Conjunto Sexto.ppt
INDICE
INTRODUCCIÓN
RELACION DE PERTENENCIA
DETERMINACION DE CONJUNTOS
DIAGRAMAS DE VENN
CONJUNTOS ESPECIALES
RELACIONES ENTRE CONJUNTOS
CONJUNTOS NUMÉRICOS
UNION DE CONJUNTOS
INTERSECCIÓN DE CONJUNTOS
DIFERENCIA DE CONJUNTOS
DIFERENCIA SIMÉTRICA
COMPLEMENTO DE UN CONJUNTO
PROBLEMAS
En matemáticas el concepto de
conjunto es considerado
primitivo y no se da una
definición de este, por lo tanto la
palabra CONJUNTO debe
aceptarse lógicamente como un
término no definido.
Un conjunto se puede entender como
una colección o agrupación bien
definida de objetos de cualquier clase.
Los objetos que forman un conjunto
son llamados miembros o elementos
del conjunto.
Ejemplo:
En la figura adjunta
tienes un Conjunto de
Personas
NOTACIÓN
Todo conjunto se escribe entre llaves { }
y se le denota mediante letras
mayúsculas A, B, C, ...,sus elementos se
separan mediante punto y coma.
Ejemplo:
El conjunto de las letras del alfabeto; a,
b, c, ..., x, y, z. se puede escribir así:
L={ a; b; c; ...; x; y; z}
Ejemplo:
A= {a;b;c;d;e} su cardinal n(A)=
B= {x;x;x;y;y;z} su cardinal n(B)=
En teoría de conjuntos no se acostumbra
repetir los elementos por ejemplo:
El conjunto {x; x; x; y; y; z } simplemente
será { x; y; z }.
Al número de elementos que tiene un conjunto
Q se le llama CARDINAL DEL CONJUNTO y se
le representa por n(Q).
5
3
INDICE
Para indicar que un elemento pertenece
a un conjunto se usa el símbolo: 
Si un elemento no pertenece a un
conjunto se usa el símbolo: 
Ejemplo: Sea M = {2;4;6;8;10}
2 M
 ...se lee 2 pertenece al conjunto M
5 M
 ...se lee 5 no pertenece al conjunto M
INDICE
I) POR EXTENSIÓN
Hay dos formas de determinar un conjunto,
por Extensión y por Comprensión
Es aquella forma mediante la cual se indica
cada uno de los elementos del conjunto.
Ejemplos:
A) El conjunto de los números pares mayores
que 5 y menores que 20.
A = { 6;8;10;12;14;16;18 }
INDICE
B) El conjunto de números negativos
impares mayores que -10.
B = {-9;-7;-5;-3;-1 }
II) POR COMPRENSIÓN
Es aquella forma mediante la cual se da una
propiedad que caracteriza a todos los
elementos del conjunto.
Ejemplo:
se puede entender que el conjunto P esta formado
por los números 0,1,2,3,4,5,6,7,8,9.
P = { los números dígitos }
Otra forma de escribir es: P = { x / x = dígito }
se lee “ P es el conjunto formado por los
elementos x tal que x es un dígito “
Ejemplo:
Expresar por extensión y por comprensión el
conjunto de días de la semana.
Por Extensión : D = { lunes; martes; miércoles;
jueves; viernes; sábado; domingo }
Por Comprensión : D = { x / x = día de la semana }
INDICE
Los diagramas de Venn que se deben al
filósofo inglés John Venn (1834-1883)
sirven para representar conjuntos de
manera gráfica mediante dibujos ó
diagramas que pueden ser círculos,
rectángulos, triángulos o cualquier curva
cerrada.
A
M
T
7
2
3
6
9
a
e
i
o
u
(1;3) (7;6)
(2;4) (5;8)
8
4
1 5
INDICE
A = o A = { } se lee: “A es el conjunto
vacío” o “A es el conjunto nulo “
CONJUNTO VACÍO
Es un conjunto que no tiene elementos,
también se le llama conjunto nulo.
Generalmente se le representa por los
símbolos: o { }


Ejemplos:
M = { números mayores que 9 y menores
que 5 }
P = { x / }
1
0
X

CONJUNTO UNITARIO
Es el conjunto que tiene un solo elemento.
Ejemplos:
F = { x / 2x + 6 = 0 } G = 
 2
x / x 4 x 0
  
