SlideShare una empresa de Scribd logo
2
Lo más leído
3
Lo más leído
4
Lo más leído
EVALUACIÓN INTERNA: PROYECTO ESTUDIOS
MATEMÁTICOS
RESPONSABILIDADES DEL PROFESOR
El profesor tiene 10 responsabilidades principales:
 Aconsejar a los alumnos en la elección de temas apropiados
 Proporcionar a los alumnos oportunidades de adquirir las destrezas relacionadas con
el trabajo del proyecto
 Asegurarse de que los alumnos comprendan los criterios de evaluación y la manera en
la que se aplicarán
 Animar y apoyar a los alumnos en la investigación y en la redacción de los proyectos
 Proporcionar a los alumnos comentarios sobre el trabajo realizado en las distintas
etapas del proyecto
 Ofrecer apoyo a cada alumno para que solucione problemas particulares
 Verificar la precisión de todos los cálculos e indicar en el proyecto dónde se
cometieron errores
 Indicar en el cuerpo del proyecto dónde se ha asignado cada nivel de logro
 Asegurarse de que se haya completado el formulario correspondiente del Manual de
procedimientos del Programa del Diploma, justificando con comentarios las
puntuaciones otorgadas
 Asegurarse de que tanto el alumno como el profesor hayan firmado el formulario que
declara que el proyecto es el trabajo original del alumno
DESTREZAS Y ESTRATEGIAS NECESARIAS
El proyecto constituye una parte importante del curso.Por tanto,puede resultar útil concebirlo como la suma
de partes discretas más pequeñas,cada una de las cuales requiere destrezas y estrategias especiales.
Generalmente es poco realista esperar que los alumnos tengan estas destrezas específicas o sean capaces de
seguir determinadas estrategias antes de comenzar este curso.
Muchas de las destrezas y estrategias que a continuación se describen pueden integrarse a la programación del
curso aplicándolas a diversas situaciones dentro y fuera de la clase. De este modo, los alumnos pueden
practicar ciertas destrezas y aprender a seguir las estrategias apropiadas en un entorno más estructurado,antes
de pasara trabajar independientemente en sus proyectos.
Elecciónde un tema
 Identificar un tema apropiado
 Delimitar un tema para convertirlo en una cuestión más específica
 Desarrollar una tarea adecuada,que esté bien enfocada y bien definida
 Expresar la tarea claramente
Formulaciónde un plan
 Describir los límites de la tarea
 Describir las variables relacionadas con la tarea
 Elaborar un modelo del plan para emprender la tarea, o un bosquejo del mismo
Información/mediciones
 Describir el tipo de datos requeridos
 Describir datos que son pertinentes y apropiados para la tarea
 Organizar modos de recopilar los datos,por ejemplo:
o Llevar a cabo encuestas y cuestionarios
o Realizar recuentos
o Implementar pruebas o mediciones
o Llevar a cabo experimentos
o Elaborar diagramas, modelos, etc.
o Buscar datos en fuentes fiables (por ejemplo: estadísticas,Internet)
o Usar medios tecnológicos para generar los datos
 Decidir qué cantidad de datos resulta adecuada
 Tener presentes las fuentes de error y los problemas relacionados
 Comentar sobre la fiabilidad de diversos métodos de obtención de datos y de los materiales
 Comentar cada proceso de muestreo utilizado
 Organizar los datos de modo que después se puedan analizar
Procedimientos matemáticos
 Seleccionar y usartécnicas matemáticas pertinentes a la tarea.
 Seleccionar y usarmedios tecnológicos apropiados (por ejemplo, una calculadora de pantalla gráfica,
paquetes de programas de computación), asegurándose de demostrar la comprensión de los
procedimientos matemáticos correspondientes.
Esto se desarrolla más ampliamente en la sección “Uso de medios tecnológicos”.
 Usar tablas,gráficos y diagramas claramente rotulados para ilustrar mejor los procedimientos
matemáticos.
 Expresar los resultados con un grado apropiado de precisión.
 Usar las unidades de medida del SI (Sistema Internacional).
Interpretación y análisis de resultados
 Interpretar los resultados obtenidos
 Resumir con palabras la información presentada en una tabla, o representada mediante gráficos o
diagramas
 Comparar los resultados obtenidos a partir de diferentes conjuntos de datos,o los resultados obtenidos de
diferentes maneras partiendo del mismo conjunto de datos
 Utilizar los resultados obtenidos para generalizar o hacer conjeturas y, a partir de ello, sacar conclusiones
pertinentes
 Comentar las posibles fuentes de error dentro del proyecto
 Describir la naturaleza restrictiva del proyecto
 Describir los posibles supuestosque se hayan utilizado
 Analizar la validez de los procedimientos empleados y de los resultados obtenidos en general
Validez
 Analizar si las matemáticas utilizadas son adecuadas
 Analizar las limitaciones de los procedimientos utilizados y las conclusiones extraídas
 Reflexionar de modo crítico sobre el proceso en general
Estructura y comunicación
 Registrar las acciones en cada etapa del desarrollo del proyecto
 Expresar las ideas con claridad
 Concentrarse en la tarea y eludir las cuestiones no pertinentes
 Estructurar las ideas de manera lógica
 Redactar el texto de manera que resulte fluido
 Citar las referencias cuando corresponda
Notación y terminología
 Usar apropiadamente el lenguaje y la representación matemáticos
 Definir las variables utilizadas
 Revisar el documento en busca de posibles errores de ortografía y gramática
Organización
 Organizar una serie de metas parciales y finales ajustadas a plazos personales
 Usar los comentarios del profesorpara hacer mejoras
 Mantenerla honestidad y la integridad asociadas con la realización de un proyecto
DESARROLLO DEL PROYECTO
Elección de un tema
Es esencial que el alumno elija un tema que ofrezca una vía de investigación productiva, que implique el uso
de procedimientos matemáticos pertinentes,y que capte el interés y el entusiasmo del alumno. El concepto del
proyecto debe introducirse al principio del curso,mientras que las ideas para elegir un tema deben ser
identificadas por el profesora medida que avanza el curso.
Para la mayoría de los alumnos, la parte más difícil del proceso consiste en hallar un tema apropiado. En
consecuencia,tan pronto como los alumnos estén listos para comenzar a trabajaren sus proyectos,elprofesor
debe dedicar dos o tres semanas de clases a guiarlos individualmente en este proceso.Los alumnos ya
deberían tener una o dos ideas generales cuando discutan el proyecto por primera vez con el profesor.
