3
Lo más leído
4
Lo más leído
12
Lo más leído
Universidad de Santiago de Chile Autores: Miguel Martínez Concha
Facultad de Ciencia Carlos Silva Cornejo
Departamento de Matemática y CC Emilio Villalobos Marín
.
Ejercicios Resueltos
1 Cálculo de integrales dobles en coordenadas
rectángulares cartesianas
1.1 Problema
Calcular
ZZ
D
p
x + ydxdy si D es la región acotada por las respectivas rectas
y = x; y = x y x = 1
Solución
Se tiene que la región D = (x; y) 2 IR2
= 0 x 1; x y x
ZZ
D
p
x + ydxdy =
Z 1
0
Z x
x
p
x + ydydx
=
2
3
Z 1
0
(x + y)
3=2
x
x
dx
=
2
3
Z 1
0
(2x)
3=2
dx
=
25=2
3
2
5
(x)
5=2
1
0
=
8
p
2
15
1.2 Problema
Calcular
ZZ
D
p
x2 y2dxdy si D es el dominio limitado por el triángulo de
vértices A (0; 0) ; B(1; 1); C (1; 1) :
Solución
Entonces se tiene que el dominio está delimitado por las rectas y = x;
y = x y x = 1:
Luego el dominio de integración es:
D = (x; y) 2 IR2
= 0 x 1; x y x
:
Integrando a franjas verticales, resulta
1
ZZ
D
p
x2 y2dxdy =
Z 1
0
Z x
x
p
x2 y2dydx
=
Z 1
0
Z x
x
x
r
1
y
x
2
dydx
Hacemos el cambio de variables
y
x
= sent =) dy = x cos tdt y
determinemos los limites.
Para y = x =) arcsen
x
x
= arcsen (1) =
2
:
Para y = x =) arcsen
x
x
= arcsen ( 1) =
2
Por tanto
Z 1
0
Z x
x
x
r
1
y
x
2
dydx =
Z 1
0
Z 2
2
x2
p
1 sen2tdtdx
=
Z 1
0
Z 2
2
x2
cos2
tdtdx
=
Z 1
0
Z 2
2
x2
(
1 + cos 2t
2
)dtdx
=
Z 1
0
x2 t
2
+
sen2t
4
2
2
dx
=
2
Z 1
0
x2
dx
=
2
x3
3
1
0
=
6
1.3 Problema
Calcular
ZZ
D
y 2x2
dxdy si D es la región acotada por jxj + jyj = 2
Solución
Se tiene que la región D = (x; y) 2 IR2
= jxj + jyj 2
Si escogemos la región con una partición de tipo I, es necesario utilizar dos
integrales iterativas porque para 2 x 0 , la frontera inferior de la región es
la grá…ca de y = x 2, y la superior es y = x + 2;y para 0 x 2 la frontera
inferior de la región es la grá…ca de y = x 2, y la superior es y = x + 2
Entonces se tiene D = D1 [ D2 tal que D1 [ D2 = :
donde D1 = (x; y) 2 IR2
= 2 x 0; x 2 y x + 2
D2 = (x; y) 2 IR2
= 0 < x 2; x 2 y x + 2
2
Por otra parte la funcion del integrando f (x; y) = y 2x2
es simétrica con
respecto al eje y, es decir 8 (x; y; z) 2 D existe ( x; y; z) tal que f ( x; y) =
y 2( x)2
= f (x; y) :
Por lo tanto
ZZ
D
y 2x2
dxdy = 2
Z 2
0
Z x+2
x 2
y 2x2
dydx
= 2
Z 2
0
y2
2
+ 2x2
y
x+2
x 2
dx
= 2
Z 1
0
4x3
8x2
dx
= x4 8
3
x3
2
0
= 2 16
64
3
=
32
3
1.4 Problema
Calcular
ZZ
D
x2
+ y2
dxdy si D = (x; y) 2 IR2
= x2
+ y2
1 :Usando
coordenadas cartesianas
Solución.
Usando coordenadas cartesianas, la región de integración es un círculo
centrado en el origen de radio uno
Por lo tanto
D = (x; y) 2 IR2
= 1 x 1;
p
1 x2 y
p
1 x2
ZZ
D
x2
+ y2
dxdy =
Z 1
1
Z p
1 x2
p
1 x2
(x2
+ y2
)dydx
=
Z 1
1
(x2
y +
y3
3
)
p
1 x2
p
1 x2
dx
= 2
Z 1
1
(x2
p
1 x2 +
1
3
p
(1 x2)3)dx
= 2
Z 1
1
x2
p
1 x2dx +
2
3
Z 1
1
p
(1 x2)3dx
Con ayuda de una tabla de integrales obtenemos que:
Z 1
1
x2
p
1 x2dx = (
x
4
p
1 x2 +
1
8
(x
p
1 x2 + arcsenx)
1
1
=
1
8
(arcsen(1) arcsen ( 1) =
1
8
(
2
+
2
) =
8
3
Z 1
1
p
(1 x2)3dx = (
x
4
p
(1 x2)3 +
3x
8
p
(1 x2) +
3
8
arcsenx)
1
1
=
3
8
Por lo tanto:
ZZ
D
x2
+ y2
dxdy =
2
8
+
2
3
3
8
=
2
Notese que la solución del problema usando coordenadas cartesianas es
bastante compleja
1.5 Problema
Calcular
ZZ
D
xydxdy si D es la región acotada por y =
p
x; y =
p
3x 18;
y 0:Usando coordenadas cartesianas.
Solución.
Si escogemos la región con una partición de tipo I, es necesario utilizar dos
integrales iterativas porque para 0 x 6 , la frontera inferior de la región es
la grá…ca de y = 0, y la superior es y =
p
x;y para 6 x 9 la frontera inferior
de la región es la grá…ca de y =
p
3x 18, y la superior es y =
p
x
Luego tenemos que D = D1 [ D2 tal que D1 [ D2 = :
Entonces D1 = (x; y) 2 IR2
= 0 x 6; 0 y
p
x
D2 = (x; y) 2 IR2
= 6 < x 9;
p
3x 18 y
p
x
Por lo tanto
ZZ
D
xydxdy =
ZZ
D1
xydxdy +
ZZ
D2
xydxdy
=
Z 6
0
Z p
x
0
xydydx +
Z 9
6
Z p
x
p
3x 18
xydydx
=
Z 6
0
x
y2
2
p
x
0
dx +
Z 9
6
x
y2
2
p
x
p
3x 18
dx
=
1
2
Z 6
0
x2
dx +
1
2
Z 9
6
( 2x2
+ 18x)dx
=
1
6
x3
6
0
+
x3
3
+ 9
x2
2
9
6
=
185
2
Si escogemos la región con una partición de tipo II, es necesario utilizar sólo
una integral iterativa porque para 0 y 3 , la frontera izquierda de la región
4
es la grá…ca de x = y2
mentras que la frontera derecha queda determinada por
la grá…ca x =
y2
3
+ 6; obteniendo así la región
D1 = (x; y) 2 IR2
= y2
x
y2
3
+ 6; 0 y 3
la integral iterativa queda
ZZ
D
xydxdy =
Z 3
0
Z (y2
=3)+6
y2
xydxdy
=
Z 3
0
x2
2
(y2
=3)+6
y2
ydy
=
1
2
Z 3
0
"
y2
+ 18
3
2
y4
#(y2
=3)+6
y2
ydy
=
1
18
Z 3
0
8y5
+ 36y3
+ 324y dy
=
1
18
4
3
y6
+ 9y4
+ 162y2
3
0
=
1
18
4
3
36
+ 36
+ 2 36
=
185
2
1.6 Problema
Encontrar el área de la región determinada por las desigualdades: xy 4;
y x; 27y 4x2
:
Solución.
Sabemos que xy = 4 tiene por grá…ca una hipérbola equilátera, y = x es la
recta bisectriz del primer cuadrante y 27y = 4x2
corresponde a una parábola.
Veamos cuale son los puntos de intersección de estas curvas con el proprosito
de con…gurar el dominio de integración
xy = 4
y = x
=) x2
= 4 =) x = 2 =) y = 2
27y = 4x2
y = x
=) 27x = 4x2
=)
x = 0
x =
24
4
)
=) y = 0; y =
27
4
xy = 4
27y = 4x2 =) x = 3; y =
4
3
Para calcular el área A(R) =
ZZ
D
dxdy; podemos escoger una partición del
dominio de tipo I ó de tipo II.
Consideremos dos subregiones de tipo I
D1 = (x; y) 2 IR2
= 2 x 3;
4
x
y x
5
D2 = (x; y) 2 IR2
= 3 x
27
4
;
4
27
x2
y x
Si proyectamos sobre eje x
A(R) =
ZZ
D
dxdy =
ZZ
D1
dxdy +
ZZ
D2
dxdy
A(R) =
Z 3
2
Z x
4
x
dydx +
Z 27=4
3
Z x
4
27 x2
dydx
=
Z 3
2
yj
x
4
x
dx +
Z 27=4
3
yj
x
4
27 x2 dx
=
Z 3
2
x
4
x
dx +
Z 27=4
3
x
4
27
x2
dx
=
x2
2
4 ln x
3
2
+
x2
2
4
81
x3
27=4
3
=
5
2
4 ln
3
2
+
729
32
9
2
4
81
273
43
+
4
81
33
= 2 4 ln
3
2
+
729
32
243
16
+
4
3
=
665
96
4 ln
3
2
Si proyectamos sobre eje y
DI = (x; y) 2 IR2
=
4
y
x
3
2
p
3y;
4
3
y 2
DI = (x; y) 2 IR2
= y x
3
2
p
3y; 2 y
27
4
A(R) =
ZZ
D
dxdy =
ZZ
D1
dxdy +
ZZ
D2
dxdy
A(R) =
Z 2
4
3
Z 3
2
p
3y
4
y
dxdy +
Z 27=4
2
Z 3
2
p
3y
y
dxdy
=
Z 2
4
3
hp
3y 4 ln y
i
dy +
Z 27=4
2
3
2
p
3y y dy
=
3
2
p
3y3
4
y
2
4
3
+
p
3y3
y2
2
27=4
2
=
8
3
4 ln
3
2
+
9 27
8
729
32
+ 2
=
665
96
4 ln
3
2
6
1.7 Problema
Encontrar el volumen de la región acotada por los tres planos coordenados y el
plano x + 2y + 3z = 6
Solución.
Usando integrales dobles y proyectando la región sobre el plano xy tenemos:
V =
ZZ
D
6 x 2y
3
dxdy , D = (x; y) 2 IR2
= 0 x 6; 0 y
6 x
2
V =
1
3
Z 6
0
Z 6 x
2
0
(6 x 2y) dydx
=
1
3
Z 6
0
(6 x)y y2
6 x
2
0
dx
=
1
3
Z 6
0
(6 x)2
2
(6 x)2
4
dx
=
1
12
Z 6
0
(6 x)2
dx
=
1
36
(6 x)3
6
0
= 6
Usando integrales dobles y proyectando la región sobre el plano yz tenemos:
V =
ZZ
R
(6 3z 2y) dzdy , R = (y; z) 2 IR2
= 0 y 3; 0 z
6 2y
3
V =
Z 3
0
Z 6 2y
3
0
(6 2y 3z) dzdy
=
Z 3
0
(6 2y)z
3
2
z2
6 2y
3
0
dy
=
Z 3
0
(6 2y)2
3
(6 2y)2
6
dy
=
1
6
Z 3
0
(6 2y)2
dy
=
1
12
(6 x)3
3
3
0
= 6
2 Cambios de orden de Integración
2.1 Problema
Invierta el orden de integración y evalúe la integral resultante .
