Calorimetría Rama de la termodinámica que mide la cantidad de energía generada en procesos de intercambio de calor
Calor Es la transferencia de energía entre la materia como resultado de las diferencias en la temperatura . T 1 T 2 T 1   >  T 2 Energía
Unidad del Calor  :  Caloría (cal) Es la cantidad de calor necesaria para  aumentar  la temperatura de  1 gramo  de agua de 14,5 °C a 15,5 °C a la presión de 1 atmósfera (Presión normal).   Unidades de Cantidad de Calor   Las unidades de cantidad de calor ( Q ) son las mismas unidades de trabajo ( T ). Relación entre unidades Sistema de Medida • Sistema Técnico • Sistema Internacional (S.I.)  •Sistema C.G.S. Unidad de Medida • Kilográmetro (Kgm) • Joule (J) • Ergio (erg) 1 kgm = 9,8 J 1 J = 10 7  erg 1 kgm = 9,8.10 7  erg 1 cal = 4,186 J 1 kcal = 1000 (10³) cal  1 BTU = 252 cal
Equivalente mecánico del calor 1 cal = 4,186 joule El trabajo que realizan las paletas se transforma en calor En el experimento de Joule se determina la relación entre la unidad de energía joule y la unidad de calor caloría.
Capacidad calorífica y Calor específico   Es el calor que debe recibir una sustancia para que aumente su temperatura 1 ºC.  Capacidad calorífica (C) Por lo tanto si una cantidad de calor Q produce un cambio  en la temperatura de una sustancia se tiene:   Unidad : [c] =  cal / °C
Calor específico (c) Es la razón entre la capacidad calorífica (C) de un cuerpo y la masa (m) de dicho cuerpo. Unidad : [c] =  cal / g °C • m es la masa de la sustancia en gramos .   C  agua  = 1 cal/g.°C C  hierro  = 0,114 cal/g.°C C  hielo  = 0,5 cal/g.°C C  latón  = 0,094 cal/g.°C C  aire  = 0,24 cal/g.°C C  mercurio  = 0,033 cal/g.°C C  aluminio  = 0,217 cal/g.°C C  cobre  = 0,092 cal/g.°C C  plomo  = 0,03 cal/g.°C C  plata  = 0,056 cal/g.°C
Formas de transformación del calor Conducción Convección Radiación Es típica en los sólidos. Es típica de líquidos y gases. Se presenta en todos los estados físicos. Es la transferencia de calor que tiene lugar por transmisión de Energía de unas partículas a otras, sin desplazamiento de éstas. Es la transferencia de calor que tiene lugar mediante el movimiento de las partículas de un fluido. El transporte es efectuado por moléculas de aire. Es la transferencia de calor mediante ondas electromagnéticas sin intervención de partículas que lo transporte.
Efectos del Calor 1º .-  Cambios de Estado Fusión Vaporización Sublimación Solidificación Licuefacción Sublimación Cambios progresivos (  ) Absorven  Q Cambios regresivos (  ) Desprenden  Q
Agua  :  L f  = 3.34 105 J/kg L f  = 79.6 cal/g L v  = 2.256 106 J/kg L v  = 539 cal/g Q = mL f Q = mLv Fusión Vaporización Cambio de estado  :  Sólido a líquido Cambio de estado  :  Líquido a gas El  calor absorbido  por un cuerpo en la fusión es  igual  al  calor cedido  por éste en la solidificación. El  calor absorbido  por un cuerpo en la vaporización es  igual   al  calor cedido  por éste en la condensación.  Punto de fusión :  Temperatura en la que se produce la fusión (en el agua :0 ºC).  Punto de ebullición :  Temperatura en la que se produce la ebullición (en el agua:100º C).  Mientras se produce el cambio de estado, los puntos de fusión y ebullición son cte. Calor latente de fusión:  Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de fusión para convertirla completamente en líquido  Calor latente de vaporización :  Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de ebullición para convertirla completamente en gas.