Al comienzo del proceso, el profesordeberá discutir con sus alumnos el aspecto general de la evaluación, ya
que ello puede,en parte, ayudara dirigir el flujo de ideas y, en última instancia, a centrar el proyecto.Los
mapas mentales y las sesiones de intercambio de ideas pueden contribuir a enfocar el tema. Los alumnos que
tengan dificultades para elegir un tema pueden encontrar de utilidad las ideas siguientes:
 Considerar sus pasatiempos y otras áreas de interés
 Considerar aplicaciones de las matemáticas a la vida real
 Consultar la lista de títulos (Pag. 9 ) de proyectos que se han presentado anteriormente
 Consultar las descripciones de buenos proyectos (Pag.11 ) que se han presentado anteriormente
Una vez elegido el tema:
 Realizar una descripción detallada del plan.
 Asegurarse de que el tema se preste tanto a procedimientos matemáticos simples como avanzados.
 Asegurarse de que el tema genere suficientes datos para que los procedimientos matemáticos sean
válidos. De no ser así, se debe replantear la adecuación del tema.
Información/mediciones
La obtención de información/mediciones es fundamental en todo proyecto.Puede ser útil discutir los
diferentes aspectos de la obtención de datos intentando respondera las preguntas que aparecen a
continuación. Los datos primarios deben incluirse en todos los proyectos.
¿Qué se entiende por “información”?
La información puede presentarse en varias formas, tales como:
 Aproximación numérica de puntos óptimos como parte de una investigación de cálculo
 Temperatura de una taza de café que se enfría como un ejercicio de utilización de modelos
 Números de calzado y estatura para un ejercicio de correlación
 Sexo y color de automóvil para un ejercicio de independencia
¿Cuánta informaciónse necesita?
La cantidad de información que se requiere depende de la tarea, tal como lo demuestran los siguientes
ejemplos:
 El tamaño y la escala de los objetos a optimizar determinan el nivel de precisión necesario.
 Se deben obtenersuficientes datos para poder encontrar la ecuación de la curva que mejor se ajusta. Los
alumnos deben tener presente que un conjunto de datos reducido puede conducir a un resultado erróneo y
que, por lo general, los conjuntos de datos extensos proporcionan resultados más precisos.
 Los datos necesarios para un ejercicio de correlación entre el número de calzado y la estatura deberían
extraerse de un grupo de personas tan amplio como sea posible, teniendo en cuenta factores tales como la
edad.
 Los alumnos deben saber que todos los valores esperados de una prueba de chi-cuadrado (({chi ^2}))
han de sermayores que cinco.
¿Dónde se puede obtener información?
Se debe ayudar a los alumnos a descubrir las fuentes de información que tienen a su disposición. Por ejemplo,
pueden:
 Tomar medidas usando diversos instrumentos de medida, tales como reglas, cintas métricas, compases,
transportadores,balanzas e instrumentos electrónicos
 Obtener datos mediante encuestas y cuestionarios
 Acceder a horarios o calendarios de pago de préstamos
 Buscar en Internet (deben asegurarse de citar las fuentes y realizar un muestreo cuando corresponda)
 Generar información investigando diferentes patrones de números
 Llevar a cabo experimentos
Diseño de un cuestionario
El diseño de cuestionarios que permitan obtener toda la información necesaria requiere el desarrollo de ciertas
destrezas. Las preguntas deben:
 Estar redactadas de forma clara y cortés
 Ser suficientes
 Permitir que cualquier persona a quien se pregunte pueda contestarlas
 Permitir que la respuesta sea fácil y precisa, por ejemplo, sí o no, un número, un lugar, un nombre
 Permitir que se responda sinceramente y de buen grado
 Ser consideradas discretas
Siempre debe identificarse al autordel cuestionario y explicarse la finalidad para la cual se busca la
información. Resulta aconsejable probar primero el cuestionario con un grupo pequeño,de modo que sea
posible perfeccionar las preguntas antes de plantear el cuestionario a un grupo más grande.
Todos los datos recopilados deberán tratarse con absoluta confidencialidad y de forma responsable,y no
podrán revelarse a terceras personas.Deberá garantizarse el anonimato a todos los participantes. Los datos no
podrán utilizarse para fines distintos de aquellos para los que han sido recopilados.
Procedimientos matemáticos
Solo se deben emplear técnicas pertinentes a la tarea elegida y se debe animar a los alumnos a hacerse las
preguntas siguientes:
 ¿Es apropiado usar esta técnica?
 ¿Qué información va a proporcionar?
 ¿Se puede usarotra técnica?
 ¿Cuál es la mejor técnica para esta situación?
Los alumnos deben tener presente que el proyecto no mejora si:
 Se utilizan distintos tipos de gráficos para representar los mismos datos sin un propósito distinto
 Se repite el mismo procedimiento
Interpretación de resultados
A lo largo del proyecto,se debe animar a los alumnos a que reflexionen sobre el significado de los resultados
que obtienen y que analicen qué conclusiones se pueden extraer. Se deben hacer comentarios después de cada
procedimiento matemático y resumirlos más adelante en otra sección.
Validez
Los alumnos deben ser conscientes de la validez de las técnicas que utilizan, ya sea durante la recopilación de
la información o el proceso de análisis, y deben hacer comentarios al respecto.
Estructura y comunicación
Las buenas prácticas en esta área incluyen:
 Una tarea definida con claridad
 Un plan bien redactado (se sugieren las listas de puntos)
 El seguimiento del plan establecido
 Un índice y números de página
 Encabezamientos adecuados
 Un diseño lógico
La concisión en la expresión constituye un factor para determinar la coherencia.
Notación y terminología
Se debe hacer uso de la notación y la terminología matemáticas adecuadas en todo momento.
Referencias y bibliografía
Los alumnos deben tener en cuenta que el uso directo o indirecto de frases ajenas (en formatos escritos,orales
o electrónicos) debe mencionarse adecuadamente, así como cualquier material visual utilizado en el proyecto
que provenga de otras fuentes.El incumplimiento de este requisito será considerado plagio y, como tal,
constituirá un caso de conducta improcedente. Los alumnos deben estar familiarizados con la política de
probidad académica del IB, disponible en el Centro pedagógico en línea (CPEL).
La bibliografía o lista de referencias solo debe incluir aquellos trabajos (por ejemplo, libros y publicaciones
periódicas) que el alumno haya consultado durante su trabajo en el proyecto.Se debe aplicar de modo
sistemático una forma aceptada de reflejarlas citas y la documentación de las fuentes. Los principales sistemas
de documentación se clasifican en dos grupos:sistemas de paréntesis con el apellido del autor y la fecha de
publicación dentro del texto y sistemas de notas numeradas. Se puede utilizar cualquiera de ellos, siempre que
se realice de forma clara y sistemática.
Cualquier trabajo consultado,con independencia de que ya se haya citado en el texto como referencia, se debe
incluir en la lista de la bibliografía. En la bibliografía se debe especificar: el autor o autores,el título, el lugar
y la fecha de publicación, y el nombre de la editorial; además, esta ha de ajustarse sistemáticamente a una de
las formas normalizadas de enumerar fuentes (por ejemplo, el sistema autor-fecha de Harvard o el sistema
autor-número de Vancouver). Algunos ejemplos podrían ser:
MIGUEL DE GUZMÁN, JOSÉ CÓLERA y ADELA SALVADOR, Matemáticas para Bachillerato 1,
Editorial Grupo Anaya, Madrid, 1990.