7
I =
Z 1
0
Z 2
2x
ey2
dydx
Solución.
El dominio de integracion dado es D = (x; y) 2 IR2
= 0 x 1; 2x y 2 :
Si se invierte el orden de integración tenemos que modi…car la partición del
dominio. D =
n
(x; y) 2 IR2
= 0 x
y
2
; 0 y 2
o
;entonces la integral
se puede escribir.
I =
Z 1
0
Z 2
2x
ey2
dydx =
Z 2
0
Z y
2
0
ey2
dxdy
=
Z 2
0
xey2
y
2
0
dy
=
Z 2
0
y
2
ey2
dy =
1
4
ey2 4
0
=
1
4
e16
1
2.2 Problema
Invierta el orden de integración y evalúe la integral resultante .
I =
Z 2
0
Z 4
x2
p
y cos ydydx
Solución.
El dominio de integración dado es D = (x; y) 2 IR2
= 0 x 2; x2
y 4 :
Si se invierte el orden de integración tenemos que modi…car la partición del
dominio, D = (x; y) 2 IR2
= 0 x
p
y; 0 y 4 ;entonces la integral
se puede escribir
Z 2
0
Z 4
x2
p
y cos ydydx =
Z 4
0
Z p
y
0
p
y cos ydxdy
=
Z 4
0
p
y cos(y)xj
p
y
0 dy
=
Z 4
0
y cos(y)dy
Integrando esta última integral por partes se tiene:
Z 4
0
y cos(y)dy = ysen(y)j
4
0
Z 4
0
sen(y)dy
= ysen(y)j
4
0 + cos(y)j
4
0
= 4sen(4) + cos(4) 1
8
2.3 Problema
Invierta el orden de integración y evalúe la integral resultante .
I =
Z e
1
Z ln x
0
ydydx
Solución.
El dominio de integración dado es D = (x; y) 2 IR2
= 1 x e; 0 y ln x :
Si se invierte el orden de integración tenemos que el dominio,
D = (x; y) 2 IR2
= ey
x e; 0 y 1 ;entonces la integral
se puede escribir
Z e
1
Z ln x
0
ydydx =
Z 1
0
Z e
ey
ydxdy
=
Z 4
0
y x
e
ey
dy
=
Z 4
0
y(e ey
)dy
= e
y2
2
4
0
ey
[y ey
]
4
0
= 8e 4e4
1
3 Cambios de variables: Coordenadas polares
3.1 Problema
Calcular
ZZ
D
x2
+ y2
dxdy si D = (x; y) 2 IR2
= x2
+ y2
1 ;usando
coordenadas polares
Solución.
A partir de la coordenadas polares tenemos:
x = rcos ; y = rsen =) x2
+ y2
= r2
El valor absoluto del Jacobiano de transformación a polares es:
@ (x; y)
@ (r; )
= r
Reemplazando términos en la integral, produce
ZZ
D
x2
+ y2
dxdy =
ZZ
D
r2 @ (x; y)
@ (r; )
drd
9
=
Z 1
0
Z 2
0
r3
d dr =
Z 1
0
Z 2
0
r3
j
2
0 dr
= 2
Z 1
0
r3
dr = 2
r4
4
1
0
=
2
Las coordenadas polares dieron una solucion más simple del problema. La
simplicidad depende de la naturaleza del problema y de la simetria que presenta
el dominio.
3.2 Problema
Calcular el área de la región interior a la circunferencia x2
+ y2
= 8y y exterior
a la circunferencia x2
+ y2
= 9:
Solución.
Determinemos el centro y radio de la circunsferencia
x2
+ y2
= 8y =) x2
+ y2
8y = 0 =) x2
+ (y 4)2
= 16
El área de la región D es: A (D)
ZZ
D
dxdy
Por simetría, podemos calcular el área de la región D en el primer cuadrante
y multiplicar por 2.
A …n de conocer los límites de integración en coordenadas polares
necesitamos conocer el ángulo que forma la recta OT con el eje x.
x2
+ y2
= 8y =) r2
= 8rsen =) r = 8sen
x2
+ y2
= 9 =) r = 3
Como T pertenece a ambas circunferencias se cumple
8sen = 3 =) = arcsen
3
8
Luego, la mitad de la región D = (r; ) =3 r 8sen ; arcsen
3
8 2
ZZ
D
dxdy =
ZZ
D
@ (x; y)
@ (r; )
drd
10
2
Z =2
arcsen 3
8
Z 8sen
3
rdrd = 2
Z =2
arcsen 3
8
r2
2
8sen
3
d
Z =2
arcsen 3
8
64sen2
9 d = 64
2
sen2
4
9
2
=2
arcsen 3
8
=
55
2
16sen2
=2
arcsen 3
8
=
55
4
55
2
arcsen
3
8
+ 16sen(2arcsen
3
8
)
38; 42
3.3 Problema
Calcular
ZZ
D
x2
+ y2
x +
p
x2 + y2
dxdy , si D es el interior del cardioide r = a (1 + cos )
Solución.
Cambiando a cordenadas polares, tenemos:
ZZ
D
x2
+ y2
x +
p
x2 + y2
dxdy =
ZZ
D
r2
r cos + r
@ (x; y)
@ (r; )
drd
=
ZZ
D
r2
r cos + r
rdrd
=
Z 2
0
Z a(1+cos )
0
r2
1 + cos
drd
=
Z 2
0
1
1 + cos
r3
3
a(1+cos )
0
d
=
a3
3
Z 2
0
(1 + cos )
2
d
=
a3
3
Z 2
0
1 + 2 cos + cos2
d
=
a3
3
+ 2sen +
2
+
sen2
4
2
0
= a3
Observacion si deseamos se rigurosos debemos hacer notar que la integral es
impropia cuando x 0; e y = 0; pues en tal caso el denominador es cero.
Luego:
11
I = lim
!
"!0
Z
0
Z a(1+cos )
"
r2
1 + cos
drd + lim
! +
"!0
Z 2 Z a(1+cos )
"
r2
1 + cos
drd
= lim
!
a3
3
Z
0
(1 + cos )
2
d + lim
! +
a3
3
Z 2
(1 + cos )
2
d
= lim
!
a3
3
3
2
+ 2sen +
sen2
4
+ lim
! +
a3
3
3
3
2
2sen
sen2
4
= a3
3.4 Problema
Calcular el volumen V el sólido acotado por las grá…cas z = 9 x2
y2
y z = 5.
Solución.
Como el sólido es simétrico, basta encontrar su volumen en el primer octante
y multiplicar su resultado por cuatro.
Usando integrales dobles y proyectando la región sobre el plano xy tenemos:
V = 4
Z Z
D
9 x2
y2
5 dxdy
D = (x; y) 2 IR2
= x 0; y 0; 0 x2
+ y2
4
A partir de la coordenadas polares, obtenemos:
x = rcos
y = rsen
=) f (x; y) = 4 x2
y2
= 4 r2
0 x2
+ y2
= r2
4 () 0 r 2 y 0
2
D =
n
(r; ) = 0 r 2; 0
2
o
El valor absoluto del Jacobiano de transformación a polares es:
@ (x; y)
@ (r; )
= r
Reemplazando términos en la integral, produce:
V = 4
Z Z
D
4 r2
rdrd
= 4
Z =2
0
Z 2
0
4 r2
rdrd
= 4
Z =2
0
4
2
r2 1
4
r4
2
0
d
= 8
12
4 Cambios de variables. Coordenadas curvilíneas
4.1 Problema
Calcular I =
ZZ
D
3xydxdy; donde D es la región acotada por por la rectas
x 2y = 0; x 2y = 4
x + y = 4; x + y = 1
(1)
Solución.
Podemos usar el cambio de variables
u = x 2y
v = x + y
(1) =)
x =
1
3
(2u + v)
y =
1
3
(u v)
(2)
Asi,x 2y = 4 se transforma en u = 4
x 2y = 0 se transforma en u = 0
x + y = 1 se transforma en v = 1
x + y = 4 se transforma en v = 4
Para calcular el Jacobiano
@ (x; y)
@ (u; v)
tenemos dos posibilidades.
La primera, es usar la transformación inversa (2) x e y en términos de u y v
:
La segunda, mucho más simple, es calcular a partir de (1)
@ (u; v)
@ (x; y)
y luego
usar la propiedad
@ (x; y)
@ (u; v)
=
@ (u; v)
@ (x; y)
1
:
En efecto
@ (u; v)
@ (x; y)
=
1 2
1 1
= 1 + 2 = 3 =)
@ (x; y)
@ (u; v)
=
1
3
Por lo tanto, del teorema del cambio e variables se deduce que:
I =
ZZ
D
3xydxdy =
ZZ
D
3
1
3
(2u + v)
1
3
(u v)
@ (x; y)
@ (u; v)
dudv
=
Z 4
1
Z 0
4
1
9
2u2
uv v2
dvdu
=
1
9
Z 4
1
2u2
v
uv2
2
v3
3
0
4
du
=
1
9
Z 4
1
8u2
+ 8u
64
3
du
=
1
9
8u3
3
+ 4u2 64
3
u
4
1
du =
164
9
4.2 Problema
13
Calcular el área de la región D; que esta acotada por las curvas
x2
y2
= 1; x2
y2
= 9
x + y = 4; x + y = 6
(1)
Solución.
Teniendo en cuenta el cambio de variables que transforma la región D en
la región D
u = x2
y2
v = x + y
(1) =)
La imagen D de la región D está acotada por la rectas verticales;
x2
y2
= 1 se transforma en u = 1
x2
y2
= 9 se transforma en u = 9
y las rectas horizontales
x + y = 4 se transforma en v = 4
x + y = 6 se transforma en v = 6
Es decir, D = f(u; v) =1 u 9; 4 v 6g
Vamos a calcular
@ (x; y)
@ (u; v)
a partir de (1)
@ (u; v)
@ (x; y)
y usar la propiedad
@ (x; y)
@ (u; v)
=
@ (u; v)
@ (x; y)
1
:
En efecto
@ (u; v)
@ (x; y)
=
2x 2y
1 1
= 2 (x + y) = 2v =)
@ (x; y)
@ (u; v)
=
1
2v
El teorema del cambio variables a…rma que:
A (D) =
ZZ
D
dxdy =
ZZ
D
@ (x; y)
@ (u; v)
dudv
=
Z 9
1
Z 6
4
1
3v
dvdu
=
1
2
Z 9
1
[ln v]
6
4 du
=
1
2
ln
6
4
Z 9
1
du
=
1
2
ln
3
2
[u]
9
1 = 4 ln
3
2
4.3 Problema
Calcular I =
ZZ
D
x3
+ y3
xy
dxdy; donde D es la región del primer cuadrante
acotada por:
y = x2
; y = 4x2
x = y2
; x = 4y2 (1)
Solución.
El cálculo de I sería bastante complejo si usamos coordenadas cartesianas
por la simetría que tiene el dominio.Sin embargo, una cambio de variables
14
simpli…ca la región D y la transforma en D .