CONJUNTO FINITO
Es el conjunto con limitado número de
elementos.
Ejemplos:
E = { x / x es un número impar positivo menor
que 10 }
N = { x / x2 = 4 }
;
CONJUNTO INFINITO
Es el conjunto con ilimitado número de
elementos.
Ejemplos:
R = { x / x < 6 } S = { x / x es un número par }
CONJUNTO UNIVERSAL
Es un conjunto referencial que contiene a
todos los elementos de una situación
particular, generalmente se le representa
por la letra U
Ejemplo: El universo o conjunto universal
;
de todos los números es el conjunto de los
NÚMEROS COMPLEJOS. INDICE
INCLUSIÓN
Un conjunto A esta incluido en otro conjunto B ,sí
y sólo sí, todo elemento de A es también elemento
de B
NOTACIÓN : 
A B
Se lee : A esta incluido en B, A es subconjunto de
B, A esta contenido en B , A es parte de B.
REPRESENTACIÓN GRÁFICA :
B A
PROPIEDADES:
I ) Todo conjunto está incluido en si mismo. 
A A
II ) El conjunto vacío se considera incluido en
cualquier conjunto.   A
III ) A está incluido en B ( ) equivale a decir
que B incluye a A ( )

A B

B A
IV ) Si A no está incluido en B o A no es
subconjunto de B significa que por lo menos un
elemento de A no pertenece a B. ( )

A B
V ) Simbólicamente:      
A B x A x B
CONJUNTOS COMPARABLES
Un conjunto A es COMPARABLE con otro
conjunto B si entre dichos conjuntos existe una
relación de inclusión.
A es comparable con B  A  B  B  A
Ejemplo: A={1;2;3;4;5} y B={2;4}
1
2
3
4
5
A
B
Observa que B está
incluido en A ,por lo
tanto Ay B son
COMPARABLES
IGUALDAD DE CONJUNTOS
Dos conjuntos son iguales si tienen los mismos
elementos.
Ejemplo:
A = { x / x2 = 9 } y B = { x / (x – 3)(x + 3) =0 }
Resolviendo la ecuación de cada conjunto se
obtiene en ambos casos que x es igual a 3 o -3,
es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B
Simbólicamente :     
A B (A B) (B A)
CONJUNTOS DISJUNTOS
Dos conjuntos son disjuntos cuando no tienen
elementos comunes.
REPRESENTACIÓN GRÁFICA :
A B
1
7
5 3
9
2
4
8
6



Como puedes
observar los
conjuntos A y B no
tienen elementos
comunes, por lo
tanto son
CONJUNTOS
DISJUNTOS
CONJUNTO DE CONJUNTOS
Es un conjunto cuyos elementos son conjuntos.
Ejemplo:
F = { {a};{b};{a; b};{a;b;c} }
Observa que los elementos del conjunto F también
son conjuntos.
{a} es un elemento del conjunto F entonces {a} F

¿ Es correcto decir que {b} F ?
 NO
Porque {b} es un elemento del conjunto F ,lo
correcto es {b} F

CONJUNTO POTENCIA
El conjunto potencia de un conjunto A denotado
por P(A) o Pot(A) es el conjunto formado por
todos los subconjuntos de A.
Ejemplo: Sea A = { m;n;p }
Los subconjuntos de A son
{m},{n},{p},{m;n}, {n;p},
{m;p}, {m;n;p}, Φ
Entonces el conjunto potencia de A es:
P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ }
¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO
POTENCIA DE A ?
Observa que el conjunto A tiene 3 elementos y
su conjunto potencia osea P(A) tiene 8
elementos.
PROPIEDAD:
Dado un conjunto A cuyo número de elementos es
n , entonces el número de elementos de su
conjunto potencia es 2n.
Ejemplo:
Dado el conjunto B ={x / x es un número par y
5< x <15 }. Determinar el cardinal de P(B).
RESPUESTA
Si 5<x<15 y es un
número par entonces
B= {6;8;10;12;14}
Observa que el conjunto
B tiene 5 elementos
entonces:
Card P(B)=n P(B)=25=32
INDICE
Números Naturales ( N ) N={1;2;3;4;5;....}
Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....}
Números Racionales (Q)
Q={...;-2;-1; ;0; ; ; 1; ;2;....}
Números Irracionales ( I ) I={...; ;....}
2; 3;
Números Reales ( R )
R={...;-2;-1;0;1; ;2;3;....}
2; 3
1
2

1
5
1
2
4
3
Números Complejos ( C )
C={...;-2; ;0;1; ;2+3i;3;....}
2; 3
1
2

N
Z
Q
I
R
C
EJEMPLOS:
Expresar por extensión los siguientes conjuntos:
A )  
2
P x N/ x 9 0
   
B )
C )
D ) 

T x Q /(3x 4)(x 2) 0
    
E ) 

B x I/(3x 4)(x 2) 0
    
 
2
Q x Z / x 9 0
   
 
2
F x R / x 9 0
   
P={3}
Q={-3;3}
F = { }
 
4
T
3

 
B 2

RESPUESTAS
INDICE
7
6
5
5
6
A B
El conjunto “A unión B” que se representa asi
es el conjunto formado por todos los elementos que
pertenecen a A,a B o a ambos conjuntos.