LEJARRAGA H, ORFILA G, Estándares de peso y estatura para niñas y niños argentinos desde el
crecimiento hasta la madurez, Arch. argent. pediatr. 1987; 85: 209-222.
Omanet-Educación interactiva. Miscelánea - “Los números” [en línea]. Disponible
enhttp://www.oma.org.ar/omanet/misc/index.htm. [Consulta: 29/07/11].
LISTA DE TÍTULOS DE PROYECTOS
La siguiente lista incluye los títulos de algunos proyectos que obtuvieron distintas notas.
Algunos títulos son más descriptivos que otros y, en la mayoría de los casos, se ha
mantenido la redacción original.
Relacionados con la estética
o Cálculo de la belleza: la proporción áurea
o Preferencias en los colores
o La iluminación natural del aula: diseño arquitectónico
o ¿Muestra el espejo la imagen exacta?
o Aplicaciones de la papiroflexia a las matemáticas
o Sombras y altura
o M. C. Escher: simetría e infinidad del arte Negocios y finanzas
o Estudio comparativo de acciones, bienes inmuebles, bonos y depósitos
o Análisis de los cambios del mercado de valores
o Compra de un automóvil: opciones de pago
o Desarrollo económico y niveles de renta
o Préstamos hipotecarios
o Gestión de un club de baile y restaurante
o Investigación sobre el mercado de teléfonos móviles
o Análisis de las acciones estadounidenses durante el período 1980-1999
o Inversión en un hotel de Costa Rica
o Organización de una boda Comida y bebida
o Estudio sobre la relación entre el consumo de calorías y el sexo de las personas
o ¿Cenar fuera o en casa?
o Las comidas en la escuela secundaria
o Estudio sobre los caramelos
o Acepte el reto de las bebidas cola
o El problema de las galletas: el sabor es lo que importa
o El funcionamiento de una tienda de golosinas
o Investigación sobre las tendencias de alimentación de los jóvenes de hoy
o Costos de los productos comprados por Internet en comparación con las tiendas locales
Salud y buena condición física
o El desayuno en los distintos niveles escolares
o El cáncer de mama y de útero: estudio étnico
o El IMC (índice de masa corporal)
o La mortalidad infantil
o Investigación sobre los tiempos de reacción
o Estudio comparativo de la capacidad pulmonar, la edad, el peso y la grasa corporal
o Prevención del SIDA en Maseru
o La presión sanguínea
Naturaleza y recursos naturales
o Análisis del costo y la utilidad del gas frente a la electricidad en una familia media
o Cálculo de horas de salida y puesta del sol
o Los terremotos
o La calidad del agua de la zona
o Investigación estadística sobre las hojas
o El efecto que las distintas temperaturas tienen sobre el nivel de proliferación de bacterias
en el agua de un estanque de jardín
o Los ciclos de las manchas solares
o La población animal
La gente
o Características de los reclusos
o Discriminación por razón de sexo
o Percepción del tiempo
o Psicología de la memoria
o Número de votantes
o Estudio de correlación entre la televisión y las horas de sueño
o Razón fuerza/peso
o Estudio del efecto de los colores en las emociones humanas
o ¿Qué tipos de películas prefieren los hombres y las mujeres?
o ¿Influye el sexo en la elección de un animal favorito?
o Relación entre desempleo y criminalidad en Suecia de 1988 a 1999
o Relaciones entre alumnos internacionales y bilingües: empleos, mesada y hábitos de
consumo Títulos basados en el colegio
o El deporte femenino en los distintos niveles escolares
o Los alumnos zurdos
o Rendimiento de los alumnos de la zona frente a los alumnos extranjeros
o En busca del sonido ideal
Deportes
o Deporte y nacionalidad
o La velocidad del bateo de béisbol con relación al peso corporal
o El saque de esquina eficaz en hockey
o Factores que afectan al rendimiento atlético
o Altura, peso y rendimiento en natación
o ¿Qué alcance tienen las pelotas de tenis?
o Resistencia del sedal
o Tiempos de interrupción en los partidos de la liga nacional de fútbol
o ¿Llegarán las mujeres a ganar a los hombres en natación?
o Comparación de estaturas a partir de datos deportivos
o El patinaje sobre ruedas y las matemáticas subyacentes
o El efecto del deporte en el promedio general de calificaciones
o Juegos Olímpicos de Sídney 2000: marcas en atletismo
Viajes y transporte
o Relación calidad-precio en los vehículos
o Habilidades en la conducción
o Precios de la gasolina
o Uso del cinturón de seguridad
o Flujo de tráfico en una zona urbana
o Seguridad del transporte en el centro de las ciudades
o Las prisas y los hábitos de conducción
o Estudio de tráfico del aeropuerto internacional de Schiphol
o El efecto de la normativa sobre el índice de alcoholemia en el número de accidentes de
tránsito en Sacramento
o Costos del transporte público y uso del automóvil: comparación personal
Varios
o Pesos medios de los cachorros en las primeras semanas
o Contando hierbas
o Precios de las llamadas telefónicas internacionales
o Memoria
o La práctica hace la perfección
o Predicción del tiempo de enfriamiento
o Funciones de onda en frecuencias extremas
o Árboles generadores
o Topografía y distancias
o Juegos de computador y tiempos de respuesta
o La noria o rueda de la fortuna
o La geometría en el billar
o Investigación sobre diferentes marcas de pilas
o Comparación estadística del número de palabras de una oración en diferentes lenguas
o ¿Cuántos guisantes hay en una lata de 500 gramos?
o Correlación entre la participación de las mujeres en la educación superior y la política de
1955 a 2000
DESCRIPCIONES DE BUENOS PROYECTOS
¿Cuál esla cantidadmínimade papel de aluminionecesariaparaenvolverunabarrade
chocolate enformade Toblerone?(prismatriangular)
• Medirla barra de Toblerone ycalcularel volumenfijosuponiendoque lostriángulosson
equiláteros.
• Hallarecuacionesparael área del triángulo,el volumen,lalongitudylasuperficie.
• Método1: ensayoyerror (estoabordael criterioB).
• Método2: representacióngráfica.
• Método3: cálculo.
• Completarel estudioconunaconclusiónyevaluación,ydiscutirsobre cómopodría
mejorarse latarea.Comentartambiéncómose comparanestostres métodosycuál es el más
preciso.
Relaciónentre númerode calzado y estatura
El alumnoeligióestetemaporque le parecióinteresante lamaneraenque lapolicíacientífica
determinalaestaturaa partirdel númerode calzado.