Sean u =
x2
y
; v =
y2
x
Luego D esta acotada por la rectas verticales;
y = x2
se transforma en u = 1:
y = 4x2
se transforma en u =
1
4
:
y las rectas horizontales
x = y2
se transforma en v = 1:
x = 4y2
se transforma en v =
1
4
:
Es decir, D = (u; v) =1 u
1
4
; 1 v
1
4
Para calcular
@ (x; y)
@ (u; v)
tenemos dos posibilidades, la primera es despejar x
e y en términos de u y v a partir de (1) :
La segunda, es calcular
@ (u; v)
@ (x; y)
y usar la propiedad
@ (x; y)
@ (u; v)
=
@ (u; v)
@ (x; y)
1
:
En efecto
@ (u; v)
@ (x; y)
=
2x
y
x2
y2
y2
x2
2y
x
= 4 1 = 3 =)
@ (x; y)
@ (u; v)
=
1
3
Calculemos ahora la integral
I =
ZZ
D
x3
+ y3
xy
dxdy =
ZZ
D
x2
y
+
y2
x
dxdy
=
Z 1
1=4
Z 1
1=4
(u + v)
1
3
dvdu
=
1
3
Z 1
1=4
uv +
v2
2
1
1=4
du
=
1
3
Z 1
1=4
3
4
u +
15
32
du
=
1
3
3
8
u2
+
15
32
u
1
1=4
=
1
3
3
8
15
16
+
15
32
3
4
=
15
64
4.4 Problema
Evaluar la integral I =
ZZ
D
[x + y]
2
dxdy; donde D es la región del plano xy
acotado por las curvas
x + y = 2; x + y = 4;
y = x; x2
y2
= 4;
(1)
15
Solución.
Observese que las ecuaciones de la curvas de la frontera de D sólo incluyen
a x e y en las combinaciones de x y;y el integrando incluye solamentenlas
mismas combinaciones. Aprovechando estas simetrías, sean las coordenadas
u = x + y; v = x y
Luego, la imagen D de la región D está acotada por las curvas;
x + y = 2 se transforma en u = 2:
x + y = 4 se transforma en u = 4:
A su vez
x y = 0 se transforma en v = 0:
x2
y2
= (x + y) (x y) = 4 se transforma en uv = 4:
Es decir, D = (u; v) = 2 u 4; 0 v
4
u
El jacobiano de la transformación es
@ (x; y)
@ (u; v)
=
@ (u; v)
@ (x; y)
1
:
En efecto
@ (u; v)
@ (x; y)
=
1 1
1 1
= 2 =)
@ (x; y)
@ (u; v)
=
1
2
Entonces:
ZZ
D
[x + y]
2
dxdy =
1
2
ZZ
D
u2
dudv
=
1
2
Z 4
2
Z 4=u
0
u2
dvdu
=
1
2
Z 4
2
u2
vj
4=u
0 du
=
1
2
Z 4
2
4udu
=
4
2
u2
2
4
2
= 12
5 Cálculo de integrales triples en coordenadas
rectángulares cartesianas
5.1 Problema
Sea R la región en IR3
acotada por: z = 0; z =
1
2
y; x = 0; x = 1; y = 0; y = 2
Calcular
ZZZ
R
(x + y z) dxdydz:
Solución.
Del grá…co de la región , tenemos que 0 z
1
2
y:Proyectando la región R
sobre el plano xy. Así D = (x; y) 2 IR2
= 0 x 1; 0 y 2 :
16
Por lo tanto;
ZZZ
R
(x + y z) dxdydz =
ZZ
D
(
Z 1
2 y
0
(x + y z) dz)dxdy
Z 1
0
Z 2
0
(
Z 1
2 y
0
(x + y z) dz)dydx =
Z 1
0
Z 2
0
xz + yz
z2
2
1
2 y
0
dydx
Z 1
0
Z 2
0
1
2
(x + y)y
y2
8
dydx =
Z 1
0
Z 2
0
1
2
xy +
3
8
y2
dydx
Z 1
0
1
4
xy2
+
1
8
y3
2
0
dx =
Z 1
0
[(x + 1)] dx =
1
2
x2
+ x
1
0
=
3
2
También es posible resolver el problema anterior proyectando la región R
sobre el plano xz:En tal caso, 2z y 2 y
D = (x; z) 2 IR2
= 0 x 1; 0 z 1
ZZZ
R
(x + y z) dxdydz =
Z 1
0
Z 1
0
(
Z 2
2z
(x + y z) dy)dzdx
Z 1
0
Z 1
0
xy +
y2
2
zy
2
2z
dzdx = 2
Z 1
0
Z 1
0
[x + 1 z xz] dzdx
2
Z 1
0
xz + z
z2
2
x
z2
2
1
0
dx = 2
Z 1
0
x + 1
1
2
x
2
dx
Z 1
0
[(x + 1)] dx =
1
2
x2
+ x
1
0
=
3
2
Una tercera posibilidad de solución consiste en proyectar la región R
sobre el plano yz.
Esta se deja como ejercicio.
5.2 Problema
Calcular
ZZZ
D
x2
dxdydz si D es la región acotada por y2
+ z2
= 4ax;
y2
= ax; x = 3a
Solución.
La super…cie y2
+ z2
= 4ax corresponde a un paraboloide de revolución
como el bosquejado en la …gura.
En dos variables el grá…co de y2
= ax es una parábola, pero es tres
variables es la super…cie de un manto parabólico.
17
Finalmente, el grá…co x = 3 es un plano paralelo al plano xz a la distancia
3a.
Luego el grá…co de la región es
La proyección de la region sobre el plano xy es:
D =
n
(x; y; z) 2 IR3
=D1 [ D2 ,
p
4ax y2 z
p
4ax y2
o
Por simetría se tiene:
I =
ZZZ
D
x2
dxdydz = 2
ZZ
D1
Z p
4ax y2
p
4ax y2
x2
dzdxdy
= 2
Z 3a
0
Z 2
p
ax
p
ax
Z p
4ax y2
p
4ax y2
x2
dzdydx
= 2
Z 3a
0
Z 2
p
ax
p
ax
x2
z
p
4ax y2
p
4ax y2
dydx
= 4
Z 3a
0
Z 2
p
ax
p
ax
x2
p
4ax y2dydx
De una tabla de integrales obtenemos
Z p
a2 u2du =
1
2
(u
p
a2 u2 + a2
arcsen
u
a
)
Así al integrar la expresión:
Z 2
p
ax
p
ax
p
4ax y2dy =
1
2
y
p
4ax y2 + 4ax arcsen
y
2
p
ax
2
p
ax
p
ax
= 2ax arcsen (1)
1
2
p
ax
p
3ax + 4ax arcsen
1
2
= 2ax
2
+
1
2
ax
p
3 2ax
6
=
2
3
ax +
p
3
2
ax
Por lo tanto al sustituir en la integral anterior, queda
4
Z 3a
0
"
2
3
+
p
3
2
#
ax3
dx =
"
2
3
+
p
3
2
!
ax4
#3a
0
= 27a5
2 +
3
p
3
2
!
18
5.3 Problema
Calcular el volumen del sólido acotado por la super…cie y = x2
y los planos
y + z = 4 ; z = 0:
Solución.
Consideremos que la región está acotada inferiormente por la frontera
z = 0 y superiomente por z = 4 y:
Si Proyectamos la región sobre el plano xy, se tiene:
= (x; y; z) 2 IR3
= (x; y) 2 D; 0 z 4 y
D = (x; y) 2 IR2
= 2 x 2; x2
y 4
Luego el volumen de la región es
V ( ) =
ZZZ
dxdydz =
Z 2
2
Z 4
x2
Z 4 y
0
dzdydx
=
Z 2
2
Z 4
x2
(4 y) dydx =
Z 2
2
4y
y2
2
4
x2
dx
=
Z 2
2
8 4x2
+
x4
2
dx
= 8x
4
3
x3
+
x4
10
2
2
=
256
15
6 Coordenadas esféricas
6.1 Problema
Resolver I =
ZZZ
D
p
x2 + y2 + z2e (x2
+y2
+z2
)dxdydz si D es la región de IR3
limitada por las super…cies x2
+ y2
+ z2
= a2
x2
+ y2
+ z2
= b2
con 0 < b < a anillo esférico.
Solución
Por la simetría del dominio y la forma del integrando
usaremos coordenadas esféricas:
x = rsen cos
y = rsen sen
z = r cos
9
=
;
=)
b2
x2
+ y2
+ z2
a2
=) b r a
tg =
y
z
= 0 =) 0
tg =
y
x
= 0 =) 0 2
Recordando que el valor absoluto del Jacobiano a esféricas es :
@ (x; y; z)
@ (r; ; )
= r2
sen se tiene:
19
I =
Z 2
0
Z
0
Z a
b
re r2 @ (x; y; z)
@ (r; ; )
drd d
=
Z 2
0
Z
0
Z a
b
r3
e r2
sen drd d
=
Z 2
0
Z
0
1
2
r2
e r2
e r2
a
b
sen d d
=
1
2
b2
e b2
+
1
2
e b2 1
2
a2
e a2
e a2
Z 2
0
Z
0
sen d d
=
1
2
b2
e b2
+
1
2
e b2 1
2
a2
e a2
e a2
Z 2
0
cos j0 d
= 2
1
2
b2
e b2
+
1
2
e b2 1
2
a2
e a2
e a2
Z 2
0
d
= 4
1
2
b2
e b2
+
1
2
e b2 1
2
a2
e a2
e a2
6.2 Problema
Encontrar el volumen de la región determinada por x2
+ y2
+ z2
16 ; z2
x2
+ y2
:
Solución
x2
+ y2
+ z2
= 16 es una esfera con centro en el origen y radio 4
z2
= x2
+y2
es un cono con vértice en el origen y eje de simetría coincidente
con el eje z.
Como z 0 , sólo debemos considerar sólo la región sobre el plano xy.
La intersección de la esfera con el cono se obtiene mediante el sistema:
x2
+ y2
+ z2
= 16
x2
+ y2
= z2 =)
z =
p
8
x2
+ y2
= 8
Usaremos coordenadas esféricas:
x = rsen cos
y = rsen sen
z = r cos
9
=
;
=)
0 x2
+ y2
+ z2
16 =) 0 r 4
tg =
y
z
=
p
8
p
8
= 1 =) 0
4
tg =
y
x
= 0 =) 0 2
Recordando que el valor absoluto del Jacobiano a esféricas es :
@ (x; y; z)
@ (r; ; )
= r2
sen se tiene:
20
V =
ZZZ
D
dxdydz =
Z 2
0
Z 4
0
Z 4
0
r2
sen drd d
V =
Z 2
0
Z 4
0
r3
3
4
0
sen d d
V =
43
3
Z 2
0
cos j 4
0 d
V =
43
3
Z 2
0
1
p
2
2
!
d =
43
3
1
p
2
2
!
2
Otra opción para resolver este problema es usar coordenadas cilíndricas,en
tal caso
x = r cos
y = rsen
z = z
9
=
;
=)
x2
+ y2
+ z2
= 16 =) z = 16 r2
:
x2
+ y2
= z2
=) z = r2
Teníamos que el Jacobiano de transformación a cilíndricas es:
@ (x; y; z)
@ (r; ; z)
= r luego:
V =
ZZZ
D
dxdydz =
Z 2
0
Z p
8
0
Z p
16 r2
r2
rdzdrd
=
Z 2
0
Z p
8
0
rzj
p
16 r2
r2 drd
=
Z 2
0
Z p
8
0
r
p
16 r2 r2
drd
=
Z 2
0
1
3
p
(16 r2)3
r3
3
p
8
0
d
=
2
3
2
p
83
p
163 =
2
3
64 32
p
2
7 Coordenadas Cilíndricas
7.1 Problema
Usando integrales triples calcular el volumen de la región acotada por z = x2
+y2
y z = 27 2x2
2y2
:
Solución.
