62 ; 1’74; ...}  Var. Numérica continua
 Cualitativas
Si sus valores (modalidades) no se pueden asociar naturalmente a un
número (no se pueden hacer operaciones algebraicas con ellos)
 Nominales: Si sus valores no se pueden ordenar
 Sexo, Grupo Sanguíneo, Religión, Nacionalidad, Fumar (Sí/No)
 Ordinales: Si sus valores se pueden ordenar
 Mejoría a un tratamiento, Grado de satisfacción, Intensidad del dolor
 Cuantitativas o Numéricas
Si sus valores son numéricos (tiene sentido hacer operaciones
algebraicas con ellos)
 Discretas: Si toma valores enteros
 Número de hijos, Número de cigarrillos, Num. de “cumpleaños”
 Continuas: Si entre dos valores, son posibles infinitos valores intermedios.
 Altura, Presión intraocular, Dosis de medicamento administrado, edad
Tipos de variables
 Los posibles valores de una variable suelen denominarse
modalidades.
 Las modalidades pueden agruparse en clases (intervalos)
 Edades:
 Menos de 20 años, de 20 a 50 años, más de 50 años
 Hijos:
 Menos de 3 hijos, De 3 a 5, 6 o más hijos
 Las modalidades/clases deben forman un sistema exhaustivo y
excluyente
 Exhaustivo: No podemos olvidar ningún posible valor de la variable
 Mal: ¿Cuál es su color del pelo: (Rubio, Moreno)?
 Bien: ¿Cuál es su grupo sanguíneo?
 Excluyente: Nadie puede presentar dos valores
simultáneos de la variable
 Estudio sobre el ocio
 Mal: De los siguientes, qué le gusta: (deporte, cine)
 Bien: Le gusta el deporte: (Sí, No)
 Bien: Le gusta el cine: (Sí, No)
 Mal: Cuántos hijos tiene: (Ninguno, Menos de 5, Más de 2)
Presentación ordenada de datos
0
1
2
3
4
5
6
7
Hombre Mujer
 Las tablas de frecuencias y las representaciones
gráficas son dos maneras equivalentes de presentar la
información. Las dos exponen ordenadamente la
información recogida en una muestra.
Género Frec.
Hombre 4
Mujer 6
Tablas de frecuencia
Nivel de felicidad
467 30,8 31,1 31,1
872 57,5 58,0 89,0
165 10,9 11,0 100,0
1504 99,1 100,0
13 ,9
1517 100,0
Muy feliz
Bastante feliz
No demasiado feliz
Total
Válidos
No contesta
Perdidos
Total
Frecuencia Porcentaje
Porcentaje
válido
Porcentaje
acumulado
Sexo del encuestado
636 41,9 41,9
881 58,1 58,1
1517 100,0 100,0
Hombre
Mujer
Total
Válidos
Frecuencia Porcentaje
Porcentaje
válido
Número de hijos
419 27,6 27,8 27,8
255 16,8 16,9 44,7
375 24,7 24,9 69,5
215 14,2 14,2 83,8
127 8,4 8,4 92,2
54 3,6 3,6 95,8
24 1,6 1,6 97,3
23 1,5 1,5 98,9
17 1,1 1,1 100,0
1509 99,5 100,0
8 ,5
1517 100,0
0
1
2
3
4
5
6
7
Ocho o más
Total
Válidos
No contesta
Perdidos
Total
Frecuencia Porcentaje
Porcentaje
válido
Porcentaje
acumulado
 Exponen la información recogida en la muestra, de forma que no se pierda nada de
información (o poca).