• Seleccionarhombresymujeresde distintasedades
• Medirsu estatura
• Anotarsu númerode calzado
• Realizarprocedimientosmatemáticossimples(talescomomedia,modaydesviacióntípica)
• Dibujargráficosde barras
• Utilizarlosprocedimientosmatemáticossimplesparadividirlosgruposencategorías(por
ejemplo, inferioralamediade edady superiorala mediade edad)
• Realizarprocedimientosmatemáticosavanzadoscomolapruebade chicuadradoyel
coeficientede correlación,segúncorresponda
• Analizarendetallelosresultados
• Abordarla validezde losresultadosylosprocedimientosutilizados
¿Cuálesson lospatrones matemáticos de las primas de segurosde automóviles?
• Recopilarinformaciónde sitiosweb
• Variablesdependientes:importe de laprima
• Variablescontroladas:edaddel conductoryañossinaccidentes
• Constante:tipode automóvil
• Obtenercotizacionesparalasdistintasedadesylosañossinaccidentes
• Situargráficos:edadvs.prima,años sinaccidentesvs.prima,yañossinaccidentesvs.edad
• Cuandoseaposible,modelarlosgráficosanterioresconfunciones(tal vezobtenidas
utilizandolasfuncionesde regresiónde lacalculadorade pantallagráfica)
• Analizarenprofundidadlosresultadosyhaceralgunoscomentariossobre lavalidez
Relaciónentre la estatura de un tenistahombre profesional yel porcentaje de efectividad
de susprimeros servicios
• Obtenerlasdimensionesde unacanchade tenis
• Utilizarel teoremade Pitágorasylatrigonometríapara determinarel ángulode depresión
de una pelotade tenistrasla ejecuciónde tresserviciosadistintasalturasque pasanjustopor
encimade la red
• Utilizarel ángulode depresiónparacalcularla distanciaentre laredy el lugardonde caerá la
pelotadespuésde cadaservicio
• Formularhipótesisacercade losprimerosserviciosysobre laexistenciade unacorrelación
entre laestaturadel tenistayel porcentaje de efectividadde losprimerosservicios
• Investigarlasestadísticassobre el porcentaje de efectividadde losprimerosserviciosenun
torneode Grand Slam
• Elaboraruna tablacomparativade las estaturasy losporcentajesde efectividadde los
primerosserviciosque caendentrode lacancha
• Calcularlamedia
• Situarlosdatosen undiagrama de dispersión
• Determinarel tipode correlación
• Hallarr
• Colocarlosdatos enuna tablade contingencia
• Utilizarlapruebade chi-cuadradopara la independencia(cuandocorresponda)
• Presentarlosresultados yanalizarlasconclusiones
• Hacer comentariossobre lavalidezde losresultadosylamaneraenla que se podría mejorar
el proyecto
USO DE MEDIOS TECNOLOGICOS
Uno de los objetivos de evaluación de todas las asignaturas del Grupo 5 es "utilizar los medios
tecnológicos de forma precisa, adecuada y eficaz para explorar nuevas ideas y resolver
problemas".
El proyecto ofrece muchas oportunidades para alcanzar este objetivo. Para la evaluación externa,
el uso de medios tecnológicos se limita a las calculadoras de pantalla gráfica, pero en el proyecto
no existen limitaciones de ese tipo. Es razonable, aunque no imprescindible, esperar que los
alumnos, al elaborar sus proyectos, utilicen en alguna medida medios tecnológicos.
Algunos ejemplos son:
 Cualquier tipo de calculadora, Internet, dispositivos de registro de datos
 Procesadores de texto, hojas de cálculo, paquetes gráficos
 Paquetes estadísticos o programas de álgebra y cálculo

Más contenido relacionado

PDF
Isometria actividades
PPTX
Progresiones aritméticas y geométricas
PPTX
Diapositivas de poligono
PPTX
CLASIFICACIÓN DE LOS POLÍGONOS
PDF
26 ejercicios congruencia de triángulos
PDF
Propiedades de los círculos
PPTX
MATEMÁTICAS, SOBRE ECUACIONES y LENGUAJE COLOQUIAL
PPS
Normas básicas de acotación
Isometria actividades
Progresiones aritméticas y geométricas
Diapositivas de poligono
CLASIFICACIÓN DE LOS POLÍGONOS
26 ejercicios congruencia de triángulos
Propiedades de los círculos
MATEMÁTICAS, SOBRE ECUACIONES y LENGUAJE COLOQUIAL
Normas básicas de acotación

La actualidad más candente (20)

PDF
Libro de geometria de preparatoria preuniversitaria
PPTX
Teselaciones vida diaria
POT
Power point funciones trigonométricas
PDF
8 basico matematica - santillana - estudiante
PDF
Unidad 3 geometria descriptiva
PPS
Sucesión de Fibonacci
PPTX
Cuerpos geometricos
PPTX
Razones y proporciones
PPTX
Cuadrilatero
PPTX
Propiedades de los paralelogramos
PPTX
TRASLACIÓN (vector)
PPTX
Dibujo isometrico
PPT
Transformaciones Geométricas
PDF
Relaciones entre puntos, rectas y planos (2).pdf
PPTX
Geometria en el mundo real
PDF
Teselado clases 05
PPSX
Demostraciones geometricas
DOCX
Tabla teorema de thales
PPTX
Tronco de cilindro
Libro de geometria de preparatoria preuniversitaria
Teselaciones vida diaria
Power point funciones trigonométricas
8 basico matematica - santillana - estudiante
Unidad 3 geometria descriptiva
Sucesión de Fibonacci
Cuerpos geometricos
Razones y proporciones
Cuadrilatero
Propiedades de los paralelogramos
TRASLACIÓN (vector)
Dibujo isometrico
Transformaciones Geométricas
Relaciones entre puntos, rectas y planos (2).pdf
Geometria en el mundo real
Teselado clases 05
Demostraciones geometricas
Tabla teorema de thales
Tronco de cilindro
Publicidad

Destacado (20)

DOCX
Proyecto estudios matematicos bi
PDF
Estándares de ética y valores
DOC
Competencias e indicadores grado cuarto
PPTX
Poetas de la generación decapitada
PDF
4º grado-cuarto-español
PPTX
El ensayo de Teoría del Conocimiento (Diploma IB Guía 2015)
PPTX
Si quisiera enseñar ... cómo siempre o cómo nunca?
PPT
ABP frente a Instrucción Directa. MOOC ABP
PDF
Prototipo
PPT
Bases teóricas y filosoficas de la bibliotecología
PPTX
Las tic en la enseñanza de las matematicas
PPTX
Las tics como estrategia para motivar el aprendizaje del área de matemáticas
PPT
Preservación
PPT
PRESENTACION EDUCATIVA
PDF
DESARROLLO DE COMPETENCIAS MATEMATICAS DE LOS ESTUDIANTES DEL GRADO OCTAVO ...