Por la simetría del volumen los resolveremos usando coordenadas cilíndricas.
x = r cos
y = rsen
z = z
9
=
;
=)
z = x2
+ y2
=) z = r2
:
z = 27 2x2
2y2
=) z = 27 2r2
x2
+ y2
= 9 =) r = 3:
21
Como el Jacobiano de transformación a cilíndricas es:
@ (x; y; z)
@ (r; ; z)
= r se tiene:
V =
ZZZ
D
dxdydz =
Z 2
0
Z 3
0
Z 27 2r2
r2
rdzdrd
=
Z 2
0
Z 3
0
r zj
27 2r2
r2 drd
=
Z 2
0
Z 3
0
r 27 3r2
drd
=
Z 2
0
27
2
r2 3
4
r4
3
0
d
=
243
4
Z 2
0
d =
243
4
2 =
243
2
7.2 Problema
Calcular el volumen de la región acotada por la esfera x2
+ y2
+ z2
= 13 y el
cono (z 1)
2
= x2
+ y2
; z 1
Solución.
El volumen pedido es
V =
ZZZ
R
dxdydz
donde la región R está dada por
R =
n
(x; y; z) 2 IR3
= (x; y) 2 D; 1 +
p
x2 + y2 z
p
4 x2 y2
o
D corresponde a la proyección de R sobre el plano xy.
D = (x; y; z) 2 IR2
=x2
+ y2
13
Por la simetría del volumen conviene usar coordenadas cilíndricas.
x = r cos
y = rsen
z = z
9
=
;
=) x2
+ y2
+ z2
r2
+ z2
13 ,
Determinemos la imagen R de R
(z 1)
2
= x2
+ y2
() z 1 + r =) 1 + r z
p
13 r2
Luego
R = (r; ; z) 2 IR3
= (r; ) 2 D; 1 + r z
p
13 r2
La región R al ser proyectada sobre el plano xy. produce
z = 0 =) x2
+ y2
= 13
D1 =
n
(r; ) 2 IR3
= r 2 ;
2 2
o
Como el Jacobiano de transformación a cilíndricas es:
@ (x; y; z)
@ (r; ; z)
= r se tiene:
22
V =
ZZZ
R
dxdydz =
Z 2
0
Z 2
0
Z p
13 r2
1+r
rdzd dr
=
Z 2
0
Z 2
0
rz
p
13 r2
1+r d dr
=
Z 2
0
Z 2
0
r
p
13 r2 (1 + r) d dr
= 2
Z 2
0
r
p
13 r2 r + r2
dr
= 2
1
3
13 r2 3=2 r2
2
+
r3
3
2
0
= 2
1
3
133=2
73=2 4
2
+
8
3
7.3 Problema
Calcular utilizando coordenadas cilíndricas el volumen de la región R , donde R
es el interior a la esfera x2
+y2
+z2
= 4; z 0;y exterior al cilindro (x 1)2
+y2
=
1:
Solución
La región R se describe en coordenadas cartesianas mediante
R =
n
(x; y; z) 2 IR3
= (x; y) 2 D; 0 z
p
4 x2 y2
o
donde D es la proyección de R sobre el plano xy.
D = (x; y) 2 IR3
=x2
+ y2
4 ; (x 1)2
+ y2
1
Transformemos la región R a coordenadas cilindricas de…nidas por
x = r cos
y = rsen
z = z
9
=
;
=) x2
+ y2
+ z2
= r2
(cos2
+ sen2
) + z2
4
() 0 z
p
4 r2
La región R al ser proyectada sobre el plano xy da origen a dos subregiones
x2
+ y2
r2
4 () 0 r 2 si
2
3
2
(x 1)2
+ y2
1 () r 2 cos y r 2 si -
2 2
Entonces, la región R puede describirse mediante
R = (r; ; z) = (r; ) 2 D = D1 [ D1; 0 z
p
4 r2
D1 =
n
(r; ) 2 IR3
=2 cos r 2 ;
2 2
o
D2 = (r; ) 2 IR3
=0 r 2 ;
2
3
2
23
Ademas, el Jacobiano de la transformación a cilíndricas es:
@ (x; y; z)
@ (r; ; z)
= r
En consecuencia la integral puede describirse por
I =
ZZZ
R
(r) drd dz
=
Z =2
=2
Z 2
2 cos
Z p
4 r2
0
rdzdrd +
Z 3 =2
=2
Z 2
0
Z p
4 r2
0
rdzdrd
=
Z =2
=2
Z 2
2 cos
r
h
z
ip
4 r2
0
drd +
Z 3 =2
=2
Z 2
0
r
h
z
ip
4 r2
0
drd
=
Z =2
=2
Z 2
2 cos
r
p
4 r2drd +
Z 3 =2
=2
Z 2
0
r
p
4 r2drd
=
Z =2
=2
1
3
4 r2 3=2
2
2 cos
d +
Z 3 =2
=2
1
3
4 r2 3=2
2
0
d
=
8
3
Z =2
=2
1 cos2 3=2
d +
8
3
Z 3 =2
=2
d
=
8
3
Z =2
=2
sen3
d +
8
3
Z 3 =2
=2
d
=
8
3
cos +
cos3
3
=2
=2
+
8
3
=
8
3
7.4 Problema
Calcular I =
ZZZ
D
x2
a2
+
y2
b2
+
z2
c2
dxdydz:
En la región D = (x; y; z) 2 IR3
=
x2
a2
+
y2
b2
+
z2
c2
1 a > 0; b > 0; c > 0
Solución.
La región de integración es un elipsoide de semieejes a,b,c.
Efectuemos un primer cambio de variables:
x = au; y = bv; z = cw:
Con ello, D se transforma en la bola.
D = (u; v; w) =u2
+ v2
+ w2
1 yel valor absoluto del Jacobiano queda
:
@ (x; y; z)
@ (u; v; w)
=
a 0 0
0 b 0
0 0 c
= abc
Luego, aplicando el teorema del cambio de variables y obtenemos la integral
24
I =
ZZZ
D
x2
a2
+
y2
b2
+
z2
c2
dxdydz:
=
ZZZ
D
u2
+ v2
+ w2 @ (x; y; z)
@ (u; v; w)
dudvdw
=
ZZZ
D
u2
+ v2
+ w2 @ (x; y; z)
@ (u; v; w)
dudvdw
=
ZZZ
D
(u2
+ v2
+ w2
) (abc) dudvdw
Ahora, transformamos a coordenadas esféricas.
u = rsen cos
v = rsen sen
w = r cos
9
=
;
=)
0 u2
+ v2
+ w2
1 =) 0 r 1
tg =
v
w
=) 0
tg =
v
u
=) 0 2
Quedando, la region D = f(r; ; ) =0 r 1; 0 ; 0 2 g
abc
ZZZ
D
(u2
+ v2
+ w2
)dudvdw = abc
Z 2
0
Z
0
Z 1
0
r2
r2
sen drd d
= abc
Z 2
0
Z
0
r5
5
1
0
sen d d
=
abc
5
Z 2
0
cos j0 d
=
2abc
5
Z 2
0
d =
4 abc
5
Observación
Es claro que la integración se podría haber efectuado usando directamente
la trasformación compuesta.
x = arsen cos
y = brsen sen
z = cr cos
9
=
;
=)
@ (x; y; z)
@ (r; ; )
= abcr2
sen
7.5 Problema
Calcular I =
ZZZ
D
dxdydz:
q
(x a)
2
+ (y b)
2
+ (z c)
2
;
en la región D = (x; y; z) 2 IR3
=x2
+ y2
+ z2
R2
; (a; b; c) es un punto
…jo
no peteneciente a la esfera x2
+ y2
+ z2
R2
:
Solución.
25
Si usamos coordenadas cartesianas los límites de integración son
di…cultosos, pues en tal caso tendríamos.
I =
ZZZ
D
dxdydz:
q
(x a)
2
+ (y b)
2
+ (z c)
2
I =
Z r
r
Z p
r2 x2
p
r2 x2
Z p
r2 x2 y2
p
r2 x2 y2
dzdydx:
q
(x a)
2
+ (y b)
2
+ (z c)
2
Es claro que si usamos este camino las cosas no serán fáciles.
Sin embargo , dada la simetria esférica del dominio y observando que el
integrando no es nada más que el reciproco de la distancia desde (a; b; c) =2 D
hasta (x; y; z) 2 D;nos damos cuenta que el resultado no puede depender más
que de la distancia d entre dichos puntos.Por ello, el resultado no puede variar
si ubicamos el eje z pasando por el punto (a; b; c). Si (0; 0; d) son las nuevas
coordenadas del punto …jo tenemos.
I =
ZZZ
D
dxdydz:
q
x2 + y2 + (z d)
2
Observación
El razonamiento anterior es muy usado el cálculo de integrales que aparecen
aplicaciones a la Física pues en dicha Ciencia son comunes las leyes en que
aparece una distacia o el cuadrado de una distancia en el denominador del
integrando.
Para calcular I en (*) usamos coordenadas esféricas. Obtenemos:
I =
Z R
0
Z
0
Z 2
0
r2
sen d d dr
p
r2 + d2 2dr cos
= 2
Z R
0
Z
0
r2
sen d dr
p
r2 + d2 2dr cos
Para calcular
J =
Z
0
r2
sen d dr
p
r2 + d2 2dr cos
podemos hacer
s = r2
+ d2
2dr cos
ds = 2drsen d
Además, = 0 =) s = r2
+ d2
2dr = (d r)
2
= =) s = r2
+ d2
+ 2dr = (d + r)
2
Reemplazando en la integral anterior produce
26
J =
r
2d
Z (d+r)2
(d r)2
s 1=2
ds =
r
2d
2s1=2
(d+r)2
(d r)2
=
r
2d
[2 (d + r) 2 (d r)]
=
r
2d
[4r] =
2r2
d
Por lo tanto
I = 2
Z R
0
2r2
d
dr
I =
4
d
r3
3
R
0
I =
4
3d
R3
27

Más contenido relacionado

PDF
Ejercicios resueltos integrales dobles y triples
PDF
Ejercicios de integrales triples
PPT
Integrales triples
PDF
Aplicaciones de las Integrales Triples ccesa007
PDF
integrales triples
PDF
Ejercicios Resueltos de Calculo II
PDF
2do Trabajo de Matemática Aplicada II - Limites y continuidad en complejos - ...
PDF
Formulas conicas y cuadricas
Ejercicios resueltos integrales dobles y triples
Ejercicios de integrales triples
Integrales triples
Aplicaciones de las Integrales Triples ccesa007
integrales triples
Ejercicios Resueltos de Calculo II
2do Trabajo de Matemática Aplicada II - Limites y continuidad en complejos - ...
Formulas conicas y cuadricas

La actualidad más candente (20)

PDF
Ecuaciones Diferenciales - La Transformada de Laplace
PDF
Solucionario ecuaciones2
PDF
MéTodo De IteracióN De Punto Fijo
PDF
Ejercicios resueltos edo homogéneas
PDF
Solucionario ecuaciones diferenciales
PPT
VECTOR TANGENTE NORMAL Y BINORMAL
PDF
Ejercicios resueltos edo exactas
DOCX
14 enano
PDF
Ejercicios en integral
PDF
Ejercicios sobre Transformada de Laplace
DOCX
Formulario de integrales
PPT
Capacitancia. ing. carlos moreno (ESPOL)
PPTX
Ejemplo del Método de Falsa Posición
DOCX
Modelos matemáticos
PDF
Aplicaciones de las ecuaciones diferenciales
DOCX
Ejercicios resueltos base ortonormal
PPSX
Ecuaciones Diferenciales de Primer Orden.