A B


    
A B x / x A x B
Ejemplo:

 

 
A 1
;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2


 
A B 1;2;3;4;5;6;7;8;9
REPRESENTACIONES GRÁFICAS DE LA
UNIÓN DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
B
AUB AUB
PROPIEDADES DE LA UNIÓN DE
CONJUNTOS
1. A  A = A
2. A  B = B  A
3. A  Φ = A
4. A  U = U
5. (AB)C =A(BC)
6. Si AB=Φ  A=Φ  B=Φ
INDICE
7
6
5
5
6
A B
El conjunto “A intersección B” que se representa es
el conjunto formado por todos los elementos que
pertenecen a A y pertenecen a B.

A B


A B x / x A x B
    
Ejemplo:

 

 
A 1
;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2


A B 5;6;7
 
REPRESENTACIONES GRÁFICAS DE LA
INTERSECCIÓN DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
AB AB=
B
B
AB=Φ
PROPIEDADES DE LA INTERSECCIÓN
DE CONJUNTOS
1. A  A = A
2. A  B = B 
A
3. A  Φ = Φ
4. A  U = A
5. (AB)C =A(BC)
6. A(BC) =(AB)(AC)
A(BC) =(AB)(AC)
INDICE
7
6
5
5
6
A B
El conjunto “A menos B” que se representa
es el conjunto formado por todos los elementos que
pertenecen a A y no pertenecen a B.
A B



A B x / x A x B
    
Ejemplo:

 

 
A 1
;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2


A B 1;2;3;4
 
7
6
5
5
6
A B
El conjunto “B menos A” que se representa
es el conjunto formado por todos los elementos que
pertenecen a B y no pertenecen a A.
B A



B A x / x B x A
    
Ejemplo:

 

 
A 1
;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2


B A 8;9
 
REPRESENTACIONES GRÁFICAS DE LA
DIFERENCIA DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
A - B A - B
B
A - B=A
INDICE
7
6
5
5
6
A B
El conjunto “A diferencia simétrica B ” que se
representa es el conjunto formado por todos los
elementos que pertenecen a (A-B) o(B-A).
A B



A B x / x (A B) x (B A)
      
Ejemplo:

 

 
A 1
;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2

 

A B 1;2;3;4 8;9
  
También es correcto afirmar que:
A B (A B) (B A)
    
A B (A B) (A B)
    
A B
A-B B-A
A B
Dado un conjunto universal U y un conjunto
A,se llama complemento de A al conjunto
formado por todos los elementos del
universo que no pertenecen al conjunto A.
Notación: A’ o AC
Ejemplo:
U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9}
y
Simbólicamente: 

A' x / x U x A
   
A’ = U - A
1
2 3
4
5
6
7
8
9
U
A
A
A’={2;4;6,8}
PROPIEDADES DEL COMPLEMENTO
1. (A’)’=A
2. AA’=U
3. AA’=Φ
4. U’=Φ
5. Φ’=U
INDICE
PROBLEMA 1
PROBLEMA 2
PROBLEMA 3
PROBLEMA 4
PROBLEMA 5
FIN
Dados los conjuntos:
A = { 1; 4 ;7 ;10 ; ... ;34}
B = { 2 ;4;6;...;26}
C = { 3; 7;11;15;...;31}
a) Expresar B y C por comprensión
b) Calcular: n(B) + n(A)
c) Hallar: A  B , C – A
SOLUCIÓN
Los elementos de A son:
Primero analicemos cada conjunto
1 3x1
tt4tt
 1 3x2
tt7tt
 1 3x3
tt tt
10
 1 3x11
tt3 tt
4

1 3x0
tt1tt

...
A = { 1+3n / nZ  0  n 
11}
Los elementos de B son:
2x2
tt4tt
2x3
tt6tt
2x4
tt8tt
2x13
tt tt
26
2x1
tt2tt ...
B = { 2n / nZ  1  n 
13}
n(B)=13
n(A)=12
Los elementos de C son:
3 4x1
tt7tt
 3 4x2
tt tt
11
 3 4x3
tt tt
15
 3 4x7
tt tt
31