PPTX
Proyecto de regularizacion matematica
PPT
Coaching OntolóGico.La Mirada De Posibilidades
PDF
Plan de trabajo de cuerpos colegiados academia de matematicas 2016
DOCX
Planificación matemática 1° del 05 al 17 de mayo. Carolina Alfaro
PPT
Presentación curso ingreso 2013 UNLaM- INGENIERÍA
Proyecto estudios matematicos bi
Estándares de ética y valores
Competencias e indicadores grado cuarto
Poetas de la generación decapitada
4º grado-cuarto-español
El ensayo de Teoría del Conocimiento (Diploma IB Guía 2015)
Si quisiera enseñar ... cómo siempre o cómo nunca?
ABP frente a Instrucción Directa. MOOC ABP
Prototipo
Bases teóricas y filosoficas de la bibliotecología
Las tic en la enseñanza de las matematicas
Las tics como estrategia para motivar el aprendizaje del área de matemáticas
Preservación
PRESENTACION EDUCATIVA
DESARROLLO DE COMPETENCIAS MATEMATICAS DE LOS ESTUDIANTES DEL GRADO OCTAVO ...
Proyecto de regularizacion matematica
Coaching OntolóGico.La Mirada De Posibilidades
Plan de trabajo de cuerpos colegiados academia de matematicas 2016
Planificación matemática 1° del 05 al 17 de mayo. Carolina Alfaro
Presentación curso ingreso 2013 UNLaM- INGENIERÍA
Publicidad

Similar a Proyecto estudios matematicos bi (20)

DOCX
Elección de un tema
PPS
Elaboración de pruebas 1
DOCX
Modelos proyectos
PPTX
Elaborar un proyecto de acción
PPTX
Formulación de los objetivos de la Investigación.pptx
DOCX
Manual de paola
DOCX
Manual estudiantil 2011 5
PDF
PLAN DE EJECUCION - ACTIVIDAD DE INFOTEP
DOCX
Instrucciones
PPT
Guía presentación protocolo IA4007
PPT
351362889-Diseno-de-Experimentos-ppt.ppt
PPTX
Fc-ev-instrumentos de evaluación - 2017
PDF
Ae 25 estadistica inferencial ii
PPT
como-hacer-un trabajo de investigacion de final de grado.ppt
DOC
Modelos para hacer proyectos
DOCX
Estructura del informe proyectos escolares(1)
PPTX
Notas para elaborar un proyecto de investigación
DOCX
Si de op
PPTX
El problema - antecedentes - definición de objetivos - justificación
DOC
Modelo de proyecto pedagógico
Elección de un tema
Elaboración de pruebas 1
Modelos proyectos
Elaborar un proyecto de acción
Formulación de los objetivos de la Investigación.pptx
Manual de paola
Manual estudiantil 2011 5
PLAN DE EJECUCION - ACTIVIDAD DE INFOTEP
Instrucciones
Guía presentación protocolo IA4007
351362889-Diseno-de-Experimentos-ppt.ppt
Fc-ev-instrumentos de evaluación - 2017
Ae 25 estadistica inferencial ii
como-hacer-un trabajo de investigacion de final de grado.ppt
Modelos para hacer proyectos
Estructura del informe proyectos escolares(1)
Notas para elaborar un proyecto de investigación
Si de op
El problema - antecedentes - definición de objetivos - justificación
Modelo de proyecto pedagógico

Último (20)

PDF
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
PDF
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
PPTX
4. Qué es un computador PARA GRADO CUARTO.pptx
PDF
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
DOC
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
PDF
informe tipos de Informatica perfiles profesionales _pdf
PPTX
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PDF
Modelo Educativo SUB 2023versión final.pdf
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
2.0 Introduccion a processing, y como obtenerlo
PDF
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
4. Qué es un computador PARA GRADO CUARTO.pptx
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
E1 Guía_Matemática_5°_grado.pdf paraguay
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
informe tipos de Informatica perfiles profesionales _pdf
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
Modelo Educativo SUB 2023versión final.pdf
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
2.0 Introduccion a processing, y como obtenerlo
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Telos 127 Generacion Al fa Beta - fundaciontelefonica
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf

Proyecto estudios matematicos bi

  • 1. EVALUACIÓN INTERNA: PROYECTO ESTUDIOS MATEMÁTICOS RESPONSABILIDADES DEL PROFESOR El profesor tiene 10 responsabilidades principales:  Aconsejar a los alumnos en la elección de temas apropiados  Proporcionar a los alumnos oportunidades de adquirir las destrezas relacionadas con el trabajo del proyecto  Asegurarse de que los alumnos comprendan los criterios de evaluación y la manera en la que se aplicarán  Animar y apoyar a los alumnos en la investigación y en la redacción de los proyectos  Proporcionar a los alumnos comentarios sobre el trabajo realizado en las distintas etapas del proyecto  Ofrecer apoyo a cada alumno para que solucione problemas particulares  Verificar la precisión de todos los cálculos e indicar en el proyecto dónde se cometieron errores  Indicar en el cuerpo del proyecto dónde se ha asignado cada nivel de logro  Asegurarse de que se haya completado el formulario correspondiente del Manual de procedimientos del Programa del Diploma, justificando con comentarios las puntuaciones otorgadas  Asegurarse de que tanto el alumno como el profesor hayan firmado el formulario que declara que el proyecto es el trabajo original del alumno DESTREZAS Y ESTRATEGIAS NECESARIAS El proyecto constituye una parte importante del curso.Por tanto,puede resultar útil concebirlo como la suma de partes discretas más pequeñas,cada una de las cuales requiere destrezas y estrategias especiales. Generalmente es poco realista esperar que los alumnos tengan estas destrezas específicas o sean capaces de seguir determinadas estrategias antes de comenzar este curso. Muchas de las destrezas y estrategias que a continuación se describen pueden integrarse a la programación del curso aplicándolas a diversas situaciones dentro y fuera de la clase. De este modo, los alumnos pueden
  • 2. practicar ciertas destrezas y aprender a seguir las estrategias apropiadas en un entorno más estructurado,antes de pasara trabajar independientemente en sus proyectos. Elecciónde un tema  Identificar un tema apropiado  Delimitar un tema para convertirlo en una cuestión más específica  Desarrollar una tarea adecuada,que esté bien enfocada y bien definida  Expresar la tarea claramente Formulaciónde un plan  Describir los límites de la tarea  Describir las variables relacionadas con la tarea  Elaborar un modelo del plan para emprender la tarea, o un bosquejo del mismo Información/mediciones  Describir el tipo de datos requeridos  Describir datos que son pertinentes y apropiados para la tarea  Organizar modos de recopilar los datos,por ejemplo: o Llevar a cabo encuestas y cuestionarios o Realizar recuentos o Implementar pruebas o mediciones o Llevar a cabo experimentos o Elaborar diagramas, modelos, etc. o Buscar datos en fuentes fiables (por ejemplo: estadísticas,Internet) o Usar medios tecnológicos para generar los datos  Decidir qué cantidad de datos resulta adecuada  Tener presentes las fuentes de error y los problemas relacionados  Comentar sobre la fiabilidad de diversos métodos de obtención de datos y de los materiales