 Frecuencias absolutas: Contabilizan el número de individuos de cada modalidad
 Frecuencias relativas (porcentajes): Idem, pero dividido por el total
 Frecuencias acumuladas: Sólo tienen sentido para variables ordinales y numéricas
 Muy útiles para calcular cuantiles (ver más adelante)
 ¿Qué porcentaje de individuos tiene menos de 3 hijos? Sol: 83,8
 ¿Entre 4 y 6 hijos? Soluc 1ª: 8,4%+3,6%+1,6%= 13,6%. Soluc 2ª: 97,3% - 83,8% = 13,5%
Datos desordenados y ordenados en tablas
 Variable: Género
 Modalidades:
 H = Hombre
 M = Mujer
 Muestra:
M H H M M H M M M H
 equivale a
HHHH MMMMMM
Género Frec. Frec. relat.
porcentaje
Hombre 4 4/10=0,4=40%
Mujer 6 6/10=0,6=60%
10=tamaño
muestral
Número de hijos
419 27,8 27,8
255 16,9 44,7
375 24,9 69,5
215 14,2 83,8
127 8,4 92,2
54 3,6 95,8
24 1,6 97,3
23 1,5 98,9
17 1,1 100,0
1509 100,0
0
1
2
3
4
5
6
7
Ocho+
Total
Frec.
Porcent.
(válido)
Porcent.
acum.
Ejemplo
 ¿Cuántos individuos tienen
menos de 2 hijos?
 frec. indiv. sin hijos
+
frec. indiv. con 1 hijo
= 419 + 255
= 674 individuos
 ¿Qué porcentaje de individuos
tiene 6 hijos o menos?
 97,3%
 ¿Qué cantidad de hijos es tal
que al menos el 50% de la
población tiene una cantidad
inferior o igual?
 2 hijos
≥50%
Bioestadística. U. Málaga.
Gráficos para v. cualitativas
 Diagramas de barras
 Alturas proporcionales a las frecuencias (abs. o
rel.)
 Se pueden aplicar también a variables discretas
 Diagramas de sectores (tartas, polares)
 No usarlo con variables ordinales.
 El área de cada sector es proporcional a su
frecuencia (abs. o rel.)
 Pictogramas
 Fáciles de entender.
 El área de cada modalidad debe ser proporcional a
la frecuencia. ¿De los dos, cuál es incorrecto?.
Gráficos diferenciales para variables numéricas
 Son diferentes en función de que las
variables sean discretas o continuas.
Valen con frec. absolutas o relativas.
 Diagramas barras o bastones para v.
discretas
 Se deja un hueco entre barras para indicar
los valores que no son posibles
 Histogramas para v. continuas
 El área que hay bajo el histograma entre
dos puntos cualesquiera indica la cantidad
(porcentaje o frecuencia) de individuos en
el intervalo.
0 1 2 3 4 5 6 7 Ocho o más
Número de hijos
100
200
300
400
Recuent
o
419
255
375
215
127
54
24 23 17
20 40 60 80
Edad del encuestado
50
100
150
200
250
Recuento
Diagramas integrales
 Cada uno de los anteriores diagramas tiene su correspondiente diagrama integral. Se realizan
a partir de las frecuencias acumuladas. Indican, para cada valor de la variable, la cantidad
(frecuencia) de individuos que poseen un valor inferior o igual al mismo. No los construiremos
en clase. Se pasan de los diferenciales a los integrales por integración y a la inversa por
derivación (en un sentido más general del que visteis en bachillerato.)
¿Qué hemos visto?
 Definición de estadística
 Población
 Muestra
 Variables
 Cualitativas
 Numéricas
 Presentación ordenada de datos
 Tablas de frecuencias
 absolutas
 relativas
 acumuladas
 Representaciones gráficas
 Cualitativas
 Numéricas
 Diferenciales
 Integrales

Más contenido relacionado

PPT
estad_uma_01_bioestadistica1204568098.ppt
PPT
Conceptos basicos
PPT
3esoestad uma 01
PPT
Estadistica ii
PPT
diapositivas de estadistica.ppt
PPT
ESTADISTICA Y PROBABILIDADES TEMA 1.1.ppt
PPTX
Introducción a la Estadísitica Descriptiva
PDF
Tema 1. Probabilidad y Estadística básica.pdf
estad_uma_01_bioestadistica1204568098.ppt
Conceptos basicos
3esoestad uma 01
Estadistica ii
diapositivas de estadistica.ppt
ESTADISTICA Y PROBABILIDADES TEMA 1.1.ppt
Introducción a la Estadísitica Descriptiva
Tema 1. Probabilidad y Estadística básica.pdf

Similar a 2-Introduction.Presentation.-Bioestadistics.ppt (20)

PPT
1._Metod_Estad.ppt
PPT
Estadistica 1 para egb
PPT
Biosestadistica3272478rrrhrhs8888888888888888888
PPT
estad_uma_01.ppt datos y tablas estadisticas
PPT
Descriptiva.ppt diapositivas de estadística
PPT
Bioestadística Tema 1: Introducción a la estadística
PPT
bioestadistica descrptiva para obtener medidas de posicion, de corte y de dis...