Calor latente Calor latente de cambio de estado L : Es la cantidad de calor que necesita una unidad de masa de una sustancia para cambiar de estado. Se mide en J/Kg o bien en cal/gr.  Q= m x L El calor de fusión y vaporización solo se emplean en el cambio de estado,  no  en aumentar la Temperatura. 100 0 -25 Fase gaseosa Punto de ebullición Fase líquida Fase sólida Punto de fusión T (°C) Tiempo
2º .-  Dilatación Es el fenómeno por el que los cuerpos experimentan una variación de volumen al modificar su temperatura. Dilatación Lineal L  = Longitud final Lo  = Longitud inicial £  = Coeficiente de Dilatación Líneal At  = incremento de temperatura = (tf - to) Coeficiente de dilatación lineal
Dilatación Superficial S  = Superficie final So  = Superficie inicial ß  = Coeficiente de Dilatación Superficial  At  = Incremento de temperatura = (tf - to) Coeficiente de dilatación superficial Dilatación Cúbica V  = Volumen final Vo  = Volumen inicial y  = Coeficiente de Dilatación Cúbica At  = Incremento de temperatura = (tf - to) Coeficiente de dilatación cúbica
Temperatura 1 •  Se define temperatura como la propiedad común a los cuerpos que se encuentran en  equilibrio térmico
Equilibrio térmico Cuando dos cuerpos a distinta temperatura, se ponen en contacto, al cabo decierto tiempo se acaban igualando sus temperaturas. Se dice que ha logrado el equilibrio térmico. •  Sea la temperatura del cuerpo caliente t 1, su masa m 1 y su calor específico c 1 • Sea la temperatura del cuerpo frío t 2, su masa m 2 y su calor específico c 2 • Sea t m la temperatura final de equilibrio  Como Q cedido = Q absorbido m 1 · c 1 · (t 1 - t m) = m 2 · c 2 · (t m - t 2)
2•  La temperatura es una  medida del calor  o energía térmica de las partículas en una sustancia.  3•  Se mide con los  termómetros 4•  El termómetro alcanza el equilibrio térmico con la muestra y  nos indica la temperatura  de la misma
Escalas Termométricas Escala Celsius (ºC) Establecido por Anders Celsius en 1741 Utiliza dos temperaturas de referencia que se llaman puntos fijos Se divide el intervalo en 100 partes ( 1 ºC ) Escala Fahrenheits (ºF) Utilizada en el mundo anglosajón y emplea los mismos puntos fijos que la escala centígrada pero los marca con los números 32 (fusión) y 212 (ebullición), dividiendo el intervalo en 180 partes (1 ºF) Escala Kelvin (ºK) Propuesta por Lord Kelvin en 1854. Es la llamada escala de temperaturas absolutas. Sitúa el 0ºK en la temperatura a la que las moléculas de un cuerpo, no poseen
Otra escala termométrica. Relación entre escalas Escala Réaumur (º R) Establecida por René Antoine Réaumur, físico y naturalista francés que en 1730 popularizó el termómetro de alcohol con una escala 0 – 80, que dando la escala dividida en 80 partes ( 1 ºR ) Relación entre escalas
Calorímetro •  Es un  recipiente térmicamente aislado  para evitar la fuga del calor •  Se utiliza para  determinar el calor especifico  de un solidó o liquido cualquiera Por el  Principio de Regnault Sean: •  Q1, el calor cedido por un objeto •  Q2 el calor absorbido por otro objeto  •  Q3 el calor absorbido por el calorímetro Se cumple: Q1 = Q2 + Q3 .
Línea de Tiempo 1592 Galileo diseña el primer termómetro   El Duque de Toscana, construye el termómetro de bulbo de alcohol con capilar sellado 1641 Fahrenheit construyó e introdujo el termómetro de mercurio con bulbo 1717 1740 1765 Celsius, propuso los puntos de fusión y ebullición del agua al nivel del mar (P=1 atm) como puntos fijos y una división de la escala en 100 partes (grados). Joseph Black introdujo los conceptos de calor específico y de calor latente de cambio de estado.