  • 3.  Comentar cada proceso de muestreo utilizado  Organizar los datos de modo que después se puedan analizar Procedimientos matemáticos  Seleccionar y usartécnicas matemáticas pertinentes a la tarea.  Seleccionar y usarmedios tecnológicos apropiados (por ejemplo, una calculadora de pantalla gráfica, paquetes de programas de computación), asegurándose de demostrar la comprensión de los procedimientos matemáticos correspondientes. Esto se desarrolla más ampliamente en la sección “Uso de medios tecnológicos”.  Usar tablas,gráficos y diagramas claramente rotulados para ilustrar mejor los procedimientos matemáticos.  Expresar los resultados con un grado apropiado de precisión.  Usar las unidades de medida del SI (Sistema Internacional). Interpretación y análisis de resultados  Interpretar los resultados obtenidos  Resumir con palabras la información presentada en una tabla, o representada mediante gráficos o diagramas  Comparar los resultados obtenidos a partir de diferentes conjuntos de datos,o los resultados obtenidos de diferentes maneras partiendo del mismo conjunto de datos  Utilizar los resultados obtenidos para generalizar o hacer conjeturas y, a partir de ello, sacar conclusiones pertinentes  Comentar las posibles fuentes de error dentro del proyecto  Describir la naturaleza restrictiva del proyecto  Describir los posibles supuestosque se hayan utilizado  Analizar la validez de los procedimientos empleados y de los resultados obtenidos en general Validez  Analizar si las matemáticas utilizadas son adecuadas  Analizar las limitaciones de los procedimientos utilizados y las conclusiones extraídas
  • 4.  Reflexionar de modo crítico sobre el proceso en general Estructura y comunicación  Registrar las acciones en cada etapa del desarrollo del proyecto  Expresar las ideas con claridad  Concentrarse en la tarea y eludir las cuestiones no pertinentes  Estructurar las ideas de manera lógica  Redactar el texto de manera que resulte fluido  Citar las referencias cuando corresponda Notación y terminología  Usar apropiadamente el lenguaje y la representación matemáticos  Definir las variables utilizadas  Revisar el documento en busca de posibles errores de ortografía y gramática Organización  Organizar una serie de metas parciales y finales ajustadas a plazos personales  Usar los comentarios del profesorpara hacer mejoras  Mantenerla honestidad y la integridad asociadas con la realización de un proyecto
  • 5. DESARROLLO DEL PROYECTO Elección de un tema Es esencial que el alumno elija un tema que ofrezca una vía de investigación productiva, que implique el uso de procedimientos matemáticos pertinentes,y que capte el interés y el entusiasmo del alumno. El concepto del proyecto debe introducirse al principio del curso,mientras que las ideas para elegir un tema deben ser identificadas por el profesora medida que avanza el curso. Para la mayoría de los alumnos, la parte más difícil del proceso consiste en hallar un tema apropiado. En consecuencia,tan pronto como los alumnos estén listos para comenzar a trabajaren sus proyectos,elprofesor debe dedicar dos o tres semanas de clases a guiarlos individualmente en este proceso.Los alumnos ya deberían tener una o dos ideas generales cuando discutan el proyecto por primera vez con el profesor. Al comienzo del proceso, el profesordeberá discutir con sus alumnos el aspecto general de la evaluación, ya que ello puede,en parte, ayudara dirigir el flujo de ideas y, en última instancia, a centrar el proyecto.Los mapas mentales y las sesiones de intercambio de ideas pueden contribuir a enfocar el tema. Los alumnos que tengan dificultades para elegir un tema pueden encontrar de utilidad las ideas siguientes:  Considerar sus pasatiempos y otras áreas de interés  Considerar aplicaciones de las matemáticas a la vida real  Consultar la lista de títulos (Pag. 9 ) de proyectos que se han presentado anteriormente  Consultar las descripciones de buenos proyectos (Pag.11 ) que se han presentado anteriormente Una vez elegido el tema:  Realizar una descripción detallada del plan.  Asegurarse de que el tema se preste tanto a procedimientos matemáticos simples como avanzados.  Asegurarse de que el tema genere suficientes datos para que los procedimientos matemáticos sean válidos. De no ser así, se debe replantear la adecuación del tema. Información/mediciones La obtención de información/mediciones es fundamental en todo proyecto.Puede ser útil discutir los diferentes aspectos de la obtención de datos intentando respondera las preguntas que aparecen a continuación. Los datos primarios deben incluirse en todos los proyectos. ¿Qué se entiende por “información”? La información puede presentarse en varias formas, tales como:  Aproximación numérica de puntos óptimos como parte de una investigación de cálculo  Temperatura de una taza de café que se enfría como un ejercicio de utilización de modelos
  • 6.  Números de calzado y estatura para un ejercicio de correlación  Sexo y color de automóvil para un ejercicio de independencia ¿Cuánta informaciónse necesita? La cantidad de información que se requiere depende de la tarea, tal como lo demuestran los siguientes ejemplos:  El tamaño y la escala de los objetos a optimizar determinan el nivel de precisión necesario.  Se deben obtenersuficientes datos para poder encontrar la ecuación de la curva que mejor se ajusta. Los alumnos deben tener presente que un conjunto de datos reducido puede conducir a un resultado erróneo y que, por lo general, los conjuntos de datos extensos proporcionan resultados más precisos.  Los datos necesarios para un ejercicio de correlación entre el número de calzado y la estatura deberían extraerse de un grupo de personas tan amplio como sea posible, teniendo en cuenta factores tales como la edad.  Los alumnos deben saber que todos los valores esperados de una prueba de chi-cuadrado (({chi ^2})) han de sermayores que cinco. ¿Dónde se puede obtener información? Se debe ayudar a los alumnos a descubrir las fuentes de información que tienen a su disposición. Por ejemplo, pueden:  Tomar medidas usando diversos instrumentos de medida, tales como reglas, cintas métricas, compases, transportadores,balanzas e instrumentos electrónicos  Obtener datos mediante encuestas y cuestionarios  Acceder a horarios o calendarios de pago de préstamos  Buscar en Internet (deben asegurarse de citar las fuentes y realizar un muestreo cuando corresponda)  Generar información investigando diferentes patrones de números  Llevar a cabo experimentos Diseño de un cuestionario El diseño de cuestionarios que permitan obtener toda la información necesaria requiere el desarrollo de ciertas destrezas. Las preguntas deben:  Estar redactadas de forma clara y cortés  Ser suficientes  Permitir que cualquier persona a quien se pregunte pueda contestarlas