PPT
estadistica descriptivaejemolos y ejercicios
PPT
Introducción a la estadística con población y muestra
PPT
Estadistica descriptiva, valores basico.
PPT
Estadistica Cualitativa Introduccion01.ppt
PPT
estad_uma_01_bioestadistica_y_su_introduccion.ppt
PPT
manual de estadistica para medicina y ciencias de la salud en la universidad
PPT
Estadística descriptiva para ingenieria industrial
PPT
estad_uma_01.ppt
PPT
estadistica_probabilidad_curso_clase avanzada
PPT
estad_uma_01.ppt
PPT
estad_uma_01.ppt
PPT
estad_uma_01.ppt
PPT
estad_uma_01.ppt
1._Metod_Estad.ppt
Estadistica 1 para egb
Biosestadistica3272478rrrhrhs8888888888888888888
estad_uma_01.ppt datos y tablas estadisticas
Descriptiva.ppt diapositivas de estadística
Bioestadística Tema 1: Introducción a la estadística
bioestadistica descrptiva para obtener medidas de posicion, de corte y de dis...
estadistica descriptivaejemolos y ejercicios
Introducción a la estadística con población y muestra
Estadistica descriptiva, valores basico.
Estadistica Cualitativa Introduccion01.ppt
estad_uma_01_bioestadistica_y_su_introduccion.ppt
manual de estadistica para medicina y ciencias de la salud en la universidad
Estadística descriptiva para ingenieria industrial
estad_uma_01.ppt
estadistica_probabilidad_curso_clase avanzada
estad_uma_01.ppt
estad_uma_01.ppt
estad_uma_01.ppt
estad_uma_01.ppt
Publicidad

Último (20)

PDF
Documento A4 Página de proyecto con fotos ecología verde.pdf (1).pdf
PDF
3er Grado - Dosificación Anual con Contenidos y PDA (2025-2026).pdf
PDF
538778821ddffds-Etiqueta-en-La-Mfesa.pdf
PDF
DEONTOLOGIA 2025 - I.pdfrfffffffffffffffffffffffffffffe
PDF
TF - LOGÍSTICA INTERNACIONAmL.pdf puesto
PPTX
Presentación de tema sexualidad y cuidado del cuerpo
PDF
Gestion d3 procesos kfififoofofkfjdjdjieoeodkjfjfjf
PPTX
Diapositiva marco del Buen Desempeño.pptx
PDF
ANALIS DE SITIO QUEVEDO DE CASAS Y ENTORNOS
PPTX
diseño e interpretacion de planos tecnicos.pptx
PDF
un power point de minecraft, no está terminado.