3 4x0
tt3tt

...
C = { 3+4n / nZ  0  n 
7 }
a) Expresar B y C por comprensión
B = { 2n / nZ  1  n 
18}
C = { 3+4n / nZ  0  n 
7 }
b) Calcular: n(B) + n(A)
n(C)=8
n(B) + n(A) = 13 +12 = 25
A = {1;4;7;10;13;16;19;22;25;28;31;34}
B = {2;4;6;8;10;12;14;16;18;20;22;24;26}
C = {3;7;11;15;19;23;27;31}
c) Hallar: A  B , C – A
A  B = { 4;10;16;22 }
C – A = { 3;11;15;23;27 }
Sabemos que A  B esta formado por los
elementos comunes de A y B,entonces:
Sabemos que C - A esta formado por los
elementos de C que no pertenecen a A,
entonces:
Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 }
Determinar si es verdadero o falso:
a) Φ  G
b) {3}  G
c) {{7};10} G
d) {{3};1}  G
e) {1;5;11}  G
SOLUCIÓN
Observa que los elementos de A son:
1 ; {3} ; 5 ; {7;10} ; 11
es VERDADERO
Entonces:
es VERDADERO porque Φ esta
incluido en todo los conjuntos
es VERDADERO porque {3}
es un elemento de de G
es FALSO porque {{7};10}
no es elemento de G
es FALSO
a)Φ  G ....
b) {3}  G ...
c) {{7};10} G ..
d) {{3};1}  G ...
e) {1;5;11}  G ...
Dados los conjuntos:
P = { x Z / 2x2+5x-3=0 }
M = { x/4N / -4< x < 21 }
T = { x R / (x2 - 9)(x - 4)=0 }
a) Calcular: M - ( T – P )
b) Calcular: Pot(M – T )
c) Calcular: (M  T) – P
SOLUCIÓN
P = { x Z / 2x2+5x-3=0 }
Analicemos cada conjunto:
2x2 + 5x – 3 = 0
2x – 1
+ 3
x



(2x-1)(x+3)=0
2x-1=0  x = 1/2
x+3=0  x = -3
Observa que xZ ,
entonces: P = { -3 }
M = { x/4N / -4< x < 21 }
Como x/4  N entonces los valores de x son
: 4 ; 8 ; 12 ; 16 ; 20 pero los elementos de M
se obtienen dividiendo x entre 4,por lo tanto :
M = {1 ; 2 ; 3 ; 4 ; 5 }
T = { x R / (x2 - 9)(x - 4)=0 }
Cada factor lo igualamos a cero y calculamos
los valores de x
x – 4 = 0  x = 4
x2 – 9 = 0  x2 = 9  x = 3 o x =-3
Por lo tanto: T = { -3;3;4 }
a) Calcular: M - ( T – P )
T – P = { -3;3;4 } - { -3 }  T – P = {3 ;4 }
M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 }
M - (T –P)= {1 ; 2 ; 5 }
b) Calcular: Pot( M – T )
M – T = {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 }
M – T = {1 ; 2 ; 5 }
Pot( M – T ) = { {1}; {2}; {5};{1;2};{1;5};
{1;2;5};
{2;5};
Φ }
c) Calcular: (M  T) – P
M  T = {1 ; 2 ; 3 ; 4 ; 5 }  { -3;3;4 }
M  T = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 }
(M  T) – P = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } - { -3 }
(M  T) – P = {1 ; 2 ; 3 ; 4 ; 5 }
Expresar la región sombreada en
términos de operaciones entre los
conjuntos A,B y C.
A B
C
A
B
C
SOLUCIÓN
A B
C
A B
C
A
B
C
A
B
C
[(AB) –
C]
[(BC) –
A]
[(AC) –
B]
 
A B
A
B
C
Observa como se
obtiene la región
sombreada
Toda la zona de amarillo es
AB
La zona de verde es AB
Entonces restando se obtiene la zona
que se ve en la figura : (AB) - (AB)
C
Finalmente le agregamos C y se obtiene:
[ (AB) - (AB) ]  C ( A  B )  C
=
Según las preferencias de 420
personas que ven los canales A,B o
C se observa que 180 ven el canal A
,240 ven el canal B y 150 no ven el
canal C,los que ven por lo menos 2
canales son 230¿cuántos ven los
tres canales?
SOLUCIÓN
El universo es: 420
Ven el canal A: 180 Ven el canal B: 240
No ven el canal C: 150
Entonces si ven el canal C: 420 – 150 = 270
A B
C
a
d
(I) a + e + d + x =180
b
e
x
f
(II) b + e + f + x = 240
c
(III) d + c + f + x = 270
Dato: Ven por lo menos
dos canales 230 ,entonces:
(IV) d + e + f + x = 230
(I) a + e + d + x =180
(II) b + e + f + x = 240
(III) d + c + f + x = 270
Sumamos las ecuaciones (I),(II) y (III)
Sabemos que : a+b+c+d+e+f+x =420