  • 7.  Permitir que la respuesta sea fácil y precisa, por ejemplo, sí o no, un número, un lugar, un nombre  Permitir que se responda sinceramente y de buen grado  Ser consideradas discretas Siempre debe identificarse al autordel cuestionario y explicarse la finalidad para la cual se busca la información. Resulta aconsejable probar primero el cuestionario con un grupo pequeño,de modo que sea posible perfeccionar las preguntas antes de plantear el cuestionario a un grupo más grande. Todos los datos recopilados deberán tratarse con absoluta confidencialidad y de forma responsable,y no podrán revelarse a terceras personas.Deberá garantizarse el anonimato a todos los participantes. Los datos no podrán utilizarse para fines distintos de aquellos para los que han sido recopilados. Procedimientos matemáticos Solo se deben emplear técnicas pertinentes a la tarea elegida y se debe animar a los alumnos a hacerse las preguntas siguientes:  ¿Es apropiado usar esta técnica?  ¿Qué información va a proporcionar?  ¿Se puede usarotra técnica?  ¿Cuál es la mejor técnica para esta situación? Los alumnos deben tener presente que el proyecto no mejora si:  Se utilizan distintos tipos de gráficos para representar los mismos datos sin un propósito distinto  Se repite el mismo procedimiento Interpretación de resultados A lo largo del proyecto,se debe animar a los alumnos a que reflexionen sobre el significado de los resultados que obtienen y que analicen qué conclusiones se pueden extraer. Se deben hacer comentarios después de cada procedimiento matemático y resumirlos más adelante en otra sección. Validez Los alumnos deben ser conscientes de la validez de las técnicas que utilizan, ya sea durante la recopilación de la información o el proceso de análisis, y deben hacer comentarios al respecto. Estructura y comunicación Las buenas prácticas en esta área incluyen:  Una tarea definida con claridad
  • 8.  Un plan bien redactado (se sugieren las listas de puntos)  El seguimiento del plan establecido  Un índice y números de página  Encabezamientos adecuados  Un diseño lógico La concisión en la expresión constituye un factor para determinar la coherencia. Notación y terminología Se debe hacer uso de la notación y la terminología matemáticas adecuadas en todo momento. Referencias y bibliografía Los alumnos deben tener en cuenta que el uso directo o indirecto de frases ajenas (en formatos escritos,orales o electrónicos) debe mencionarse adecuadamente, así como cualquier material visual utilizado en el proyecto que provenga de otras fuentes.El incumplimiento de este requisito será considerado plagio y, como tal, constituirá un caso de conducta improcedente. Los alumnos deben estar familiarizados con la política de probidad académica del IB, disponible en el Centro pedagógico en línea (CPEL). La bibliografía o lista de referencias solo debe incluir aquellos trabajos (por ejemplo, libros y publicaciones periódicas) que el alumno haya consultado durante su trabajo en el proyecto.Se debe aplicar de modo sistemático una forma aceptada de reflejarlas citas y la documentación de las fuentes. Los principales sistemas de documentación se clasifican en dos grupos:sistemas de paréntesis con el apellido del autor y la fecha de publicación dentro del texto y sistemas de notas numeradas. Se puede utilizar cualquiera de ellos, siempre que se realice de forma clara y sistemática. Cualquier trabajo consultado,con independencia de que ya se haya citado en el texto como referencia, se debe incluir en la lista de la bibliografía. En la bibliografía se debe especificar: el autor o autores,el título, el lugar y la fecha de publicación, y el nombre de la editorial; además, esta ha de ajustarse sistemáticamente a una de las formas normalizadas de enumerar fuentes (por ejemplo, el sistema autor-fecha de Harvard o el sistema autor-número de Vancouver). Algunos ejemplos podrían ser: MIGUEL DE GUZMÁN, JOSÉ CÓLERA y ADELA SALVADOR, Matemáticas para Bachillerato 1, Editorial Grupo Anaya, Madrid, 1990. LEJARRAGA H, ORFILA G, Estándares de peso y estatura para niñas y niños argentinos desde el crecimiento hasta la madurez, Arch. argent. pediatr. 1987; 85: 209-222. Omanet-Educación interactiva. Miscelánea - “Los números” [en línea]. Disponible enhttp://www.oma.org.ar/omanet/misc/index.htm. [Consulta: 29/07/11].
  • 9. LISTA DE TÍTULOS DE PROYECTOS La siguiente lista incluye los títulos de algunos proyectos que obtuvieron distintas notas. Algunos títulos son más descriptivos que otros y, en la mayoría de los casos, se ha mantenido la redacción original. Relacionados con la estética o Cálculo de la belleza: la proporción áurea o Preferencias en los colores o La iluminación natural del aula: diseño arquitectónico o ¿Muestra el espejo la imagen exacta? o Aplicaciones de la papiroflexia a las matemáticas o Sombras y altura o M. C. Escher: simetría e infinidad del arte Negocios y finanzas o Estudio comparativo de acciones, bienes inmuebles, bonos y depósitos o Análisis de los cambios del mercado de valores o Compra de un automóvil: opciones de pago o Desarrollo económico y niveles de renta o Préstamos hipotecarios o Gestión de un club de baile y restaurante o Investigación sobre el mercado de teléfonos móviles o Análisis de las acciones estadounidenses durante el período 1980-1999 o Inversión en un hotel de Costa Rica o Organización de una boda Comida y bebida o Estudio sobre la relación entre el consumo de calorías y el sexo de las personas o ¿Cenar fuera o en casa? o Las comidas en la escuela secundaria o Estudio sobre los caramelos o Acepte el reto de las bebidas cola o El problema de las galletas: el sabor es lo que importa o El funcionamiento de una tienda de golosinas o Investigación sobre las tendencias de alimentación de los jóvenes de hoy o Costos de los productos comprados por Internet en comparación con las tiendas locales Salud y buena condición física o El desayuno en los distintos niveles escolares o El cáncer de mama y de útero: estudio étnico o El IMC (índice de masa corporal) o La mortalidad infantil o Investigación sobre los tiempos de reacción o Estudio comparativo de la capacidad pulmonar, la edad, el peso y la grasa corporal