1769 Se asentaron las bases para utilizar las máquinas de vapor para mover maquinaria industrial, para el transporte marítimo y terrestre. Watt ideó la separación entre el expansor y el condensador y a partir de entonces empezó la fabricación a nivel industrial.   B. Thompson (conde Rumford) rebatió la teoría del calórico de Black diciendo que se podía generar continuamente calor por fricción, en contra de lo afirmado por dicha teoría.  1798 Con los concluyentes experimentos de Mayer y Joule, se establece que el calor es una forma de energía. Establecen una correspondencia entre la energía mecánica y el calor. 1842 Se adopta la temperatura del punto triple del agua como único punto fijo para la definición de la escala absoluta de temperaturas y se conservó la separación centígrada de la escala Celsius. 1967
Calor y Temperatura CALOR:  Energía   que fluye de un cuerpo a otro TEMPERATURA :  Es una  medida  que indica desde y hacia donde fluirá el calor TERMÓMETROS:   Están basados en las propiedades físicas de los objetos que pueden cambiar con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas Resistencia eléctrica de un sólido Diferencia de potencial eléctrico entre dos sólidos. Objetos en contacto intercambiarán calor hasta alcanzar el equilibrio térmico (igual temperatura)
La cantidad de calor necesaria para elevar la temperatura de un cuerpo es  proporcional  a su masa. Principios de la Calorimetría Primer Principio Segundo Principio La cantidad de calor que se necesita para  elevar la temperatura  de un cuerpo desde un valor A hasta un valor B es  igual  a la cantidad de calor que el cuerpo cede cuando su temperatura  desciende  de B a A. A  B Q 1 Q 2
Energía Térmica •  Es la forma de energía que interviene en los fenómenos caloríficos.  •  La cantidad de energía térmica recibe el nombre de  calor
Calor y Trabajo CALOR TRABAJO
Existe equilibrio  cuando la presión del gas sobre el embolo coincide con la presión del embolo sobre el gas Si la presión anterior aumenta , el émbolo se elevará, obteniéndose un trabajo de expansión.
Máquinas Térmicas Son dispositivos capaces de llevar a cabo la transformación del calor en trabajo mecánico . En todas las máquinas térmicas el sistema absorbe calor de un foco caliente; parte de él lo transforma en trabajo y el resto lo cede al medio exterior que se encuentra a menor temperatura
El rozamiento transforma la energia cinética en calor. Suministrando calor al cuerpo no conseguimos que este se mueva. Rendimiento de las máquinas Se llama rendimiento de una maquina térmica al cociente entre el trabajo realizado y el calor recibido del foco caliente. El rendimiento solo depende de las temperaturas T1 y T2.
Ley fundamental de la calorimetría Un sistema aislado compuesto por n cuerpos, a diferentes temperaturas, evoluciona espontáneamente hacia un  estado de equilibrio  en el que todos los cuerpos tienen la  misma temperatura . Los calores intercambiados sumados con sus signos dan cero  Σ Qi = 0
Q...  cantidad de calor m...  masa del cuerpo c...  calor específico del cuerpo Δt...  variación de temperatura Ecuación fundamental de la calorimetría ¿De qué factores depende la cantidad de calor que puede transferirse a un cuerpo? De la  masa, Del  tipo de sustancia , De la  diferencia de temperaturas  Q = m c   T
¿Qué cantidad de calor necesita absorber un trozo de cobre cuya masa es 0.025 g si se encuentra a una temperatura de 8ºC y se desea que alcance una temperatura final de 20ºC?  [ ce = 0,093 cal  ]  Q = m c   T Q = 27,9 calorías   Q = 25 g x 0.093 cal x 12º Q = 25 g x 0.093 cal x (20º - 8º ) 0.025 Kg. = 25 g
La temperatura de la superficie del Sol es de unos 6000 ºK . Exprésese esa temperatura en la escala Fahrenheit
Un trozo de hielo de 10 [gr] y temperatura –10 [ºC] se introducen en 1,5 [Kg] de agua a 75 [ºC]. Determine la temperatura final de la mezcla. Q1 + Q2 +Q3 + Q4 = 0

Más contenido relacionado

PPTX
Primera ley de la termodinamica
PPTX
Entropia
PPTX
Cantidad de calor
PPTX
Calor latente física 2
PPTX
La segunda ley de la termodinámica
PPT
Primera ley de la termodinámica
PPTX
Calor especifico
DOCX
Equilibrio fisico
Primera ley de la termodinamica
Entropia
Cantidad de calor
Calor latente física 2
La segunda ley de la termodinámica
Primera ley de la termodinámica
Calor especifico
Equilibrio fisico

La actualidad más candente (20)

PPTX
Cantidad de calor
DOCX
Gas real
PPTX
Capacidad calorica y equilibrio termicoo
PPTX
Calorimetría y cambios de fase123
PPTX
Capacidad calirifica
PPTX
Ciclos termodinamicos
PDF
Ecuacion-de-Clapeyron-y-Clausius-Clapeyron-1.pdf
PPTX
Segunda ley de la termodinamica
PPTX
Capacidad calorífica
PPTX
Termodinamica
PPT
Teoria cinetica
PPTX
PPTX
Ley cero de la termodinámica
PPTX
Calorimetria
PPTX
Termodinamica principios y leyes
PPTX
Entropia
DOCX
CALORIMETRÍA
PPT
Calorimetría!