230
entonces : a+b+c =190
a + b + c + 2(d + e + f + x) + x = 690


190 230
190 + 560 + x =690  x = 40
Esto significa que 40 personas ven los tres canales

Más contenido relacionado

PPT
Conjuntos teoría y ejemplos de cada uno con diagramas de venn
PPT
conjuntos.ppt
PPSX
MATERIAL PARA TRABAJAR LA TEORIA DE CONUNTOS
PPT
Teoria de conjuntos en diapositvias interactivas
PPT
Conjuntos.ppt
PDF
conjuntos-110626205831-phpapp02
PPT
Teoría de Conjuntos
PPT
Conjuntos-DOCENTE klinger-
Conjuntos teoría y ejemplos de cada uno con diagramas de venn
conjuntos.ppt
MATERIAL PARA TRABAJAR LA TEORIA DE CONUNTOS
Teoria de conjuntos en diapositvias interactivas
Conjuntos.ppt
conjuntos-110626205831-phpapp02
Teoría de Conjuntos
Conjuntos-DOCENTE klinger-

Similar a Conjunto Sexto.ppt (20)

PPT
Conjuntos 110626205831-phpapp02
PPT
Teoria de conjuntos
PPT
Teoria de conjuntos
PPT
Conjuntos
PPT
Conjuntos.ppt de la teroria de conjunto jamc
PPT
conjuntos aritmetica.ppt calses de aritmetica
PPTX
Teoría de conjuntos para el estudio .ppt.pptx
PPTX
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
PPTX
Teoria de conjuntos APLICACION MATEMATICAS
PPT
Conjuntos 41888__
PPT
Conjuntos
PPT
Conjuntos
PPT
Teoria de conjuntos
PPT
Definición de Conjuntos.
PPT
Conjuntos
PPT
Conjuntos
PPT
Conjuntos22
PPT
Conjuntos
Conjuntos 110626205831-phpapp02
Teoria de conjuntos
Teoria de conjuntos
Conjuntos
Conjuntos.ppt de la teroria de conjunto jamc
conjuntos aritmetica.ppt calses de aritmetica
Teoría de conjuntos para el estudio .ppt.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
Teoria de conjuntos APLICACION MATEMATICAS
Conjuntos 41888__
Conjuntos
Conjuntos
Teoria de conjuntos
Definición de Conjuntos.
Conjuntos
Conjuntos
Conjuntos22
Conjuntos
Publicidad

Más de Luis Ospino (6)

PPT
nomadismo
PDF
Luis eduardo ospino_avendaño_actividad1_2_mapac foro
PPTX
Plantilla de presentaciones
PPTX
Plantilla de presentaciones
PPT
FactorizacióN
PPTX
FactorizacióN Xra Presentar
nomadismo
Luis eduardo ospino_avendaño_actividad1_2_mapac foro
Plantilla de presentaciones
Plantilla de presentaciones
FactorizacióN
FactorizacióN Xra Presentar
Publicidad

Último (20)

PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PDF
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PPTX
4. Qué es un computador PARA GRADO CUARTO.pptx
PDF
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
DOCX
PLANES DE área ciencias naturales y aplicadas
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Modelo Educativo SUB 2023versión final.pdf
DOCX
Programa_Sintetico_Fase_4.docx 3° Y 4°..
PDF
informe tipos de Informatica perfiles profesionales _pdf
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PPTX
Historia-Clinica-de-Emergencia-Obstetrica 1.10.pptx
PPTX
Clase 3 del silabo-gestion y control financiero
PDF
CURRICULAR DE PRIMARIA santa ursula..pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Telos 127 Generacion Al fa Beta - fundaciontelefonica
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
4. Qué es un computador PARA GRADO CUARTO.pptx
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PLANES DE área ciencias naturales y aplicadas
PLAN DE CASTELLANO 2021 actualizado a la normativa
E1 Guía_Matemática_5°_grado.pdf paraguay
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Modelo Educativo SUB 2023versión final.pdf
Programa_Sintetico_Fase_4.docx 3° Y 4°..
informe tipos de Informatica perfiles profesionales _pdf
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
Historia-Clinica-de-Emergencia-Obstetrica 1.10.pptx
Clase 3 del silabo-gestion y control financiero
CURRICULAR DE PRIMARIA santa ursula..pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf

Conjunto Sexto.ppt

  • 2. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN DE CONJUNTOS DIFERENCIA DE CONJUNTOS DIFERENCIA SIMÉTRICA COMPLEMENTO DE UN CONJUNTO PROBLEMAS
  • 3. En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido.
  • 4. Un conjunto se puede entender como una colección o agrupación bien definida de objetos de cualquier clase. Los objetos que forman un conjunto son llamados miembros o elementos del conjunto. Ejemplo: En la figura adjunta tienes un Conjunto de Personas
  • 5. NOTACIÓN Todo conjunto se escribe entre llaves { } y se le denota mediante letras mayúsculas A, B, C, ...,sus elementos se separan mediante punto y coma. Ejemplo: El conjunto de las letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: L={ a; b; c; ...; x; y; z}
  • 6. Ejemplo: A= {a;b;c;d;e} su cardinal n(A)= B= {x;x;x;y;y;z} su cardinal n(B)= En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x; x; x; y; y; z } simplemente será { x; y; z }. Al número de elementos que tiene un conjunto Q se le llama CARDINAL DEL CONJUNTO y se le representa por n(Q). 5 3 INDICE
  • 7. Para indicar que un elemento pertenece a un conjunto se usa el símbolo:  Si un elemento no pertenece a un conjunto se usa el símbolo:  Ejemplo: Sea M = {2;4;6;8;10} 2 M  ...se lee 2 pertenece al conjunto M 5 M  ...se lee 5 no pertenece al conjunto M INDICE
  • 8. I) POR EXTENSIÓN Hay dos formas de determinar un conjunto, por Extensión y por Comprensión Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5 y menores que 20. A = { 6;8;10;12;14;16;18 } INDICE
  • 9. B) El conjunto de números negativos impares mayores que -10. B = {-9;-7;-5;-3;-1 } II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9. P = { los números dígitos }
  • 10. Otra forma de escribir es: P = { x / x = dígito } se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes; martes; miércoles; jueves; viernes; sábado; domingo } Por Comprensión : D = { x / x = día de la semana } INDICE
  • 11. Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. A M T 7 2 3 6 9 a e i o u (1;3) (7;6) (2;4) (5;8) 8 4 1 5 INDICE
  • 12. A = o A = { } se lee: “A es el conjunto vacío” o “A es el conjunto nulo “ CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos: o { }   Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x / } 1 0 X 
  • 13. CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } G =   2 x / x 4 x 0    CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x2 = 4 } ;
  • 14. CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra U Ejemplo: El universo o conjunto universal ; de todos los números es el conjunto de los NÚMEROS COMPLEJOS. INDICE
  • 15. INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN :  A B Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A
  • 16. PROPIEDADES: I ) Todo conjunto está incluido en si mismo.  A A II ) El conjunto vacío se considera incluido en cualquier conjunto.   A III ) A está incluido en B ( ) equivale a decir que B incluye a A ( )  A B  B A IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. ( )  A B V ) Simbólicamente:       A B x A x B
  • 17. CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe una relación de inclusión. A es comparable con B  A  B  B  A Ejemplo: A={1;2;3;4;5} y B={2;4} 1 2 3 4 5 A B Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES
  • 18. IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x2 = 9 } y B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B Simbólicamente :      A B (A B) (B A)
  • 19. CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : A B 1 7 5 3 9 2 4 8 6    Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS
  • 20. CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a} F  ¿ Es correcto decir que {b} F ?  NO Porque {b} es un elemento del conjunto F ,lo correcto es {b} F 
  • 21. CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Pot(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo: Sea A = { m;n;p } Los subconjuntos de A son {m},{n},{p},{m;n}, {n;p}, {m;p}, {m;n;p}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