  • 10. o Prevención del SIDA en Maseru o La presión sanguínea Naturaleza y recursos naturales o Análisis del costo y la utilidad del gas frente a la electricidad en una familia media o Cálculo de horas de salida y puesta del sol o Los terremotos o La calidad del agua de la zona o Investigación estadística sobre las hojas o El efecto que las distintas temperaturas tienen sobre el nivel de proliferación de bacterias en el agua de un estanque de jardín o Los ciclos de las manchas solares o La población animal La gente o Características de los reclusos o Discriminación por razón de sexo o Percepción del tiempo o Psicología de la memoria o Número de votantes o Estudio de correlación entre la televisión y las horas de sueño o Razón fuerza/peso o Estudio del efecto de los colores en las emociones humanas o ¿Qué tipos de películas prefieren los hombres y las mujeres? o ¿Influye el sexo en la elección de un animal favorito? o Relación entre desempleo y criminalidad en Suecia de 1988 a 1999 o Relaciones entre alumnos internacionales y bilingües: empleos, mesada y hábitos de consumo Títulos basados en el colegio o El deporte femenino en los distintos niveles escolares o Los alumnos zurdos o Rendimiento de los alumnos de la zona frente a los alumnos extranjeros o En busca del sonido ideal Deportes o Deporte y nacionalidad o La velocidad del bateo de béisbol con relación al peso corporal o El saque de esquina eficaz en hockey o Factores que afectan al rendimiento atlético o Altura, peso y rendimiento en natación o ¿Qué alcance tienen las pelotas de tenis? o Resistencia del sedal
  • 11. o Tiempos de interrupción en los partidos de la liga nacional de fútbol o ¿Llegarán las mujeres a ganar a los hombres en natación? o Comparación de estaturas a partir de datos deportivos o El patinaje sobre ruedas y las matemáticas subyacentes o El efecto del deporte en el promedio general de calificaciones o Juegos Olímpicos de Sídney 2000: marcas en atletismo Viajes y transporte o Relación calidad-precio en los vehículos o Habilidades en la conducción o Precios de la gasolina o Uso del cinturón de seguridad o Flujo de tráfico en una zona urbana o Seguridad del transporte en el centro de las ciudades o Las prisas y los hábitos de conducción o Estudio de tráfico del aeropuerto internacional de Schiphol o El efecto de la normativa sobre el índice de alcoholemia en el número de accidentes de tránsito en Sacramento o Costos del transporte público y uso del automóvil: comparación personal Varios o Pesos medios de los cachorros en las primeras semanas o Contando hierbas o Precios de las llamadas telefónicas internacionales o Memoria o La práctica hace la perfección o Predicción del tiempo de enfriamiento o Funciones de onda en frecuencias extremas o Árboles generadores o Topografía y distancias o Juegos de computador y tiempos de respuesta o La noria o rueda de la fortuna o La geometría en el billar o Investigación sobre diferentes marcas de pilas o Comparación estadística del número de palabras de una oración en diferentes lenguas o ¿Cuántos guisantes hay en una lata de 500 gramos? o Correlación entre la participación de las mujeres en la educación superior y la política de 1955 a 2000
  • 12. DESCRIPCIONES DE BUENOS PROYECTOS ¿Cuál esla cantidadmínimade papel de aluminionecesariaparaenvolverunabarrade chocolate enformade Toblerone?(prismatriangular) • Medirla barra de Toblerone ycalcularel volumenfijosuponiendoque lostriángulosson equiláteros. • Hallarecuacionesparael área del triángulo,el volumen,lalongitudylasuperficie. • Método1: ensayoyerror (estoabordael criterioB). • Método2: representacióngráfica. • Método3: cálculo. • Completarel estudioconunaconclusiónyevaluación,ydiscutirsobre cómopodría mejorarse latarea.Comentartambiéncómose comparanestostres métodosycuál es el más preciso. Relaciónentre númerode calzado y estatura El alumnoeligióestetemaporque le parecióinteresante lamaneraenque lapolicíacientífica determinalaestaturaa partirdel númerode calzado. • Seleccionarhombresymujeresde distintasedades • Medirsu estatura • Anotarsu númerode calzado • Realizarprocedimientosmatemáticossimples(talescomomedia,modaydesviacióntípica) • Dibujargráficosde barras • Utilizarlosprocedimientosmatemáticossimplesparadividirlosgruposencategorías(por ejemplo, inferioralamediade edady superiorala mediade edad) • Realizarprocedimientosmatemáticosavanzadoscomolapruebade chicuadradoyel coeficientede correlación,segúncorresponda • Analizarendetallelosresultados • Abordarla validezde losresultadosylosprocedimientosutilizados ¿Cuálesson lospatrones matemáticos de las primas de segurosde automóviles? • Recopilarinformaciónde sitiosweb
  • 13. • Variablesdependientes:importe de laprima • Variablescontroladas:edaddel conductoryañossinaccidentes • Constante:tipode automóvil • Obtenercotizacionesparalasdistintasedadesylosañossinaccidentes • Situargráficos:edadvs.prima,años sinaccidentesvs.prima,yañossinaccidentesvs.edad • Cuandoseaposible,modelarlosgráficosanterioresconfunciones(tal vezobtenidas utilizandolasfuncionesde regresiónde lacalculadorade pantallagráfica) • Analizarenprofundidadlosresultadosyhaceralgunoscomentariossobre lavalidez Relaciónentre la estatura de un tenistahombre profesional yel porcentaje de efectividad de susprimeros servicios • Obtenerlasdimensionesde unacanchade tenis • Utilizarel teoremade Pitágorasylatrigonometríapara determinarel ángulode depresión de una pelotade tenistrasla ejecuciónde tresserviciosadistintasalturasque pasanjustopor encimade la red • Utilizarel ángulode depresiónparacalcularla distanciaentre laredy el lugardonde caerá la pelotadespuésde cadaservicio • Formularhipótesisacercade losprimerosserviciosysobre laexistenciade unacorrelación entre laestaturadel tenistayel porcentaje de efectividadde losprimerosservicios • Investigarlasestadísticassobre el porcentaje de efectividadde losprimerosserviciosenun torneode Grand Slam • Elaboraruna tablacomparativade las estaturasy losporcentajesde efectividadde los primerosserviciosque caendentrode lacancha • Calcularlamedia • Situarlosdatosen undiagrama de dispersión • Determinarel tipode correlación • Hallarr • Colocarlosdatos enuna tablade contingencia • Utilizarlapruebade chi-cuadradopara la independencia(cuandocorresponda) • Presentarlosresultados yanalizarlasconclusiones
  • 14. • Hacer comentariossobre lavalidezde losresultadosylamaneraenla que se podría mejorar el proyecto USO DE MEDIOS TECNOLOGICOS Uno de los objetivos de evaluación de todas las asignaturas del Grupo 5 es "utilizar los medios tecnológicos de forma precisa, adecuada y eficaz para explorar nuevas ideas y resolver problemas". El proyecto ofrece muchas oportunidades para alcanzar este objetivo. Para la evaluación externa, el uso de medios tecnológicos se limita a las calculadoras de pantalla gráfica, pero en el proyecto no existen limitaciones de ese tipo. Es razonable, aunque no imprescindible, esperar que los alumnos, al elaborar sus proyectos, utilicen en alguna medida medios tecnológicos. Algunos ejemplos son:  Cualquier tipo de calculadora, Internet, dispositivos de registro de datos  Procesadores de texto, hojas de cálculo, paquetes gráficos  Paquetes estadísticos o programas de álgebra y cálculo