SlideShare una empresa de Scribd logo
Minería de
Datos
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
GRUPO 4
YUCRA MIRANDA
YENNY YANETH
PEREZ FIERRO
DANIEL
SALAS QUISPE
FRANKLIN
GODOY CACERES
JORGE JHONNY
Historia de la minería de Datos
La minería de datos empieza alrededor de los años 70.
❏ Data Fishing (Pesca de Datos)
❏ Data Mining (Procesamiento de datos).
❏ Data Archaeology (Arqueología de datos)
con la idea de encontrar correlaciones sin una hipótesis previa en bases de datos con ruido.
A principios de los años ochenta, Rakesh Agrawal, GioWiederhold, Robert Blum y Gregory Piatetsky-Shapiro entre otros, empezaron a
consolidar los términos de Minería de Datos y KDD.
La evolución de sus herramientas en el transcurso del tiempo puede dividirse en cuatro etapas principales:
• Colección de Datos (1960).
• Acceso de Datos (1980).
• Almacén de Datos y Apoyo a las Decisiones (principios de la década de 1990).
• Minería de Datos Inteligente.( década de 1990).
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATO
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
Qué es minería de datos
La minería de datos es el proceso de búsqueda en grandes bases de
datos para encontrar información útil que sirva para la toma de
decisiones. También se utiliza el término en inglés «data mining».
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
La minería de datos surgió con la intención o el objetivo de ayudar a
comprender una enorme cantidad de datos
Cómo surgió Mining o Minería de Datos ?
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
1. Determinación de los objetivos.
2. Procesamientos de datos.
3. Determinación del modelo.
4. Análisis de los resultados.
Para llevar a cabo un análisis de Data Mining,
deberán realizar cuatro pasos distintos:
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
Tecnica de mineria de datos
● Técnicas Descriptivas.
● Técnicas Predictivas.
❖ Descripción de clases.
❖ Análisis de asociación.
❖ Análisis de clusters.
❖ Clasificación y
predicción.
❖ Árboles de decisión.
❖ Redes Neuronales.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
Diferencias entre Data Mining y Big Data
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
❖ Es capaz de analizar bases de datos con una enorme cantidad de datos.
❖ Los resultados son muy fáciles de interpretar y no es necesario tener conocimientos en ingeniería informática.
❖ Permite encontrar, atraer y retener clientes.
❖ La empresa puede mejorar la atención al cliente a partir de la información obtenida.
❖ Da a las empresas la posibilidad de ofrecer a los clientes los productos o servicios que necesitan.
❖ Antes de usar los modelos, estos son comprobados mediante estadísticas para verificar que las predicciones obtenidas son
válidas.
Ventajas de minería de datos
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
PROYECTO
ANÁLISIS DE LA PREDICCIÓN DE VENTAS
APLICANDO UN MODELO DE MINERÍA DE DATOS
SOBRE UN CONJUNTO DE DATOS PARA UNA TIENDA
DE BICICLETAS
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
DESARROLLO DEL PROYECTO
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
DIAGRAMA DE CLASES
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
ORIGEN DE LOS DATOS
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
MIGRACIÓN DE LOS DATOS
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
PROBLEMA 1:
La tienda de bicicleta quiere conocer qué tipos de clientes y
posibles compradores.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
EXPLORAR DATOS
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREACIÓN DE LA VISTA “view_ventas”
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREAR MODELOS
crear el data Sources
Para crear el modelo, lo hacemos una vez definido la
base de datos en SQL server. Es dirigirnos a la
herramienta SQL server Data tools, creamos un proyecto
de tipo minería de datos.
Una vez definido el proyecto nos dirigimos a Data
Sources. Y nos conectamos al servidor, y a continuación
nos conectamos a la base de datos con la cual se
trabajará en el proyecto como se muestra en la siguiente
gráfica.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREAR MODELOS
crear el data Sources Views
Para crear la vista lo que hacemos es dirigirnos a Data Source Views, aquí
seleccionamos la base de datos que seleccionamos en el Data Sources.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREAR MODELOS
crear el data Sources Views
A continuación, seleccionamos la vista que hemos preparado para trabajar con
el proyecto, basado en la base de datos.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREAR MODELOS
creación del data Mining Strutures
Para crear el modelo, lo que hacemos en este caso para el proyecto, es
aleccionar el Algoritmo con el que se trabajara, en este caso seleccionamos el
algoritmo de Microsoft Naive Bayes.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREAR MODELOS
creación del data Mining Strutures
A continuación, definimos todos los atributos los cuales
serán definidos como, entradas, la llave primaria y
finalmente seleccionamos la variable de predicción, en
este caso tenemos la variable Edad el cual será tomado
como dato de predicción.
Luego seleccionamos un valor de predicción, en este
caso seleccionamos, como porcentaje de prueba 30 por
ciento.
integrantes:
YUCRA MIRANDA YENNY YANETH
SALAS QUISPE FRANKLIN
GODOY CACERES JORGE JHONNY
PEREZ FIERRO DANIEL
MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS
DOCENTE: ING. DAVID MENDOZA GUTIERREZ
CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik.
THANKS!
GRUPO 4