  • 22. Observa que el conjunto A tiene 3 elementos y su conjunto potencia osea P(A) tiene 8 elementos. PROPIEDAD: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2n. Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). RESPUESTA Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} Observa que el conjunto B tiene 5 elementos entonces: Card P(B)=n P(B)=25=32 INDICE
  • 23. Números Naturales ( N ) N={1;2;3;4;5;....} Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....} Números Racionales (Q) Q={...;-2;-1; ;0; ; ; 1; ;2;....} Números Irracionales ( I ) I={...; ;....} 2; 3; Números Reales ( R ) R={...;-2;-1;0;1; ;2;3;....} 2; 3 1 2  1 5 1 2 4 3 Números Complejos ( C ) C={...;-2; ;0;1; ;2+3i;3;....} 2; 3 1 2 
  • 25. EJEMPLOS: Expresar por extensión los siguientes conjuntos: A )   2 P x N/ x 9 0     B ) C ) D )   T x Q /(3x 4)(x 2) 0      E )   B x I/(3x 4)(x 2) 0        2 Q x Z / x 9 0       2 F x R / x 9 0     P={3} Q={-3;3} F = { }   4 T 3    B 2  RESPUESTAS INDICE
  • 26. 7 6 5 5 6 A B El conjunto “A unión B” que se representa asi es el conjunto formado por todos los elementos que pertenecen a A,a B o a ambos conjuntos.  A B        A B x / x A x B Ejemplo:       A 1 ;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2     A B 1;2;3;4;5;6;7;8;9
  • 27. REPRESENTACIONES GRÁFICAS DE LA UNIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B B AUB AUB
  • 28. PROPIEDADES DE LA UNIÓN DE CONJUNTOS 1. A  A = A 2. A  B = B  A 3. A  Φ = A 4. A  U = U 5. (AB)C =A(BC) 6. Si AB=Φ  A=Φ  B=Φ INDICE
  • 29. 7 6 5 5 6 A B El conjunto “A intersección B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y pertenecen a B.  A B   A B x / x A x B      Ejemplo:       A 1 ;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2   A B 5;6;7  
  • 30. REPRESENTACIONES GRÁFICAS DE LA INTERSECCIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B AB AB= B B AB=Φ
  • 31. PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS 1. A  A = A 2. A  B = B  A 3. A  Φ = Φ 4. A  U = A 5. (AB)C =A(BC) 6. A(BC) =(AB)(AC) A(BC) =(AB)(AC) INDICE
  • 32. 7 6 5 5 6 A B El conjunto “A menos B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y no pertenecen a B. A B    A B x / x A x B      Ejemplo:       A 1 ;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2   A B 1;2;3;4  
  • 33. 7 6 5 5 6 A B El conjunto “B menos A” que se representa es el conjunto formado por todos los elementos que pertenecen a B y no pertenecen a A. B A    B A x / x B x A      Ejemplo:       A 1 ;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2   B A 8;9  
  • 34. REPRESENTACIONES GRÁFICAS DE LA DIFERENCIA DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A - B A - B B A - B=A INDICE
  • 35. 7 6 5 5 6 A B El conjunto “A diferencia simétrica B ” que se representa es el conjunto formado por todos los elementos que pertenecen a (A-B) o(B-A). A B    A B x / x (A B) x (B A)        Ejemplo:       A 1 ;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2     A B 1;2;3;4 8;9   
  • 36. También es correcto afirmar que: A B (A B) (B A)      A B (A B) (A B)      A B A-B B-A A B
  • 37. Dado un conjunto universal U y un conjunto A,se llama complemento de A al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A. Notación: A’ o AC Ejemplo: U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9} y Simbólicamente:   A' x / x U x A     A’ = U - A
  • 38. 1 2 3 4 5 6 7 8 9 U A A A’={2;4;6,8} PROPIEDADES DEL COMPLEMENTO 1. (A’)’=A 2. AA’=U 3. AA’=Φ 4. U’=Φ 5. Φ’=U INDICE
  • 39. PROBLEMA 1 PROBLEMA 2 PROBLEMA 3 PROBLEMA 4 PROBLEMA 5 FIN
  • 40. Dados los conjuntos: A = { 1; 4 ;7 ;10 ; ... ;34} B = { 2 ;4;6;...;26} C = { 3; 7;11;15;...;31} a) Expresar B y C por comprensión b) Calcular: n(B) + n(A) c) Hallar: A  B , C – A SOLUCIÓN
