Después de plantear su ley de la gravitación universal, Newton dedicó un esfuerzo considerable a calcular las perturbaciones que ejerce la atracción del sol sobre la órbita de la luna en torno a la tierra. Newton no llegó a resolver ese problema a su entera satisfacción, pero su planteamiento sentó las bases del trabajo subsiguiente en la teoría lunar. El movimiento de la luna no recibiría una explicación dinámica completamente satisfactoria hasta el siglo XIX con la obra de Hill, lo que a su vez motivó la "teoría cualitativa de las ecuaciones diferenciales" de Poincaré. Este es el verdadero fundamento matemático e histórico de lo que, en la era de la computación digital, se ha llamado la "teoría del caos". Newton intuyó correctamente la sensibilidad a las condiciones iniciales propia de los sistemas caóticos. Una de sus controversias con Leibniz fue motivada por su observación de que las órbitas en el sistema solar probablemente eran inestables en el largo plazo. Según Newton, esto sugería que la intervención divina era necesaria para mantener el orden celestial. Leibniz respondió que Newton concebía a Dios como un ser tan incompetente que no podía construir un reloj que no necesitara reparación constante. Contaré la historia del trabajo de Newton en torno al problema de tres cuerpos y de sus disputas con Leibniz sobre sus implicaciones metafísicas. Esbozaré el desarrollo subsiguiente de la teoría de los sistemas dinámicos y terminaré con un resumen de nuestra actual comprensión del problema, aún no enteramente resuelto, de la estabilidad del sistema solar.