PDF
Solucionario ecuaciones1
PDF
electrotecnia basica tarea academica
PDF
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
Ecuaciones Diferenciales - La Transformada de Laplace
Solucionario ecuaciones2
MéTodo De IteracióN De Punto Fijo
Ejercicios resueltos edo homogéneas
Solucionario ecuaciones diferenciales
VECTOR TANGENTE NORMAL Y BINORMAL
Ejercicios resueltos edo exactas
14 enano
Ejercicios en integral
Ejercicios sobre Transformada de Laplace
Formulario de integrales
Capacitancia. ing. carlos moreno (ESPOL)
Ejemplo del Método de Falsa Posición
Modelos matemáticos
Aplicaciones de las ecuaciones diferenciales
Ejercicios resueltos base ortonormal
Ecuaciones Diferenciales de Primer Orden.
Solucionario ecuaciones1
electrotecnia basica tarea academica
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
Publicidad

Similar a ejercicios-resueltos-integrales-dobles-y-triples-2011 (20)

PDF
Integracion multiple
PDF
Int multiple
PDF
tres ejercicios interesantes
PPTX
PRESENTACION GRUPAL CALCULO VECTORIAL UNIDAD 5.pptx
DOCX
Integrales dobles en coordenadas polares
PDF
Ec difer
DOCX
Integrales dobles en coordenadas polares
DOCX
Integrales dobles en coordenadas polares
PDF
17may12 soluciones
PDF
05 CAMBIO DE INTEGRALES EN INTEGRAL DOBLE
PDF
MA185 MATEMÁTICA V 2da Práctica Calificada
PDF
Integrales.pdf
PDF
Integrales triples
PPTX
Integrales múltiples
PDF
Guia jaco multi_miv_02_15
PPTX
Integrales multiples
PDF
Aplicaciones
DOCX
Integrales
Integracion multiple
Int multiple
tres ejercicios interesantes
PRESENTACION GRUPAL CALCULO VECTORIAL UNIDAD 5.pptx
Integrales dobles en coordenadas polares
Ec difer
Integrales dobles en coordenadas polares
Integrales dobles en coordenadas polares
17may12 soluciones
05 CAMBIO DE INTEGRALES EN INTEGRAL DOBLE
MA185 MATEMÁTICA V 2da Práctica Calificada
Integrales.pdf
Integrales triples
Integrales múltiples
Guia jaco multi_miv_02_15
Integrales multiples
Aplicaciones
Integrales
Publicidad

Más de Carlos Farley Zamudio Melo (20)

DOCX
Actividad 3 Evidencia 1 Actividad Interactiva establecer estrategias Logístic...
DOCX
Evaluación higiene y seguridad industrial
PDF
Estados financieros basico bajo nic niif
PDF
Mantenimiento productivo total
PDF
proceso de cacao
PDF
Research on path guidance of logistics transport vehicle based on image recog...
PDF
Indicadores de desempeño para empresas del sector logístico: Un enfoque desde...
PDF
Logística esbelta aplicada al sector minero
PPT
logística en transporte
PDF
Logística aplicada al transporte mapa mental
PDF
Taller 1 logistica
PDF
Politica sg-sst-fusm
PDF
Problemas Resueltos de Teoría de Colas
PPT
sistemas de producción
PPTX
Subsistema de producción
PPT
introducción al sistema de producción de la empresa
PDF
métodos y técnicas cuantitativa y cualitativa
Actividad 3 Evidencia 1 Actividad Interactiva establecer estrategias Logístic...
Evaluación higiene y seguridad industrial
Estados financieros basico bajo nic niif
Mantenimiento productivo total
proceso de cacao
Research on path guidance of logistics transport vehicle based on image recog...
Indicadores de desempeño para empresas del sector logístico: Un enfoque desde...
Logística esbelta aplicada al sector minero
logística en transporte
Logística aplicada al transporte mapa mental
Taller 1 logistica
Politica sg-sst-fusm
Problemas Resueltos de Teoría de Colas
sistemas de producción
Subsistema de producción
introducción al sistema de producción de la empresa
métodos y técnicas cuantitativa y cualitativa

Último (20)

PDF
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
PDF
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
PDF
Uso de la Inteligencia Artificial en la IE.pdf
PDF
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PPTX
4. Qué es un computador PARA GRADO CUARTO.pptx
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PPTX
fisiologia respiratoria pediatria ruza.pptx
PDF
Modelo Educativo SUB 2023versión final.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
PDF
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf
PDF
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
Házlo con Miedo - Scott Allan Ccesa007.pdf
PDF
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
Uso de la Inteligencia Artificial en la IE.pdf
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
4. Qué es un computador PARA GRADO CUARTO.pptx
Manual del Gobierno Escolar -MINEDUC.pdf
Telos 127 Generacion Al fa Beta - fundaciontelefonica
fisiologia respiratoria pediatria ruza.pptx
Modelo Educativo SUB 2023versión final.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
Házlo con Miedo - Scott Allan Ccesa007.pdf
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf

ejercicios-resueltos-integrales-dobles-y-triples-2011

  • 1. Universidad de Santiago de Chile Autores: Miguel Martínez Concha Facultad de Ciencia Carlos Silva Cornejo Departamento de Matemática y CC Emilio Villalobos Marín . Ejercicios Resueltos 1 Cálculo de integrales dobles en coordenadas rectángulares cartesianas 1.1 Problema Calcular ZZ D p x + ydxdy si D es la región acotada por las respectivas rectas y = x; y = x y x = 1 Solución Se tiene que la región D = (x; y) 2 IR2 = 0 x 1; x y x ZZ D p x + ydxdy = Z 1 0 Z x x p x + ydydx = 2 3 Z 1 0 (x + y) 3=2 x x dx = 2 3 Z 1 0 (2x) 3=2 dx = 25=2 3 2 5 (x) 5=2 1 0 = 8 p 2 15 1.2 Problema Calcular ZZ D p x2 y2dxdy si D es el dominio limitado por el triángulo de vértices A (0; 0) ; B(1; 1); C (1; 1) : Solución Entonces se tiene que el dominio está delimitado por las rectas y = x; y = x y x = 1: Luego el dominio de integración es: D = (x; y) 2 IR2 = 0 x 1; x y x : Integrando a franjas verticales, resulta 1
  • 2. ZZ D p x2 y2dxdy = Z 1 0 Z x x p x2 y2dydx = Z 1 0 Z x x x r 1 y x 2 dydx Hacemos el cambio de variables y x = sent =) dy = x cos tdt y determinemos los limites. Para y = x =) arcsen x x = arcsen (1) = 2 : Para y = x =) arcsen x x = arcsen ( 1) = 2 Por tanto Z 1 0 Z x x x r 1 y x 2 dydx = Z 1 0 Z 2 2 x2 p 1 sen2tdtdx = Z 1 0 Z 2 2 x2 cos2 tdtdx = Z 1 0 Z 2 2 x2 ( 1 + cos 2t 2 )dtdx = Z 1 0 x2 t 2 + sen2t 4 2 2 dx = 2 Z 1 0 x2 dx = 2 x3 3 1 0 = 6 1.3 Problema Calcular ZZ D y 2x2 dxdy si D es la región acotada por jxj + jyj = 2 Solución Se tiene que la región D = (x; y) 2 IR2 = jxj + jyj 2 Si escogemos la región con una partición de tipo I, es necesario utilizar dos integrales iterativas porque para 2 x 0 , la frontera inferior de la región es la grá…ca de y = x 2, y la superior es y = x + 2;y para 0 x 2 la frontera inferior de la región es la grá…ca de y = x 2, y la superior es y = x + 2 Entonces se tiene D = D1 [ D2 tal que D1 [ D2 = : donde D1 = (x; y) 2 IR2 = 2 x 0; x 2 y x + 2 D2 = (x; y) 2 IR2 = 0 < x 2; x 2 y x + 2 2
  • 3. Por otra parte la funcion del integrando f (x; y) = y 2x2 es simétrica con respecto al eje y, es decir 8 (x; y; z) 2 D existe ( x; y; z) tal que f ( x; y) = y 2( x)2 = f (x; y) : Por lo tanto ZZ D y 2x2 dxdy = 2 Z 2 0 Z x+2 x 2 y 2x2 dydx = 2 Z 2 0 y2 2 + 2x2 y x+2 x 2 dx = 2 Z 1 0 4x3 8x2 dx = x4 8 3 x3 2 0 = 2 16 64 3 = 32 3 1.4 Problema Calcular ZZ D x2 + y2 dxdy si D = (x; y) 2 IR2 = x2 + y2 1 :Usando coordenadas cartesianas Solución. Usando coordenadas cartesianas, la región de integración es un círculo centrado en el origen de radio uno Por lo tanto D = (x; y) 2 IR2 = 1 x 1; p 1 x2 y p 1 x2 ZZ D x2 + y2 dxdy = Z 1 1 Z p 1 x2 p 1 x2 (x2 + y2 )dydx = Z 1 1 (x2 y + y3 3 ) p 1 x2 p 1 x2 dx = 2 Z 1 1 (x2 p 1 x2 + 1 3 p (1 x2)3)dx = 2 Z 1 1 x2 p 1 x2dx + 2 3 Z 1 1 p (1 x2)3dx Con ayuda de una tabla de integrales obtenemos que: Z 1 1 x2 p 1 x2dx = ( x 4 p 1 x2 + 1 8 (x p 1 x2 + arcsenx) 1 1 = 1 8 (arcsen(1) arcsen ( 1) = 1 8 ( 2 + 2 ) = 8 3