  • 41. Los elementos de A son: Primero analicemos cada conjunto 1 3x1 tt4tt  1 3x2 tt7tt  1 3x3 tt tt 10  1 3x11 tt3 tt 4  1 3x0 tt1tt  ... A = { 1+3n / nZ  0  n  11} Los elementos de B son: 2x2 tt4tt 2x3 tt6tt 2x4 tt8tt 2x13 tt tt 26 2x1 tt2tt ... B = { 2n / nZ  1  n  13} n(B)=13 n(A)=12
  • 42. Los elementos de C son: 3 4x1 tt7tt  3 4x2 tt tt 11  3 4x3 tt tt 15  3 4x7 tt tt 31  3 4x0 tt3tt  ... C = { 3+4n / nZ  0  n  7 } a) Expresar B y C por comprensión B = { 2n / nZ  1  n  18} C = { 3+4n / nZ  0  n  7 } b) Calcular: n(B) + n(A) n(C)=8 n(B) + n(A) = 13 +12 = 25
  • 43. A = {1;4;7;10;13;16;19;22;25;28;31;34} B = {2;4;6;8;10;12;14;16;18;20;22;24;26} C = {3;7;11;15;19;23;27;31} c) Hallar: A  B , C – A A  B = { 4;10;16;22 } C – A = { 3;11;15;23;27 } Sabemos que A  B esta formado por los elementos comunes de A y B,entonces: Sabemos que C - A esta formado por los elementos de C que no pertenecen a A, entonces:
  • 44. Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 } Determinar si es verdadero o falso: a) Φ  G b) {3}  G c) {{7};10} G d) {{3};1}  G e) {1;5;11}  G SOLUCIÓN
  • 45. Observa que los elementos de A son: 1 ; {3} ; 5 ; {7;10} ; 11 es VERDADERO Entonces: es VERDADERO porque Φ esta incluido en todo los conjuntos es VERDADERO porque {3} es un elemento de de G es FALSO porque {{7};10} no es elemento de G es FALSO a)Φ  G .... b) {3}  G ... c) {{7};10} G .. d) {{3};1}  G ... e) {1;5;11}  G ...
  • 46. Dados los conjuntos: P = { x Z / 2x2+5x-3=0 } M = { x/4N / -4< x < 21 } T = { x R / (x2 - 9)(x - 4)=0 } a) Calcular: M - ( T – P ) b) Calcular: Pot(M – T ) c) Calcular: (M  T) – P SOLUCIÓN
  • 47. P = { x Z / 2x2+5x-3=0 } Analicemos cada conjunto: 2x2 + 5x – 3 = 0 2x – 1 + 3 x    (2x-1)(x+3)=0 2x-1=0  x = 1/2 x+3=0  x = -3 Observa que xZ , entonces: P = { -3 } M = { x/4N / -4< x < 21 } Como x/4  N entonces los valores de x son : 4 ; 8 ; 12 ; 16 ; 20 pero los elementos de M se obtienen dividiendo x entre 4,por lo tanto : M = {1 ; 2 ; 3 ; 4 ; 5 }
  • 48. T = { x R / (x2 - 9)(x - 4)=0 } Cada factor lo igualamos a cero y calculamos los valores de x x – 4 = 0  x = 4 x2 – 9 = 0  x2 = 9  x = 3 o x =-3 Por lo tanto: T = { -3;3;4 } a) Calcular: M - ( T – P ) T – P = { -3;3;4 } - { -3 }  T – P = {3 ;4 } M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 } M - (T –P)= {1 ; 2 ; 5 }
  • 49. b) Calcular: Pot( M – T ) M – T = {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 } M – T = {1 ; 2 ; 5 } Pot( M – T ) = { {1}; {2}; {5};{1;2};{1;5}; {1;2;5}; {2;5}; Φ } c) Calcular: (M  T) – P M  T = {1 ; 2 ; 3 ; 4 ; 5 }  { -3;3;4 } M  T = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } (M  T) – P = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } - { -3 } (M  T) – P = {1 ; 2 ; 3 ; 4 ; 5 }
  • 50. Expresar la región sombreada en términos de operaciones entre los conjuntos A,B y C. A B C A B C SOLUCIÓN
  • 51. A B C A B C A B C A B C [(AB) – C] [(BC) – A] [(AC) – B]  
  • 52. A B A B C Observa como se obtiene la región sombreada Toda la zona de amarillo es AB La zona de verde es AB Entonces restando se obtiene la zona que se ve en la figura : (AB) - (AB) C Finalmente le agregamos C y se obtiene: [ (AB) - (AB) ]  C ( A  B )  C =
  • 53. Según las preferencias de 420 personas que ven los canales A,B o C se observa que 180 ven el canal A ,240 ven el canal B y 150 no ven el canal C,los que ven por lo menos 2 canales son 230¿cuántos ven los tres canales? SOLUCIÓN
  • 54. El universo es: 420 Ven el canal A: 180 Ven el canal B: 240 No ven el canal C: 150 Entonces si ven el canal C: 420 – 150 = 270 A B C a d (I) a + e + d + x =180 b e x f (II) b + e + f + x = 240 c (III) d + c + f + x = 270 Dato: Ven por lo menos dos canales 230 ,entonces: (IV) d + e + f + x = 230
  • 55. (I) a + e + d + x =180 (II) b + e + f + x = 240 (III) d + c + f + x = 270 Sumamos las ecuaciones (I),(II) y (III) Sabemos que : a+b+c+d+e+f+x =420  230 entonces : a+b+c =190 a + b + c + 2(d + e + f + x) + x = 690   190 230 190 + 560 + x =690  x = 40 Esto significa que 40 personas ven los tres canales