PPTX
Presentacion Trabajo Final de Grado Profesional Moderna Azul .pptx
PPT
BUENA PARA INSTRUCCION EN BUENAS PRACT.ppt
PDF
diapositvas de trauma de torax.descripcion
PDF
TRIP-MED (1).pdfbwhwhhququqiqkbccyueneope
PPTX
Kick Off iMetrology metrologia industrial
PPTX
Presentaciones de modelos en power points
PPTX
Mariluz_VITE HERNANDEZSaber pedagógico.pptx
PPTX
primer respondiente VUGVKGYFCUTFCFCUFCYFC
PPTX
Folleto_Ecosistemas_Juveniles y ambiente .pptx
Documento A4 Página de proyecto con fotos ecología verde.pdf (1).pdf
3er Grado - Dosificación Anual con Contenidos y PDA (2025-2026).pdf
538778821ddffds-Etiqueta-en-La-Mfesa.pdf
DEONTOLOGIA 2025 - I.pdfrfffffffffffffffffffffffffffffe
TF - LOGÍSTICA INTERNACIONAmL.pdf puesto
Presentación de tema sexualidad y cuidado del cuerpo
Gestion d3 procesos kfififoofofkfjdjdjieoeodkjfjfjf
Diapositiva marco del Buen Desempeño.pptx
ANALIS DE SITIO QUEVEDO DE CASAS Y ENTORNOS
diseño e interpretacion de planos tecnicos.pptx
un power point de minecraft, no está terminado.
Presentacion Trabajo Final de Grado Profesional Moderna Azul .pptx
BUENA PARA INSTRUCCION EN BUENAS PRACT.ppt
diapositvas de trauma de torax.descripcion
TRIP-MED (1).pdfbwhwhhququqiqkbccyueneope
Kick Off iMetrology metrologia industrial
Presentaciones de modelos en power points
Mariluz_VITE HERNANDEZSaber pedagógico.pptx
primer respondiente VUGVKGYFCUTFCFCUFCYFC
Folleto_Ecosistemas_Juveniles y ambiente .pptx
Publicidad

2-Introduction.Presentation.-Bioestadistics.ppt

  • 2. ¿Para qué sirve la estadística?  La Ciencia se ocupa en general de fenómenos observables  La Ciencia se desarrolla observando hechos, formulando leyes que los explican y realizando experimentos para validar o rechazar dichas leyes  Los modelos que crea la ciencia son de tipo determinista o aleatorio (estocástico)  La Estadística se utiliza como tecnología al servicio de las ciencias donde la variabilidad y la incertidumbre forman parte de su naturaleza  “La Bioestadística [...] enseña y ayuda a investigar en todas las áreas de las Ciencias de la Vida donde la variablidad no es la excepción sino la regla” Carrasco de la Peña (1982)
  • 3. Definición La Estadística es la Ciencia de la • Sistematización, recogida, ordenación y presentación de los datos referentes a un fenómeno que presenta variabilidad o incertidumbre para su estudio metódico, con objeto de • deducir las leyes que rigen esos fenómenos, • y poder de esa forma hacer previsiones sobre los mismos, tomar decisiones u obtener conclusiones. Descriptiva Probabilidad Inferencia
  • 4. Pasos en un estudio estadístico  Plantear hipótesis sobre una población  Los fumadores tienen “más bajas” laborales que los no fumadores  ¿En qué sentido? ¿Mayor número? ¿Tiempo medio?  Decidir qué datos recoger (diseño de experimentos)  Qué individuos pertenecerán al estudio (muestras)  Fumadores y no fumadores en edad laboral.  Criterios de exclusión ¿Cómo se eligen? ¿Descartamos los que padecen enfermedades crónicas?  Qué datos recoger de los mismos (variables)  Número de bajas  Tiempo de duración de cada baja  ¿Sexo? ¿Sector laboral? ¿Otros factores?  Recoger los datos (muestreo)  ¿Estratificado? ¿Sistemáticamente?  Describir (resumir) los datos obtenidos  tiempo medio de baja en fumadores y no (estadísticos)  % de bajas por fumadores y sexo (frecuencias), gráficos,...  Realizar una inferencia sobre la población  Los fumadores están de baja al menos 10 días/año más de media que los no fumadores.  Cuantificar la confianza en la inferencia  Nivel de confianza del 95%  Significación del contraste: p=2% No tenéis que entenderlo (aún)
  • 6. Población y muestra  Población es el conjunto sobre el que estamos interesados en obtener conclusiones (hacer inferencia).  Normalmente es demasiado grande para poder abarcarlo.  Muestra es un subconjunto suyo al que tenemos acceso y sobre el que realmente hacemos las observaciones (mediciones)  Debería ser “representativo”  Esta formado por miembros “seleccionados” de la población (individuos, unidades experimentales).