  • 4. Z 1 1 p (1 x2)3dx = ( x 4 p (1 x2)3 + 3x 8 p (1 x2) + 3 8 arcsenx) 1 1 = 3 8 Por lo tanto: ZZ D x2 + y2 dxdy = 2 8 + 2 3 3 8 = 2 Notese que la solución del problema usando coordenadas cartesianas es bastante compleja 1.5 Problema Calcular ZZ D xydxdy si D es la región acotada por y = p x; y = p 3x 18; y 0:Usando coordenadas cartesianas. Solución. Si escogemos la región con una partición de tipo I, es necesario utilizar dos integrales iterativas porque para 0 x 6 , la frontera inferior de la región es la grá…ca de y = 0, y la superior es y = p x;y para 6 x 9 la frontera inferior de la región es la grá…ca de y = p 3x 18, y la superior es y = p x Luego tenemos que D = D1 [ D2 tal que D1 [ D2 = : Entonces D1 = (x; y) 2 IR2 = 0 x 6; 0 y p x D2 = (x; y) 2 IR2 = 6 < x 9; p 3x 18 y p x Por lo tanto ZZ D xydxdy = ZZ D1 xydxdy + ZZ D2 xydxdy = Z 6 0 Z p x 0 xydydx + Z 9 6 Z p x p 3x 18 xydydx = Z 6 0 x y2 2 p x 0 dx + Z 9 6 x y2 2 p x p 3x 18 dx = 1 2 Z 6 0 x2 dx + 1 2 Z 9 6 ( 2x2 + 18x)dx = 1 6 x3 6 0 + x3 3 + 9 x2 2 9 6 = 185 2 Si escogemos la región con una partición de tipo II, es necesario utilizar sólo una integral iterativa porque para 0 y 3 , la frontera izquierda de la región 4
  • 5. es la grá…ca de x = y2 mentras que la frontera derecha queda determinada por la grá…ca x = y2 3 + 6; obteniendo así la región D1 = (x; y) 2 IR2 = y2 x y2 3 + 6; 0 y 3 la integral iterativa queda ZZ D xydxdy = Z 3 0 Z (y2 =3)+6 y2 xydxdy = Z 3 0 x2 2 (y2 =3)+6 y2 ydy = 1 2 Z 3 0 " y2 + 18 3 2 y4 #(y2 =3)+6 y2 ydy = 1 18 Z 3 0 8y5 + 36y3 + 324y dy = 1 18 4 3 y6 + 9y4 + 162y2 3 0 = 1 18 4 3 36 + 36 + 2 36 = 185 2 1.6 Problema Encontrar el área de la región determinada por las desigualdades: xy 4; y x; 27y 4x2 : Solución. Sabemos que xy = 4 tiene por grá…ca una hipérbola equilátera, y = x es la recta bisectriz del primer cuadrante y 27y = 4x2 corresponde a una parábola. Veamos cuale son los puntos de intersección de estas curvas con el proprosito de con…gurar el dominio de integración xy = 4 y = x =) x2 = 4 =) x = 2 =) y = 2 27y = 4x2 y = x =) 27x = 4x2 =) x = 0 x = 24 4 ) =) y = 0; y = 27 4 xy = 4 27y = 4x2 =) x = 3; y = 4 3 Para calcular el área A(R) = ZZ D dxdy; podemos escoger una partición del dominio de tipo I ó de tipo II. Consideremos dos subregiones de tipo I D1 = (x; y) 2 IR2 = 2 x 3; 4 x y x 5
  • 6. D2 = (x; y) 2 IR2 = 3 x 27 4 ; 4 27 x2 y x Si proyectamos sobre eje x A(R) = ZZ D dxdy = ZZ D1 dxdy + ZZ D2 dxdy A(R) = Z 3 2 Z x 4 x dydx + Z 27=4 3 Z x 4 27 x2 dydx = Z 3 2 yj x 4 x dx + Z 27=4 3 yj x 4 27 x2 dx = Z 3 2 x 4 x dx + Z 27=4 3 x 4 27 x2 dx = x2 2 4 ln x 3 2 + x2 2 4 81 x3 27=4 3 = 5 2 4 ln 3 2 + 729 32 9 2 4 81 273 43 + 4 81 33 = 2 4 ln 3 2 + 729 32 243 16 + 4 3 = 665 96 4 ln 3 2 Si proyectamos sobre eje y DI = (x; y) 2 IR2 = 4 y x 3 2 p 3y; 4 3 y 2 DI = (x; y) 2 IR2 = y x 3 2 p 3y; 2 y 27 4 A(R) = ZZ D dxdy = ZZ D1 dxdy + ZZ D2 dxdy A(R) = Z 2 4 3 Z 3 2 p 3y 4 y dxdy + Z 27=4 2 Z 3 2 p 3y y dxdy = Z 2 4 3 hp 3y 4 ln y i dy + Z 27=4 2 3 2 p 3y y dy = 3 2 p 3y3 4 y 2 4 3 + p 3y3 y2 2 27=4 2 = 8 3 4 ln 3 2 + 9 27 8 729 32 + 2 = 665 96 4 ln 3 2 6
  • 7. 1.7 Problema Encontrar el volumen de la región acotada por los tres planos coordenados y el plano x + 2y + 3z = 6 Solución. Usando integrales dobles y proyectando la región sobre el plano xy tenemos: V = ZZ D 6 x 2y 3 dxdy , D = (x; y) 2 IR2 = 0 x 6; 0 y 6 x 2 V = 1 3 Z 6 0 Z 6 x 2 0 (6 x 2y) dydx = 1 3 Z 6 0 (6 x)y y2 6 x 2 0 dx = 1 3 Z 6 0 (6 x)2 2 (6 x)2 4 dx = 1 12 Z 6 0 (6 x)2 dx = 1 36 (6 x)3 6 0 = 6 Usando integrales dobles y proyectando la región sobre el plano yz tenemos: V = ZZ R (6 3z 2y) dzdy , R = (y; z) 2 IR2 = 0 y 3; 0 z 6 2y 3 V = Z 3 0 Z 6 2y 3 0 (6 2y 3z) dzdy = Z 3 0 (6 2y)z 3 2 z2 6 2y 3 0 dy = Z 3 0 (6 2y)2 3 (6 2y)2 6 dy = 1 6 Z 3 0 (6 2y)2 dy = 1 12 (6 x)3 3 3 0 = 6 2 Cambios de orden de Integración 2.1 Problema Invierta el orden de integración y evalúe la integral resultante . 7
  • 8. I = Z 1 0 Z 2 2x ey2 dydx Solución. El dominio de integracion dado es D = (x; y) 2 IR2 = 0 x 1; 2x y 2 : Si se invierte el orden de integración tenemos que modi…car la partición del dominio. D = n (x; y) 2 IR2 = 0 x y 2 ; 0 y 2 o ;entonces la integral se puede escribir. I = Z 1 0 Z 2 2x ey2 dydx = Z 2 0 Z y 2 0 ey2 dxdy = Z 2 0 xey2 y 2 0 dy = Z 2 0 y 2 ey2 dy = 1 4 ey2 4 0 = 1 4 e16 1 2.2 Problema Invierta el orden de integración y evalúe la integral resultante . I = Z 2 0 Z 4 x2 p y cos ydydx Solución. El dominio de integración dado es D = (x; y) 2 IR2 = 0 x 2; x2 y 4 : Si se invierte el orden de integración tenemos que modi…car la partición del dominio, D = (x; y) 2 IR2 = 0 x p y; 0 y 4 ;entonces la integral se puede escribir Z 2 0 Z 4 x2 p y cos ydydx = Z 4 0 Z p y 0 p y cos ydxdy = Z 4 0 p y cos(y)xj p y 0 dy = Z 4 0 y cos(y)dy Integrando esta última integral por partes se tiene: Z 4 0 y cos(y)dy = ysen(y)j 4 0 Z 4 0 sen(y)dy = ysen(y)j 4 0 + cos(y)j 4 0 = 4sen(4) + cos(4) 1 8
  • 9. 2.3 Problema Invierta el orden de integración y evalúe la integral resultante . I = Z e 1 Z ln x 0 ydydx Solución. El dominio de integración dado es D = (x; y) 2 IR2 = 1 x e; 0 y ln x : Si se invierte el orden de integración tenemos que el dominio, D = (x; y) 2 IR2 = ey x e; 0 y 1 ;entonces la integral se puede escribir Z e 1 Z ln x 0 ydydx = Z 1 0 Z e ey ydxdy = Z 4 0 y x e ey dy = Z 4 0 y(e ey )dy = e y2 2 4 0 ey [y ey ] 4 0 = 8e 4e4 1 3 Cambios de variables: Coordenadas polares 3.1 Problema Calcular ZZ D x2 + y2 dxdy si D = (x; y) 2 IR2 = x2 + y2 1 ;usando coordenadas polares Solución. A partir de la coordenadas polares tenemos: x = rcos ; y = rsen =) x2 + y2 = r2 El valor absoluto del Jacobiano de transformación a polares es: @ (x; y) @ (r; ) = r Reemplazando términos en la integral, produce ZZ D x2 + y2 dxdy = ZZ D r2 @ (x; y) @ (r; ) drd 9
  • 10. = Z 1 0 Z 2 0 r3 d dr = Z 1 0 Z 2 0 r3 j 2 0 dr = 2 Z 1 0 r3 dr = 2 r4 4 1 0 = 2 Las coordenadas polares dieron una solucion más simple del problema. La simplicidad depende de la naturaleza del problema y de la simetria que presenta el dominio. 3.2 Problema Calcular el área de la región interior a la circunferencia x2 + y2 = 8y y exterior a la circunferencia x2 + y2 = 9: Solución. Determinemos el centro y radio de la circunsferencia x2 + y2 = 8y =) x2 + y2 8y = 0 =) x2 + (y 4)2 = 16 El área de la región D es: A (D) ZZ D dxdy Por simetría, podemos calcular el área de la región D en el primer cuadrante y multiplicar por 2. A …n de conocer los límites de integración en coordenadas polares necesitamos conocer el ángulo que forma la recta OT con el eje x. x2 + y2 = 8y =) r2 = 8rsen =) r = 8sen x2 + y2 = 9 =) r = 3 Como T pertenece a ambas circunferencias se cumple 8sen = 3 =) = arcsen 3 8 Luego, la mitad de la región D = (r; ) =3 r 8sen ; arcsen 3 8 2 ZZ D dxdy = ZZ D @ (x; y) @ (r; ) drd 10
  • 11. 2 Z =2 arcsen 3 8 Z 8sen 3 rdrd = 2 Z =2 arcsen 3 8 r2 2 8sen 3 d Z =2 arcsen 3 8 64sen2 9 d = 64 2 sen2 4 9 2 =2 arcsen 3 8 = 55 2 16sen2 =2 arcsen 3 8 = 55 4 55 2 arcsen 3 8 + 16sen(2arcsen 3 8 ) 38; 42 3.3 Problema Calcular ZZ D x2 + y2 x + p x2 + y2 dxdy , si D es el interior del cardioide r = a (1 + cos ) Solución. Cambiando a cordenadas polares, tenemos: ZZ D x2 + y2 x + p x2 + y2 dxdy = ZZ D r2 r cos + r @ (x; y) @ (r; ) drd = ZZ D r2 r cos + r rdrd = Z 2 0 Z a(1+cos ) 0 r2 1 + cos drd = Z 2 0 1 1 + cos r3 3 a(1+cos ) 0 d = a3 3 Z 2 0 (1 + cos ) 2 d = a3 3 Z 2 0 1 + 2 cos + cos2 d = a3 3 + 2sen + 2 + sen2 4 2 0 = a3 Observacion si deseamos se rigurosos debemos hacer notar que la integral es impropia cuando x 0; e y = 0; pues en tal caso el denominador es cero. Luego: 11
  • 12. I = lim ! "!0 Z 0 Z a(1+cos ) " r2 1 + cos drd + lim ! + "!0 Z 2 Z a(1+cos ) " r2 1 + cos drd = lim ! a3 3 Z 0 (1 + cos ) 2 d + lim ! + a3 3 Z 2 (1 + cos ) 2 d = lim ! a3 3 3 2 + 2sen + sen2 4 + lim ! + a3 3 3 3 2 2sen sen2 4 = a3 3.4 Problema Calcular el volumen V el sólido acotado por las grá…cas z = 9 x2 y2 y z = 5. Solución. Como el sólido es simétrico, basta encontrar su volumen en el primer octante y multiplicar su resultado por cuatro. Usando integrales dobles y proyectando la región sobre el plano xy tenemos: V = 4 Z Z D 9 x2 y2 5 dxdy D = (x; y) 2 IR2 = x 0; y 0; 0 x2 + y2 4 A partir de la coordenadas polares, obtenemos: x = rcos y = rsen =) f (x; y) = 4 x2 y2 = 4 r2 0 x2 + y2 = r2 4 () 0 r 2 y 0 2 D = n (r; ) = 0 r 2; 0 2 o El valor absoluto del Jacobiano de transformación a polares es: @ (x; y) @ (r; ) = r Reemplazando términos en la integral, produce: V = 4 Z Z D 4 r2 rdrd = 4 Z =2 0 Z 2 0 4 r2 rdrd = 4 Z =2 0 4 2 r2 1 4 r4 2 0 d = 8 12