PDF
126696901 000049-ejercicios-resueltos-de-fisica-calorimetria
PPT
Leyes de la Termodinámica
Cantidad de calor
Gas real
Capacidad calorica y equilibrio termicoo
Calorimetría y cambios de fase123
Capacidad calirifica
Ciclos termodinamicos
Ecuacion-de-Clapeyron-y-Clausius-Clapeyron-1.pdf
Segunda ley de la termodinamica
Capacidad calorífica
Termodinamica
Teoria cinetica
Ley cero de la termodinámica
Calorimetria
Termodinamica principios y leyes
Entropia
CALORIMETRÍA
Calorimetría!
126696901 000049-ejercicios-resueltos-de-fisica-calorimetria
Leyes de la Termodinámica
Publicidad

Similar a Calorimetría (20)

PPT
CALORIMETRIA.ppt
PPT
calorimetria-220802235630-8dd59bcalorimetria-3a.ppt
PPT
3a. CALORIMETRIA.ppt fisica 2 facultad de ing.
PPTX
Calorimetra
PDF
Semana9 electrostática ejercicios- Teoria.pdf
PPTX
Calor y temperatura
PPT
Temperatura y calor
PPTX
Temperatura y calor 2014
PDF
Calor y calorimetría
PDF
Temp_calor.pdf
PPT
Temp calorterm
PPT
Calor y temperatura 110518155305-phpapp01
PPT
Termodinamica y ondas_2
PPTX
1.- Primera ley de Termodinámica.pptx
PPTX
EXPOSICION. GRUPO 3-FISICA 2-UDH2019.pptx
DOCX
Unidad n°4 Fisica
PDF
Resumen tema 12
PPTX
CALORIMETRÍA Y EJEMPLOS CON SOLUCION ppt.pps.pptx
PPTX
Calorimetria andrés
PPT
CALORIMETRÍA-2 (1).ppt, donde se habla de las funciones del calor
CALORIMETRIA.ppt
calorimetria-220802235630-8dd59bcalorimetria-3a.ppt
3a. CALORIMETRIA.ppt fisica 2 facultad de ing.
Calorimetra
Semana9 electrostática ejercicios- Teoria.pdf
Calor y temperatura
Temperatura y calor
Temperatura y calor 2014
Calor y calorimetría
Temp_calor.pdf
Temp calorterm
Calor y temperatura 110518155305-phpapp01
Termodinamica y ondas_2
1.- Primera ley de Termodinámica.pptx
EXPOSICION. GRUPO 3-FISICA 2-UDH2019.pptx
Unidad n°4 Fisica
Resumen tema 12
CALORIMETRÍA Y EJEMPLOS CON SOLUCION ppt.pps.pptx
Calorimetria andrés
CALORIMETRÍA-2 (1).ppt, donde se habla de las funciones del calor
Publicidad

Último (20)

DOC
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
IPERC...................................
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PDF
Introducción a la historia de la filosofía
PDF
2.0 Introduccion a processing, y como obtenerlo
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
CURRICULAR DE PRIMARIA santa ursula..pdf
PDF
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
informe tipos de Informatica perfiles profesionales _pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
Manual del Gobierno Escolar -MINEDUC.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
IPERC...................................