  • 7. Variables  Una variable es una característica observable que varía entre los diferentes individuos de una población. La información que disponemos de cada individuo es resumida en variables.  En los individuos de la población española, de uno a otro es variable:  El grupo sanguíneo  {A, B, AB, O}  Var. Cualitativa  Su nivel de felicidad “declarado”  {Deprimido, Ni fu ni fa, Muy Feliz}  Var. Ordinal  El número de hijos  {0,1,2,3,...}  Var. Numérica discreta  La altura  {1’62 ; 1’74; ...}  Var. Numérica continua
  • 8.  Cualitativas Si sus valores (modalidades) no se pueden asociar naturalmente a un número (no se pueden hacer operaciones algebraicas con ellos)  Nominales: Si sus valores no se pueden ordenar  Sexo, Grupo Sanguíneo, Religión, Nacionalidad, Fumar (Sí/No)  Ordinales: Si sus valores se pueden ordenar  Mejoría a un tratamiento, Grado de satisfacción, Intensidad del dolor  Cuantitativas o Numéricas Si sus valores son numéricos (tiene sentido hacer operaciones algebraicas con ellos)  Discretas: Si toma valores enteros  Número de hijos, Número de cigarrillos, Num. de “cumpleaños”  Continuas: Si entre dos valores, son posibles infinitos valores intermedios.  Altura, Presión intraocular, Dosis de medicamento administrado, edad Tipos de variables
  • 9.  Los posibles valores de una variable suelen denominarse modalidades.  Las modalidades pueden agruparse en clases (intervalos)  Edades:  Menos de 20 años, de 20 a 50 años, más de 50 años  Hijos:  Menos de 3 hijos, De 3 a 5, 6 o más hijos  Las modalidades/clases deben forman un sistema exhaustivo y excluyente  Exhaustivo: No podemos olvidar ningún posible valor de la variable  Mal: ¿Cuál es su color del pelo: (Rubio, Moreno)?  Bien: ¿Cuál es su grupo sanguíneo?  Excluyente: Nadie puede presentar dos valores simultáneos de la variable  Estudio sobre el ocio  Mal: De los siguientes, qué le gusta: (deporte, cine)  Bien: Le gusta el deporte: (Sí, No)  Bien: Le gusta el cine: (Sí, No)  Mal: Cuántos hijos tiene: (Ninguno, Menos de 5, Más de 2)
  • 10. Presentación ordenada de datos 0 1 2 3 4 5 6 7 Hombre Mujer  Las tablas de frecuencias y las representaciones gráficas son dos maneras equivalentes de presentar la información. Las dos exponen ordenadamente la información recogida en una muestra. Género Frec. Hombre 4 Mujer 6
  • 11. Tablas de frecuencia Nivel de felicidad 467 30,8 31,1 31,1 872 57,5 58,0 89,0 165 10,9 11,0 100,0 1504 99,1 100,0 13 ,9 1517 100,0 Muy feliz Bastante feliz No demasiado feliz Total Válidos No contesta Perdidos Total Frecuencia Porcentaje Porcentaje válido Porcentaje acumulado Sexo del encuestado 636 41,9 41,9 881 58,1 58,1 1517 100,0 100,0 Hombre Mujer Total Válidos Frecuencia Porcentaje Porcentaje válido Número de hijos 419 27,6 27,8 27,8 255 16,8 16,9 44,7 375 24,7 24,9 69,5 215 14,2 14,2 83,8 127 8,4 8,4 92,2 54 3,6 3,6 95,8 24 1,6 1,6 97,3 23 1,5 1,5 98,9 17 1,1 1,1 100,0 1509 99,5 100,0 8 ,5 1517 100,0 0 1 2 3 4 5 6 7 Ocho o más Total Válidos No contesta Perdidos Total Frecuencia Porcentaje Porcentaje válido Porcentaje acumulado  Exponen la información recogida en la muestra, de forma que no se pierda nada de información (o poca).  