Más contenido relacionado

PPTX
Data maining
PPTX
Data maining grupo 4
PPTX
Data mining
PPTX
Ciencia de datos
PPTX
Minería de datos: Una herramienta para optimizar un negocio
PPTX
Minería de datos: Una herramienta para optimizar un negocio
PPTX
Minería de datos: Una herramienta para optimizar un negocio
PPTX
Minería de datos: una herramienta para optimizar un negocio
Data maining
Data maining grupo 4
Data mining
Ciencia de datos
Minería de datos: Una herramienta para optimizar un negocio
Minería de datos: Una herramienta para optimizar un negocio
Minería de datos: Una herramienta para optimizar un negocio
Minería de datos: una herramienta para optimizar un negocio

Similar a Data maining grupo 4 (20)

DOCX
Monografia Data Mining
PPTX
Presentacion data mining (mineria de datos)- base de datos
PPT
Mineria de Datos
PPTX
aporte de la educación 29-04 (2) (2).pptx
PPTX
Técnicas mineria de datos
PDF
Mineria de datos-una_introduccion
PDF
Minería de Datos. Introducción
PDF
IN Unidad 3: Minería de datos
DOCX
Mineria de datos
PPTX
APLICACIÓN DE MINERÍA DE DATOS PARA LA EMPRESA “PRODUCTOS TECNOLÓGICOS SC”
PPTX
Aplicacion de mineria de datos para la empresa productos tecnologicos
PPTX
Proyecto1: APLICACION DE MINERIA DE DATOS PARA LA EMPRESA PRODUCTOS TECNOLOGI...
PPT
Mineria1 2010
DOCX
Mineria de datos
PDF
aplicaciones de minería de datos
PPTX
Data mining
PPTX
Data mining
PPTX
Data mining
PPTX
PPTX
Data mining
Monografia Data Mining
Presentacion data mining (mineria de datos)- base de datos
Mineria de Datos
aporte de la educación 29-04 (2) (2).pptx
Técnicas mineria de datos
Mineria de datos-una_introduccion
Minería de Datos. Introducción
IN Unidad 3: Minería de datos
Mineria de datos
APLICACIÓN DE MINERÍA DE DATOS PARA LA EMPRESA “PRODUCTOS TECNOLÓGICOS SC”
Aplicacion de mineria de datos para la empresa productos tecnologicos
Proyecto1: APLICACION DE MINERIA DE DATOS PARA LA EMPRESA PRODUCTOS TECNOLOGI...
Mineria1 2010
Mineria de datos
aplicaciones de minería de datos
Data mining
Data mining
Data mining
Data mining
Publicidad

Último (20)