PLAN DE CASTELLANO 2021 actualizado a la normativa
Telos 127 Generacion Al fa Beta - fundaciontelefonica
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
Introducción a la historia de la filosofía
2.0 Introduccion a processing, y como obtenerlo
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
CURRICULAR DE PRIMARIA santa ursula..pdf
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
Ernst Cassirer - Antropologia Filosofica.pdf
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
informe tipos de Informatica perfiles profesionales _pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf

Calorimetría

  • 1. Calorimetría Rama de la termodinámica que mide la cantidad de energía generada en procesos de intercambio de calor
  • 2. Calor Es la transferencia de energía entre la materia como resultado de las diferencias en la temperatura . T 1 T 2 T 1 > T 2 Energía
  • 3. Unidad del Calor : Caloría (cal) Es la cantidad de calor necesaria para aumentar la temperatura de 1 gramo de agua de 14,5 °C a 15,5 °C a la presión de 1 atmósfera (Presión normal). Unidades de Cantidad de Calor Las unidades de cantidad de calor ( Q ) son las mismas unidades de trabajo ( T ). Relación entre unidades Sistema de Medida • Sistema Técnico • Sistema Internacional (S.I.) •Sistema C.G.S. Unidad de Medida • Kilográmetro (Kgm) • Joule (J) • Ergio (erg) 1 kgm = 9,8 J 1 J = 10 7 erg 1 kgm = 9,8.10 7 erg 1 cal = 4,186 J 1 kcal = 1000 (10³) cal 1 BTU = 252 cal
  • 4. Equivalente mecánico del calor 1 cal = 4,186 joule El trabajo que realizan las paletas se transforma en calor En el experimento de Joule se determina la relación entre la unidad de energía joule y la unidad de calor caloría.
  • 5. Capacidad calorífica y Calor específico Es el calor que debe recibir una sustancia para que aumente su temperatura 1 ºC. Capacidad calorífica (C) Por lo tanto si una cantidad de calor Q produce un cambio en la temperatura de una sustancia se tiene: Unidad : [c] = cal / °C
  • 6. Calor específico (c) Es la razón entre la capacidad calorífica (C) de un cuerpo y la masa (m) de dicho cuerpo. Unidad : [c] = cal / g °C • m es la masa de la sustancia en gramos . C agua = 1 cal/g.°C C hierro = 0,114 cal/g.°C C hielo = 0,5 cal/g.°C C latón = 0,094 cal/g.°C C aire = 0,24 cal/g.°C C mercurio = 0,033 cal/g.°C C aluminio = 0,217 cal/g.°C C cobre = 0,092 cal/g.°C C plomo = 0,03 cal/g.°C C plata = 0,056 cal/g.°C
  • 7. Formas de transformación del calor Conducción Convección Radiación Es típica en los sólidos. Es típica de líquidos y gases. Se presenta en todos los estados físicos. Es la transferencia de calor que tiene lugar por transmisión de Energía de unas partículas a otras, sin desplazamiento de éstas. Es la transferencia de calor que tiene lugar mediante el movimiento de las partículas de un fluido. El transporte es efectuado por moléculas de aire. Es la transferencia de calor mediante ondas electromagnéticas sin intervención de partículas que lo transporte.
  • 8. Efectos del Calor 1º .- Cambios de Estado Fusión Vaporización Sublimación Solidificación Licuefacción Sublimación Cambios progresivos (  ) Absorven Q Cambios regresivos (  ) Desprenden Q
  • 9. Agua : L f = 3.34 105 J/kg L f = 79.6 cal/g L v = 2.256 106 J/kg L v = 539 cal/g Q = mL f Q = mLv Fusión Vaporización Cambio de estado : Sólido a líquido Cambio de estado : Líquido a gas El calor absorbido por un cuerpo en la fusión es igual al calor cedido por éste en la solidificación. El calor absorbido por un cuerpo en la vaporización es igual al calor cedido por éste en la condensación. Punto de fusión : Temperatura en la que se produce la fusión (en el agua :0 ºC). Punto de ebullición : Temperatura en la que se produce la ebullición (en el agua:100º C). Mientras se produce el cambio de estado, los puntos de fusión y ebullición son cte. Calor latente de fusión: Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de fusión para convertirla completamente en líquido Calor latente de vaporización : Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de ebullición para convertirla completamente en gas.