Frecuencias absolutas: Contabilizan el número de individuos de cada modalidad  Frecuencias relativas (porcentajes): Idem, pero dividido por el total  Frecuencias acumuladas: Sólo tienen sentido para variables ordinales y numéricas  Muy útiles para calcular cuantiles (ver más adelante)  ¿Qué porcentaje de individuos tiene menos de 3 hijos? Sol: 83,8  ¿Entre 4 y 6 hijos? Soluc 1ª: 8,4%+3,6%+1,6%= 13,6%. Soluc 2ª: 97,3% - 83,8% = 13,5%
  • 12. Datos desordenados y ordenados en tablas  Variable: Género  Modalidades:  H = Hombre  M = Mujer  Muestra: M H H M M H M M M H  equivale a HHHH MMMMMM Género Frec. Frec. relat. porcentaje Hombre 4 4/10=0,4=40% Mujer 6 6/10=0,6=60% 10=tamaño muestral
  • 13. Número de hijos 419 27,8 27,8 255 16,9 44,7 375 24,9 69,5 215 14,2 83,8 127 8,4 92,2 54 3,6 95,8 24 1,6 97,3 23 1,5 98,9 17 1,1 100,0 1509 100,0 0 1 2 3 4 5 6 7 Ocho+ Total Frec. Porcent. (válido) Porcent. acum. Ejemplo  ¿Cuántos individuos tienen menos de 2 hijos?  frec. indiv. sin hijos + frec. indiv. con 1 hijo = 419 + 255 = 674 individuos  ¿Qué porcentaje de individuos tiene 6 hijos o menos?  97,3%  ¿Qué cantidad de hijos es tal que al menos el 50% de la población tiene una cantidad inferior o igual?  2 hijos ≥50%
  • 14. Bioestadística. U. Málaga. Gráficos para v. cualitativas  Diagramas de barras  Alturas proporcionales a las frecuencias (abs. o rel.)  Se pueden aplicar también a variables discretas  Diagramas de sectores (tartas, polares)  No usarlo con variables ordinales.  El área de cada sector es proporcional a su frecuencia (abs. o rel.)  Pictogramas  Fáciles de entender.  El área de cada modalidad debe ser proporcional a la frecuencia. ¿De los dos, cuál es incorrecto?.
  • 15. Gráficos diferenciales para variables numéricas  Son diferentes en función de que las variables sean discretas o continuas. Valen con frec. absolutas o relativas.  Diagramas barras o bastones para v. discretas  Se deja un hueco entre barras para indicar los valores que no son posibles  Histogramas para v. continuas  El área que hay bajo el histograma entre dos puntos cualesquiera indica la cantidad (porcentaje o frecuencia) de individuos en el intervalo. 0 1 2 3 4 5 6 7 Ocho o más Número de hijos 100 200 300 400 Recuent o 419 255 375 215 127 54 24 23 17 20 40 60 80 Edad del encuestado 50 100 150 200 250 Recuento
  • 16. Diagramas integrales  Cada uno de los anteriores diagramas tiene su correspondiente diagrama integral. Se realizan a partir de las frecuencias acumuladas. Indican, para cada valor de la variable, la cantidad (frecuencia) de individuos que poseen un valor inferior o igual al mismo. No los construiremos en clase. Se pasan de los diferenciales a los integrales por integración y a la inversa por derivación (en un sentido más general del que visteis en bachillerato.)
  • 17. ¿Qué hemos visto?  Definición de estadística  Población  Muestra  Variables  Cualitativas  Numéricas  Presentación ordenada de datos  Tablas de frecuencias  absolutas  relativas  acumuladas  Representaciones gráficas  Cualitativas  Numéricas  Diferenciales  Integrales