  • 13. 4 Cambios de variables. Coordenadas curvilíneas 4.1 Problema Calcular I = ZZ D 3xydxdy; donde D es la región acotada por por la rectas x 2y = 0; x 2y = 4 x + y = 4; x + y = 1 (1) Solución. Podemos usar el cambio de variables u = x 2y v = x + y (1) =) x = 1 3 (2u + v) y = 1 3 (u v) (2) Asi,x 2y = 4 se transforma en u = 4 x 2y = 0 se transforma en u = 0 x + y = 1 se transforma en v = 1 x + y = 4 se transforma en v = 4 Para calcular el Jacobiano @ (x; y) @ (u; v) tenemos dos posibilidades. La primera, es usar la transformación inversa (2) x e y en términos de u y v : La segunda, mucho más simple, es calcular a partir de (1) @ (u; v) @ (x; y) y luego usar la propiedad @ (x; y) @ (u; v) = @ (u; v) @ (x; y) 1 : En efecto @ (u; v) @ (x; y) = 1 2 1 1 = 1 + 2 = 3 =) @ (x; y) @ (u; v) = 1 3 Por lo tanto, del teorema del cambio e variables se deduce que: I = ZZ D 3xydxdy = ZZ D 3 1 3 (2u + v) 1 3 (u v) @ (x; y) @ (u; v) dudv = Z 4 1 Z 0 4 1 9 2u2 uv v2 dvdu = 1 9 Z 4 1 2u2 v uv2 2 v3 3 0 4 du = 1 9 Z 4 1 8u2 + 8u 64 3 du = 1 9 8u3 3 + 4u2 64 3 u 4 1 du = 164 9 4.2 Problema 13
  • 14. Calcular el área de la región D; que esta acotada por las curvas x2 y2 = 1; x2 y2 = 9 x + y = 4; x + y = 6 (1) Solución. Teniendo en cuenta el cambio de variables que transforma la región D en la región D u = x2 y2 v = x + y (1) =) La imagen D de la región D está acotada por la rectas verticales; x2 y2 = 1 se transforma en u = 1 x2 y2 = 9 se transforma en u = 9 y las rectas horizontales x + y = 4 se transforma en v = 4 x + y = 6 se transforma en v = 6 Es decir, D = f(u; v) =1 u 9; 4 v 6g Vamos a calcular @ (x; y) @ (u; v) a partir de (1) @ (u; v) @ (x; y) y usar la propiedad @ (x; y) @ (u; v) = @ (u; v) @ (x; y) 1 : En efecto @ (u; v) @ (x; y) = 2x 2y 1 1 = 2 (x + y) = 2v =) @ (x; y) @ (u; v) = 1 2v El teorema del cambio variables a…rma que: A (D) = ZZ D dxdy = ZZ D @ (x; y) @ (u; v) dudv = Z 9 1 Z 6 4 1 3v dvdu = 1 2 Z 9 1 [ln v] 6 4 du = 1 2 ln 6 4 Z 9 1 du = 1 2 ln 3 2 [u] 9 1 = 4 ln 3 2 4.3 Problema Calcular I = ZZ D x3 + y3 xy dxdy; donde D es la región del primer cuadrante acotada por: y = x2 ; y = 4x2 x = y2 ; x = 4y2 (1) Solución. El cálculo de I sería bastante complejo si usamos coordenadas cartesianas por la simetría que tiene el dominio.Sin embargo, una cambio de variables 14
  • 15. simpli…ca la región D y la transforma en D . Sean u = x2 y ; v = y2 x Luego D esta acotada por la rectas verticales; y = x2 se transforma en u = 1: y = 4x2 se transforma en u = 1 4 : y las rectas horizontales x = y2 se transforma en v = 1: x = 4y2 se transforma en v = 1 4 : Es decir, D = (u; v) =1 u 1 4 ; 1 v 1 4 Para calcular @ (x; y) @ (u; v) tenemos dos posibilidades, la primera es despejar x e y en términos de u y v a partir de (1) : La segunda, es calcular @ (u; v) @ (x; y) y usar la propiedad @ (x; y) @ (u; v) = @ (u; v) @ (x; y) 1 : En efecto @ (u; v) @ (x; y) = 2x y x2 y2 y2 x2 2y x = 4 1 = 3 =) @ (x; y) @ (u; v) = 1 3 Calculemos ahora la integral I = ZZ D x3 + y3 xy dxdy = ZZ D x2 y + y2 x dxdy = Z 1 1=4 Z 1 1=4 (u + v) 1 3 dvdu = 1 3 Z 1 1=4 uv + v2 2 1 1=4 du = 1 3 Z 1 1=4 3 4 u + 15 32 du = 1 3 3 8 u2 + 15 32 u 1 1=4 = 1 3 3 8 15 16 + 15 32 3 4 = 15 64 4.4 Problema Evaluar la integral I = ZZ D [x + y] 2 dxdy; donde D es la región del plano xy acotado por las curvas x + y = 2; x + y = 4; y = x; x2 y2 = 4; (1) 15
  • 16. Solución. Observese que las ecuaciones de la curvas de la frontera de D sólo incluyen a x e y en las combinaciones de x y;y el integrando incluye solamentenlas mismas combinaciones. Aprovechando estas simetrías, sean las coordenadas u = x + y; v = x y Luego, la imagen D de la región D está acotada por las curvas; x + y = 2 se transforma en u = 2: x + y = 4 se transforma en u = 4: A su vez x y = 0 se transforma en v = 0: x2 y2 = (x + y) (x y) = 4 se transforma en uv = 4: Es decir, D = (u; v) = 2 u 4; 0 v 4 u El jacobiano de la transformación es @ (x; y) @ (u; v) = @ (u; v) @ (x; y) 1 : En efecto @ (u; v) @ (x; y) = 1 1 1 1 = 2 =) @ (x; y) @ (u; v) = 1 2 Entonces: ZZ D [x + y] 2 dxdy = 1 2 ZZ D u2 dudv = 1 2 Z 4 2 Z 4=u 0 u2 dvdu = 1 2 Z 4 2 u2 vj 4=u 0 du = 1 2 Z 4 2 4udu = 4 2 u2 2 4 2 = 12 5 Cálculo de integrales triples en coordenadas rectángulares cartesianas 5.1 Problema Sea R la región en IR3 acotada por: z = 0; z = 1 2 y; x = 0; x = 1; y = 0; y = 2 Calcular ZZZ R (x + y z) dxdydz: Solución. Del grá…co de la región , tenemos que 0 z 1 2 y:Proyectando la región R sobre el plano xy. Así D = (x; y) 2 IR2 = 0 x 1; 0 y 2 : 16
  • 17. Por lo tanto; ZZZ R (x + y z) dxdydz = ZZ D ( Z 1 2 y 0 (x + y z) dz)dxdy Z 1 0 Z 2 0 ( Z 1 2 y 0 (x + y z) dz)dydx = Z 1 0 Z 2 0 xz + yz z2 2 1 2 y 0 dydx Z 1 0 Z 2 0 1 2 (x + y)y y2 8 dydx = Z 1 0 Z 2 0 1 2 xy + 3 8 y2 dydx Z 1 0 1 4 xy2 + 1 8 y3 2 0 dx = Z 1 0 [(x + 1)] dx = 1 2 x2 + x 1 0 = 3 2 También es posible resolver el problema anterior proyectando la región R sobre el plano xz:En tal caso, 2z y 2 y D = (x; z) 2 IR2 = 0 x 1; 0 z 1 ZZZ R (x + y z) dxdydz = Z 1 0 Z 1 0 ( Z 2 2z (x + y z) dy)dzdx Z 1 0 Z 1 0 xy + y2 2 zy 2 2z dzdx = 2 Z 1 0 Z 1 0 [x + 1 z xz] dzdx 2 Z 1 0 xz + z z2 2 x z2 2 1 0 dx = 2 Z 1 0 x + 1 1 2 x 2 dx Z 1 0 [(x + 1)] dx = 1 2 x2 + x 1 0 = 3 2 Una tercera posibilidad de solución consiste en proyectar la región R sobre el plano yz. Esta se deja como ejercicio. 5.2 Problema Calcular ZZZ D x2 dxdydz si D es la región acotada por y2 + z2 = 4ax; y2 = ax; x = 3a Solución. La super…cie y2 + z2 = 4ax corresponde a un paraboloide de revolución como el bosquejado en la …gura. En dos variables el grá…co de y2 = ax es una parábola, pero es tres variables es la super…cie de un manto parabólico. 17
  • 18. Finalmente, el grá…co x = 3 es un plano paralelo al plano xz a la distancia 3a. Luego el grá…co de la región es La proyección de la region sobre el plano xy es: D = n (x; y; z) 2 IR3 =D1 [ D2 , p 4ax y2 z p 4ax y2 o Por simetría se tiene: I = ZZZ D x2 dxdydz = 2 ZZ D1 Z p 4ax y2 p 4ax y2 x2 dzdxdy = 2 Z 3a 0 Z 2 p ax p ax Z p 4ax y2 p 4ax y2 x2 dzdydx = 2 Z 3a 0 Z 2 p ax p ax x2 z p 4ax y2 p 4ax y2 dydx = 4 Z 3a 0 Z 2 p ax p ax x2 p 4ax y2dydx De una tabla de integrales obtenemos Z p a2 u2du = 1 2 (u p a2 u2 + a2 arcsen u a ) Así al integrar la expresión: Z 2 p ax p ax p 4ax y2dy = 1 2 y p 4ax y2 + 4ax arcsen y 2 p ax 2 p ax p ax = 2ax arcsen (1) 1 2 p ax p 3ax + 4ax arcsen 1 2 = 2ax 2 + 1 2 ax p 3 2ax 6 = 2 3 ax + p 3 2 ax Por lo tanto al sustituir en la integral anterior, queda 4 Z 3a 0 " 2 3 + p 3 2 # ax3 dx = " 2 3 + p 3 2 ! ax4 #3a 0 = 27a5 2 + 3 p 3 2 ! 18
  • 19. 5.3 Problema Calcular el volumen del sólido acotado por la super…cie y = x2 y los planos y + z = 4 ; z = 0: Solución. Consideremos que la región está acotada inferiormente por la frontera z = 0 y superiomente por z = 4 y: Si Proyectamos la región sobre el plano xy, se tiene: = (x; y; z) 2 IR3 = (x; y) 2 D; 0 z 4 y D = (x; y) 2 IR2 = 2 x 2; x2 y 4 Luego el volumen de la región es V ( ) = ZZZ dxdydz = Z 2 2 Z 4 x2 Z 4 y 0 dzdydx = Z 2 2 Z 4 x2 (4 y) dydx = Z 2 2 4y y2 2 4 x2 dx = Z 2 2 8 4x2 + x4 2 dx = 8x 4 3 x3 + x4 10 2 2 = 256 15 6 Coordenadas esféricas 6.1 Problema Resolver I = ZZZ D p x2 + y2 + z2e (x2 +y2 +z2 )dxdydz si D es la región de IR3 limitada por las super…cies x2 + y2 + z2 = a2 x2 + y2 + z2 = b2 con 0 < b < a anillo esférico. Solución Por la simetría del dominio y la forma del integrando usaremos coordenadas esféricas: x = rsen cos y = rsen sen z = r cos 9 = ; =) b2 x2 + y2 + z2 a2 =) b r a tg = y z = 0 =) 0 tg = y x = 0 =) 0 2 Recordando que el valor absoluto del Jacobiano a esféricas es : @ (x; y; z) @ (r; ; ) = r2 sen se tiene: 19