  • 10. Calor latente Calor latente de cambio de estado L : Es la cantidad de calor que necesita una unidad de masa de una sustancia para cambiar de estado. Se mide en J/Kg o bien en cal/gr. Q= m x L El calor de fusión y vaporización solo se emplean en el cambio de estado, no en aumentar la Temperatura. 100 0 -25 Fase gaseosa Punto de ebullición Fase líquida Fase sólida Punto de fusión T (°C) Tiempo
  • 11. 2º .- Dilatación Es el fenómeno por el que los cuerpos experimentan una variación de volumen al modificar su temperatura. Dilatación Lineal L = Longitud final Lo = Longitud inicial £ = Coeficiente de Dilatación Líneal At = incremento de temperatura = (tf - to) Coeficiente de dilatación lineal
  • 12. Dilatación Superficial S = Superficie final So = Superficie inicial ß = Coeficiente de Dilatación Superficial At = Incremento de temperatura = (tf - to) Coeficiente de dilatación superficial Dilatación Cúbica V = Volumen final Vo = Volumen inicial y = Coeficiente de Dilatación Cúbica At = Incremento de temperatura = (tf - to) Coeficiente de dilatación cúbica
  • 13. Temperatura 1 • Se define temperatura como la propiedad común a los cuerpos que se encuentran en equilibrio térmico
  • 14. Equilibrio térmico Cuando dos cuerpos a distinta temperatura, se ponen en contacto, al cabo decierto tiempo se acaban igualando sus temperaturas. Se dice que ha logrado el equilibrio térmico. • Sea la temperatura del cuerpo caliente t 1, su masa m 1 y su calor específico c 1 • Sea la temperatura del cuerpo frío t 2, su masa m 2 y su calor específico c 2 • Sea t m la temperatura final de equilibrio Como Q cedido = Q absorbido m 1 · c 1 · (t 1 - t m) = m 2 · c 2 · (t m - t 2)
  • 15. 2• La temperatura es una medida del calor o energía térmica de las partículas en una sustancia. 3• Se mide con los termómetros 4• El termómetro alcanza el equilibrio térmico con la muestra y nos indica la temperatura de la misma
  • 16. Escalas Termométricas Escala Celsius (ºC) Establecido por Anders Celsius en 1741 Utiliza dos temperaturas de referencia que se llaman puntos fijos Se divide el intervalo en 100 partes ( 1 ºC ) Escala Fahrenheits (ºF) Utilizada en el mundo anglosajón y emplea los mismos puntos fijos que la escala centígrada pero los marca con los números 32 (fusión) y 212 (ebullición), dividiendo el intervalo en 180 partes (1 ºF) Escala Kelvin (ºK) Propuesta por Lord Kelvin en 1854. Es la llamada escala de temperaturas absolutas. Sitúa el 0ºK en la temperatura a la que las moléculas de un cuerpo, no poseen
  • 17. Otra escala termométrica. Relación entre escalas Escala Réaumur (º R) Establecida por René Antoine Réaumur, físico y naturalista francés que en 1730 popularizó el termómetro de alcohol con una escala 0 – 80, que dando la escala dividida en 80 partes ( 1 ºR ) Relación entre escalas
  • 18. Calorímetro • Es un recipiente térmicamente aislado para evitar la fuga del calor • Se utiliza para determinar el calor especifico de un solidó o liquido cualquiera Por el Principio de Regnault Sean: • Q1, el calor cedido por un objeto • Q2 el calor absorbido por otro objeto • Q3 el calor absorbido por el calorímetro Se cumple: Q1 = Q2 + Q3 .
  • 19. Línea de Tiempo 1592 Galileo diseña el primer termómetro El Duque de Toscana, construye el termómetro de bulbo de alcohol con capilar sellado 1641 Fahrenheit construyó e introdujo el termómetro de mercurio con bulbo 1717 1740 1765 Celsius, propuso los puntos de fusión y ebullición del agua al nivel del mar (P=1 atm) como puntos fijos y una división de la escala en 100 partes (grados). Joseph Black introdujo los conceptos de calor específico y de calor latente de cambio de estado.