PDF
Clase 2 de abril Educacion adistancia.pdf
PPTX
Introduccion quimica del fuego.ffffffffffpptx
PDF
S15 Protección de redes electricas 2025-1_removed.pdf
PPTX
TECNOLOGIA EN CONSTRUCCION PUBLICO Y PRIVADA
PDF
Repaso sobre el Gusano_cogollero y como ataca .pdf
PPTX
Presentación - Taller interpretación iso 9001-Solutions consulting learning.pptx
PPTX
Manual ISO9001_2015_IATF_16949_2016.pptx
PDF
ntc5951 Metodo de ensayo para determinar las propiedades de tension en plasti...
PPTX
1 CONTAMINACION AMBIENTAL EN EL PLANETA.pptx
PDF
SESION 10 SEGURIDAD EN TRABAJOS CON ELECTRICIDAD.pdf
PPTX
A8B08CED-D3D9-415C-B4A3-2A6CA6409A48.1.1Presentación Dirección 2022 unidade...
PPTX
TOPOGRAFÍA - INGENIERÍA CIVIL - PRESENTACIÓN
PDF
silabos de colegio privado para clases tema2
PPT
357161027-seguridad-industrial-diapositivas-ppt.ppt
PDF
Sugerencias Didacticas 2023_Diseño de Estructuras Metalicas_digital.pdf
PPTX
diego universidad convergencia e información
PDF
LIBRO UNIVERSITARIO DESARROLLO ORGANIZACIONAL BN.pdf
PDF
Matriz_Seguimiento_Estu_Consult_2024_ACT.pdf
PPTX
MARITIMO Y LESGILACION DEL MACO TRANSPORTE
PPTX
PRESENTACION DIAPOSITIVA PARA UN PROYECTO .pptx
Clase 2 de abril Educacion adistancia.pdf
Introduccion quimica del fuego.ffffffffffpptx
S15 Protección de redes electricas 2025-1_removed.pdf
TECNOLOGIA EN CONSTRUCCION PUBLICO Y PRIVADA
Repaso sobre el Gusano_cogollero y como ataca .pdf
Presentación - Taller interpretación iso 9001-Solutions consulting learning.pptx
Manual ISO9001_2015_IATF_16949_2016.pptx
ntc5951 Metodo de ensayo para determinar las propiedades de tension en plasti...
1 CONTAMINACION AMBIENTAL EN EL PLANETA.pptx
SESION 10 SEGURIDAD EN TRABAJOS CON ELECTRICIDAD.pdf
A8B08CED-D3D9-415C-B4A3-2A6CA6409A48.1.1Presentación Dirección 2022 unidade...
TOPOGRAFÍA - INGENIERÍA CIVIL - PRESENTACIÓN
silabos de colegio privado para clases tema2
357161027-seguridad-industrial-diapositivas-ppt.ppt
Sugerencias Didacticas 2023_Diseño de Estructuras Metalicas_digital.pdf
diego universidad convergencia e información
LIBRO UNIVERSITARIO DESARROLLO ORGANIZACIONAL BN.pdf
Matriz_Seguimiento_Estu_Consult_2024_ACT.pdf
MARITIMO Y LESGILACION DEL MACO TRANSPORTE
PRESENTACION DIAPOSITIVA PARA UN PROYECTO .pptx
Publicidad