  • 20. I = Z 2 0 Z 0 Z a b re r2 @ (x; y; z) @ (r; ; ) drd d = Z 2 0 Z 0 Z a b r3 e r2 sen drd d = Z 2 0 Z 0 1 2 r2 e r2 e r2 a b sen d d = 1 2 b2 e b2 + 1 2 e b2 1 2 a2 e a2 e a2 Z 2 0 Z 0 sen d d = 1 2 b2 e b2 + 1 2 e b2 1 2 a2 e a2 e a2 Z 2 0 cos j0 d = 2 1 2 b2 e b2 + 1 2 e b2 1 2 a2 e a2 e a2 Z 2 0 d = 4 1 2 b2 e b2 + 1 2 e b2 1 2 a2 e a2 e a2 6.2 Problema Encontrar el volumen de la región determinada por x2 + y2 + z2 16 ; z2 x2 + y2 : Solución x2 + y2 + z2 = 16 es una esfera con centro en el origen y radio 4 z2 = x2 +y2 es un cono con vértice en el origen y eje de simetría coincidente con el eje z. Como z 0 , sólo debemos considerar sólo la región sobre el plano xy. La intersección de la esfera con el cono se obtiene mediante el sistema: x2 + y2 + z2 = 16 x2 + y2 = z2 =) z = p 8 x2 + y2 = 8 Usaremos coordenadas esféricas: x = rsen cos y = rsen sen z = r cos 9 = ; =) 0 x2 + y2 + z2 16 =) 0 r 4 tg = y z = p 8 p 8 = 1 =) 0 4 tg = y x = 0 =) 0 2 Recordando que el valor absoluto del Jacobiano a esféricas es : @ (x; y; z) @ (r; ; ) = r2 sen se tiene: 20
  • 21. V = ZZZ D dxdydz = Z 2 0 Z 4 0 Z 4 0 r2 sen drd d V = Z 2 0 Z 4 0 r3 3 4 0 sen d d V = 43 3 Z 2 0 cos j 4 0 d V = 43 3 Z 2 0 1 p 2 2 ! d = 43 3 1 p 2 2 ! 2 Otra opción para resolver este problema es usar coordenadas cilíndricas,en tal caso x = r cos y = rsen z = z 9 = ; =) x2 + y2 + z2 = 16 =) z = 16 r2 : x2 + y2 = z2 =) z = r2 Teníamos que el Jacobiano de transformación a cilíndricas es: @ (x; y; z) @ (r; ; z) = r luego: V = ZZZ D dxdydz = Z 2 0 Z p 8 0 Z p 16 r2 r2 rdzdrd = Z 2 0 Z p 8 0 rzj p 16 r2 r2 drd = Z 2 0 Z p 8 0 r p 16 r2 r2 drd = Z 2 0 1 3 p (16 r2)3 r3 3 p 8 0 d = 2 3 2 p 83 p 163 = 2 3 64 32 p 2 7 Coordenadas Cilíndricas 7.1 Problema Usando integrales triples calcular el volumen de la región acotada por z = x2 +y2 y z = 27 2x2 2y2 : Solución. Por la simetría del volumen los resolveremos usando coordenadas cilíndricas. x = r cos y = rsen z = z 9 = ; =) z = x2 + y2 =) z = r2 : z = 27 2x2 2y2 =) z = 27 2r2 x2 + y2 = 9 =) r = 3: 21
  • 22. Como el Jacobiano de transformación a cilíndricas es: @ (x; y; z) @ (r; ; z) = r se tiene: V = ZZZ D dxdydz = Z 2 0 Z 3 0 Z 27 2r2 r2 rdzdrd = Z 2 0 Z 3 0 r zj 27 2r2 r2 drd = Z 2 0 Z 3 0 r 27 3r2 drd = Z 2 0 27 2 r2 3 4 r4 3 0 d = 243 4 Z 2 0 d = 243 4 2 = 243 2 7.2 Problema Calcular el volumen de la región acotada por la esfera x2 + y2 + z2 = 13 y el cono (z 1) 2 = x2 + y2 ; z 1 Solución. El volumen pedido es V = ZZZ R dxdydz donde la región R está dada por R = n (x; y; z) 2 IR3 = (x; y) 2 D; 1 + p x2 + y2 z p 4 x2 y2 o D corresponde a la proyección de R sobre el plano xy. D = (x; y; z) 2 IR2 =x2 + y2 13 Por la simetría del volumen conviene usar coordenadas cilíndricas. x = r cos y = rsen z = z 9 = ; =) x2 + y2 + z2 r2 + z2 13 , Determinemos la imagen R de R (z 1) 2 = x2 + y2 () z 1 + r =) 1 + r z p 13 r2 Luego R = (r; ; z) 2 IR3 = (r; ) 2 D; 1 + r z p 13 r2 La región R al ser proyectada sobre el plano xy. produce z = 0 =) x2 + y2 = 13 D1 = n (r; ) 2 IR3 = r 2 ; 2 2 o Como el Jacobiano de transformación a cilíndricas es: @ (x; y; z) @ (r; ; z) = r se tiene: 22
  • 23. V = ZZZ R dxdydz = Z 2 0 Z 2 0 Z p 13 r2 1+r rdzd dr = Z 2 0 Z 2 0 rz p 13 r2 1+r d dr = Z 2 0 Z 2 0 r p 13 r2 (1 + r) d dr = 2 Z 2 0 r p 13 r2 r + r2 dr = 2 1 3 13 r2 3=2 r2 2 + r3 3 2 0 = 2 1 3 133=2 73=2 4 2 + 8 3 7.3 Problema Calcular utilizando coordenadas cilíndricas el volumen de la región R , donde R es el interior a la esfera x2 +y2 +z2 = 4; z 0;y exterior al cilindro (x 1)2 +y2 = 1: Solución La región R se describe en coordenadas cartesianas mediante R = n (x; y; z) 2 IR3 = (x; y) 2 D; 0 z p 4 x2 y2 o donde D es la proyección de R sobre el plano xy. D = (x; y) 2 IR3 =x2 + y2 4 ; (x 1)2 + y2 1 Transformemos la región R a coordenadas cilindricas de…nidas por x = r cos y = rsen z = z 9 = ; =) x2 + y2 + z2 = r2 (cos2 + sen2 ) + z2 4 () 0 z p 4 r2 La región R al ser proyectada sobre el plano xy da origen a dos subregiones x2 + y2 r2 4 () 0 r 2 si 2 3 2 (x 1)2 + y2 1 () r 2 cos y r 2 si - 2 2 Entonces, la región R puede describirse mediante R = (r; ; z) = (r; ) 2 D = D1 [ D1; 0 z p 4 r2 D1 = n (r; ) 2 IR3 =2 cos r 2 ; 2 2 o D2 = (r; ) 2 IR3 =0 r 2 ; 2 3 2 23
  • 24. Ademas, el Jacobiano de la transformación a cilíndricas es: @ (x; y; z) @ (r; ; z) = r En consecuencia la integral puede describirse por I = ZZZ R (r) drd dz = Z =2 =2 Z 2 2 cos Z p 4 r2 0 rdzdrd + Z 3 =2 =2 Z 2 0 Z p 4 r2 0 rdzdrd = Z =2 =2 Z 2 2 cos r h z ip 4 r2 0 drd + Z 3 =2 =2 Z 2 0 r h z ip 4 r2 0 drd = Z =2 =2 Z 2 2 cos r p 4 r2drd + Z 3 =2 =2 Z 2 0 r p 4 r2drd = Z =2 =2 1 3 4 r2 3=2 2 2 cos d + Z 3 =2 =2 1 3 4 r2 3=2 2 0 d = 8 3 Z =2 =2 1 cos2 3=2 d + 8 3 Z 3 =2 =2 d = 8 3 Z =2 =2 sen3 d + 8 3 Z 3 =2 =2 d = 8 3 cos + cos3 3 =2 =2 + 8 3 = 8 3 7.4 Problema Calcular I = ZZZ D x2 a2 + y2 b2 + z2 c2 dxdydz: En la región D = (x; y; z) 2 IR3 = x2 a2 + y2 b2 + z2 c2 1 a > 0; b > 0; c > 0 Solución. La región de integración es un elipsoide de semieejes a,b,c. Efectuemos un primer cambio de variables: x = au; y = bv; z = cw: Con ello, D se transforma en la bola. D = (u; v; w) =u2 + v2 + w2 1 yel valor absoluto del Jacobiano queda : @ (x; y; z) @ (u; v; w) = a 0 0 0 b 0 0 0 c = abc Luego, aplicando el teorema del cambio de variables y obtenemos la integral 24
  • 25. I = ZZZ D x2 a2 + y2 b2 + z2 c2 dxdydz: = ZZZ D u2 + v2 + w2 @ (x; y; z) @ (u; v; w) dudvdw = ZZZ D u2 + v2 + w2 @ (x; y; z) @ (u; v; w) dudvdw = ZZZ D (u2 + v2 + w2 ) (abc) dudvdw Ahora, transformamos a coordenadas esféricas. u = rsen cos v = rsen sen w = r cos 9 = ; =) 0 u2 + v2 + w2 1 =) 0 r 1 tg = v w =) 0 tg = v u =) 0 2 Quedando, la region D = f(r; ; ) =0 r 1; 0 ; 0 2 g abc ZZZ D (u2 + v2 + w2 )dudvdw = abc Z 2 0 Z 0 Z 1 0 r2 r2 sen drd d = abc Z 2 0 Z 0 r5 5 1 0 sen d d = abc 5 Z 2 0 cos j0 d = 2abc 5 Z 2 0 d = 4 abc 5 Observación Es claro que la integración se podría haber efectuado usando directamente la trasformación compuesta. x = arsen cos y = brsen sen z = cr cos 9 = ; =) @ (x; y; z) @ (r; ; ) = abcr2 sen 7.5 Problema Calcular I = ZZZ D dxdydz: q (x a) 2 + (y b) 2 + (z c) 2 ; en la región D = (x; y; z) 2 IR3 =x2 + y2 + z2 R2 ; (a; b; c) es un punto …jo no peteneciente a la esfera x2 + y2 + z2 R2 : Solución. 25
  • 26. Si usamos coordenadas cartesianas los límites de integración son di…cultosos, pues en tal caso tendríamos. I = ZZZ D dxdydz: q (x a) 2 + (y b) 2 + (z c) 2 I = Z r r Z p r2 x2 p r2 x2 Z p r2 x2 y2 p r2 x2 y2 dzdydx: q (x a) 2 + (y b) 2 + (z c) 2 Es claro que si usamos este camino las cosas no serán fáciles. Sin embargo , dada la simetria esférica del dominio y observando que el integrando no es nada más que el reciproco de la distancia desde (a; b; c) =2 D hasta (x; y; z) 2 D;nos damos cuenta que el resultado no puede depender más que de la distancia d entre dichos puntos.Por ello, el resultado no puede variar si ubicamos el eje z pasando por el punto (a; b; c). Si (0; 0; d) son las nuevas coordenadas del punto …jo tenemos. I = ZZZ D dxdydz: q x2 + y2 + (z d) 2 Observación El razonamiento anterior es muy usado el cálculo de integrales que aparecen aplicaciones a la Física pues en dicha Ciencia son comunes las leyes en que aparece una distacia o el cuadrado de una distancia en el denominador del integrando. Para calcular I en (*) usamos coordenadas esféricas. Obtenemos: I = Z R 0 Z 0 Z 2 0 r2 sen d d dr p r2 + d2 2dr cos = 2 Z R 0 Z 0 r2 sen d dr p r2 + d2 2dr cos Para calcular J = Z 0 r2 sen d dr p r2 + d2 2dr cos podemos hacer s = r2 + d2 2dr cos ds = 2drsen d Además, = 0 =) s = r2 + d2 2dr = (d r) 2 = =) s = r2 + d2 + 2dr = (d + r) 2 Reemplazando en la integral anterior produce 26
  • 27. J = r 2d Z (d+r)2 (d r)2 s 1=2 ds = r 2d 2s1=2 (d+r)2 (d r)2 = r 2d [2 (d + r) 2 (d r)] = r 2d [4r] = 2r2 d Por lo tanto I = 2 Z R 0 2r2 d dr I = 4 d r3 3 R 0 I = 4 3d R3 27