  • 20. 1769 Se asentaron las bases para utilizar las máquinas de vapor para mover maquinaria industrial, para el transporte marítimo y terrestre. Watt ideó la separación entre el expansor y el condensador y a partir de entonces empezó la fabricación a nivel industrial. B. Thompson (conde Rumford) rebatió la teoría del calórico de Black diciendo que se podía generar continuamente calor por fricción, en contra de lo afirmado por dicha teoría. 1798 Con los concluyentes experimentos de Mayer y Joule, se establece que el calor es una forma de energía. Establecen una correspondencia entre la energía mecánica y el calor. 1842 Se adopta la temperatura del punto triple del agua como único punto fijo para la definición de la escala absoluta de temperaturas y se conservó la separación centígrada de la escala Celsius. 1967
  • 21. Calor y Temperatura CALOR: Energía que fluye de un cuerpo a otro TEMPERATURA : Es una medida que indica desde y hacia donde fluirá el calor TERMÓMETROS: Están basados en las propiedades físicas de los objetos que pueden cambiar con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas Resistencia eléctrica de un sólido Diferencia de potencial eléctrico entre dos sólidos. Objetos en contacto intercambiarán calor hasta alcanzar el equilibrio térmico (igual temperatura)
  • 22. La cantidad de calor necesaria para elevar la temperatura de un cuerpo es proporcional a su masa. Principios de la Calorimetría Primer Principio Segundo Principio La cantidad de calor que se necesita para elevar la temperatura de un cuerpo desde un valor A hasta un valor B es igual a la cantidad de calor que el cuerpo cede cuando su temperatura desciende de B a A. A B Q 1 Q 2
  • 23. Energía Térmica • Es la forma de energía que interviene en los fenómenos caloríficos. • La cantidad de energía térmica recibe el nombre de calor
  • 24. Calor y Trabajo CALOR TRABAJO
  • 25. Existe equilibrio cuando la presión del gas sobre el embolo coincide con la presión del embolo sobre el gas Si la presión anterior aumenta , el émbolo se elevará, obteniéndose un trabajo de expansión.
  • 26. Máquinas Térmicas Son dispositivos capaces de llevar a cabo la transformación del calor en trabajo mecánico . En todas las máquinas térmicas el sistema absorbe calor de un foco caliente; parte de él lo transforma en trabajo y el resto lo cede al medio exterior que se encuentra a menor temperatura
  • 27. El rozamiento transforma la energia cinética en calor. Suministrando calor al cuerpo no conseguimos que este se mueva. Rendimiento de las máquinas Se llama rendimiento de una maquina térmica al cociente entre el trabajo realizado y el calor recibido del foco caliente. El rendimiento solo depende de las temperaturas T1 y T2.
  • 28. Ley fundamental de la calorimetría Un sistema aislado compuesto por n cuerpos, a diferentes temperaturas, evoluciona espontáneamente hacia un estado de equilibrio en el que todos los cuerpos tienen la misma temperatura . Los calores intercambiados sumados con sus signos dan cero Σ Qi = 0
  • 29. Q... cantidad de calor m... masa del cuerpo c... calor específico del cuerpo Δt... variación de temperatura Ecuación fundamental de la calorimetría ¿De qué factores depende la cantidad de calor que puede transferirse a un cuerpo? De la masa, Del tipo de sustancia , De la diferencia de temperaturas  Q = m c  T
  • 30. ¿Qué cantidad de calor necesita absorber un trozo de cobre cuya masa es 0.025 g si se encuentra a una temperatura de 8ºC y se desea que alcance una temperatura final de 20ºC? [ ce = 0,093 cal ]  Q = m c  T Q = 27,9 calorías Q = 25 g x 0.093 cal x 12º Q = 25 g x 0.093 cal x (20º - 8º ) 0.025 Kg. = 25 g
  • 31. La temperatura de la superficie del Sol es de unos 6000 ºK . Exprésese esa temperatura en la escala Fahrenheit
  • 32. Un trozo de hielo de 10 [gr] y temperatura –10 [ºC] se introducen en 1,5 [Kg] de agua a 75 [ºC]. Determine la temperatura final de la mezcla. Q1 + Q2 +Q3 + Q4 = 0