Data maining grupo 4

  • 1. Minería de Datos DOCENTE: ING. DAVID MENDOZA GUTIERREZ GRUPO 4 YUCRA MIRANDA YENNY YANETH PEREZ FIERRO DANIEL SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY
  • 2. Historia de la minería de Datos La minería de datos empieza alrededor de los años 70. ❏ Data Fishing (Pesca de Datos) ❏ Data Mining (Procesamiento de datos). ❏ Data Archaeology (Arqueología de datos) con la idea de encontrar correlaciones sin una hipótesis previa en bases de datos con ruido. A principios de los años ochenta, Rakesh Agrawal, GioWiederhold, Robert Blum y Gregory Piatetsky-Shapiro entre otros, empezaron a consolidar los términos de Minería de Datos y KDD. La evolución de sus herramientas en el transcurso del tiempo puede dividirse en cuatro etapas principales: • Colección de Datos (1960). • Acceso de Datos (1980). • Almacén de Datos y Apoyo a las Decisiones (principios de la década de 1990). • Minería de Datos Inteligente.( década de 1990). integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATO DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 3. Qué es minería de datos La minería de datos es el proceso de búsqueda en grandes bases de datos para encontrar información útil que sirva para la toma de decisiones. También se utiliza el término en inglés «data mining». integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 4. La minería de datos surgió con la intención o el objetivo de ayudar a comprender una enorme cantidad de datos Cómo surgió Mining o Minería de Datos ? integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 5. 1. Determinación de los objetivos. 2. Procesamientos de datos. 3. Determinación del modelo. 4. Análisis de los resultados. Para llevar a cabo un análisis de Data Mining, deberán realizar cuatro pasos distintos: integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 6. Tecnica de mineria de datos ● Técnicas Descriptivas. ● Técnicas Predictivas. ❖ Descripción de clases. ❖ Análisis de asociación. ❖ Análisis de clusters. ❖ Clasificación y predicción. ❖ Árboles de decisión. ❖ Redes Neuronales. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 7. Diferencias entre Data Mining y Big Data integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 8. ❖ Es capaz de analizar bases de datos con una enorme cantidad de datos. ❖ Los resultados son muy fáciles de interpretar y no es necesario tener conocimientos en ingeniería informática. ❖ Permite encontrar, atraer y retener clientes. ❖ La empresa puede mejorar la atención al cliente a partir de la información obtenida. ❖ Da a las empresas la posibilidad de ofrecer a los clientes los productos o servicios que necesitan. ❖ Antes de usar los modelos, estos son comprobados mediante estadísticas para verificar que las predicciones obtenidas son válidas. Ventajas de minería de datos integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 9. PROYECTO ANÁLISIS DE LA PREDICCIÓN DE VENTAS APLICANDO UN MODELO DE MINERÍA DE DATOS SOBRE UN CONJUNTO DE DATOS PARA UNA TIENDA DE BICICLETAS integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 10. DESARROLLO DEL PROYECTO integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 11. DIAGRAMA DE CLASES integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 12. ORIGEN DE LOS DATOS integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 13. MIGRACIÓN DE LOS DATOS integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 14. PROBLEMA 1: La tienda de bicicleta quiere conocer qué tipos de clientes y posibles compradores. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 15. EXPLORAR DATOS integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 16. CREACIÓN DE LA VISTA “view_ventas” integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 17. CREAR MODELOS crear el data Sources Para crear el modelo, lo hacemos una vez definido la base de datos en SQL server. Es dirigirnos a la herramienta SQL server Data tools, creamos un proyecto de tipo minería de datos. Una vez definido el proyecto nos dirigimos a Data Sources. Y nos conectamos al servidor, y a continuación nos conectamos a la base de datos con la cual se trabajará en el proyecto como se muestra en la siguiente gráfica. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 18. CREAR MODELOS crear el data Sources Views Para crear la vista lo que hacemos es dirigirnos a Data Source Views, aquí seleccionamos la base de datos que seleccionamos en el Data Sources. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 19. CREAR MODELOS crear el data Sources Views A continuación, seleccionamos la vista que hemos preparado para trabajar con el proyecto, basado en la base de datos. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 20. CREAR MODELOS creación del data Mining Strutures Para crear el modelo, lo que hacemos en este caso para el proyecto, es aleccionar el Algoritmo con el que se trabajara, en este caso seleccionamos el algoritmo de Microsoft Naive Bayes. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 21. CREAR MODELOS creación del data Mining Strutures A continuación, definimos todos los atributos los cuales serán definidos como, entradas, la llave primaria y finalmente seleccionamos la variable de predicción, en este caso tenemos la variable Edad el cual será tomado como dato de predicción. Luego seleccionamos un valor de predicción, en este caso seleccionamos, como porcentaje de prueba 30 por ciento. integrantes: YUCRA MIRANDA YENNY YANETH SALAS QUISPE FRANKLIN GODOY CACERES JORGE JHONNY PEREZ FIERRO DANIEL MODULO: FUNDAMENTOS DE MINERÍA Y CIENCIAS DE DATOS DOCENTE: ING. DAVID MENDOZA GUTIERREZ
  • 22. CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik. THANKS! GRUPO 4