SlideShare una empresa de Scribd logo
Tema VII
Roca Generadora
ROCA GENERADORA
Roca generadora
Roca sedimentaria con alto contenido de materia orgánica enterrada a gran
profundidad de sepultamiento y con alta temperatura.
Contenido de materia orgánica color de roca
entre 1% y 3% (hasta 20%) negro
0.5% verde a gris
Tipo Kerógeno Profundidad (km) Temperatura (º c)
Aceite sapropélico 2 a 4 110
Origen marino
Gas húmico > 6 150
Origen terrestre
El término Roca Generadora se ha empleado para asignar a las rocas
que son ricas en materia orgánica que son o han sido capaz de generar
hidrocarburos para formar yacimientos de petróleo económicamente
explotables (Tissot y Welte, 1978).
Actualmente se distinguen 3 tipos de roca generadora (Waples, 1985):
 Roca Generadora Efectiva: cualquier roca sedimentaria que ha
generado y expelido hidrocarburos.
 Roca Generadora Posible: cualquier roca sedimentaria en la que su
potencial generador no ha sido aún evaluado pero la cual pudo haber
generado y expelido hidrocarburos.
 Roca Generadora Potencial: cualquier roca sedimentaria inmadura
con riqueza orgánica, la cual puede generar y expeler hidrocarburos
si su nivel de maduración termal fuera más alto.
Tipos de roca generadora
La determinación e identificación de una roca generadora esta basada en dos
factores:
 Contenido de Materia Orgánica.
 Tipo de Materia Orgánica.
En sentido tradicional la materia orgánica es el material compuesto de moléculas
orgánicas (monómeros y polímeros) derivados directa o indirectamente de la
parte orgánica de los organismos, es decir, que primero es sintetizada por medio
de organismos vivos, una vez que mueren se depositan y se preservan, sí el
medio sedimentario esta en condiciones reductoras; entonces parte de la materia
orgánica sedimentada se puede transformar en compuestos del tipo del petróleo.
En la actualidad la producción de materia orgánica terrestre proviene de las
plantas superiores y está regida por las condiciones climáticas y geográficas. El
fitoplancton (diatomeas, dinoflagelados y cocolitofóridos), es el productor
primario más importante de la materia orgánica marina la cual esta controlada
por las condiciones físico-químicas del agua de mar, Los productores más
importantes de materia orgánica marina es el fitoplancton, seguido del
zooplancton y por último las bacterias.
Roca generadora
Fitoplancton y Zooplancton
Dependiendo de su nutrición se distinguen, el fitoplancton o plancton vegetal y
el zooplancton o plancton animal. El fitoplancton es capaz de sintetizar su
propio alimento. Al igual que la mayoría de plantas, fijan carbono por medio del
proceso fotosíntesis, a partir del agua, gas carbónico y energía luminosa. La
importancia del fitoplancton es evidente ya que la tierra está compuesta por tres
cuartas partes de agua.
Clasificación del plancton por tamaño
Otros criterios de clasificación del plancton se basan en el tamaño de los
organismos. Se distinguen cuatro categorías que agrupan la mayor parte de los
elementos del fitoplancton: el picoplancton con un tamaño inferior a 2 micras, el
ultraplancton de 2 a 5 micras, el nanoplancton de 5 a 50 micras y el
microplancton de 50 a 500 micras, y otras tres que agrupan a la mayor parte de
los elementos de zooplancton: el mesoplancton de 0.5 a 5 mm., el
macroplancton de 5 a 500 mm. y el megaloplancton de tallas mayores a 500
mm.
1000 micras = 1 mm Micra = 1 milesima de mm.
Tipo de roca generadora marina
El 95% de la productividad primaria
en el mar se debe al fitoplancton.
Este constituye la base de la pirámide
alimenticia de todo el ecosistema
marino. Está constituido
principalmente por algas unicelulares
microscópicas.
El zooplancton, por el contrario, está
constituido por organismos
heterótrofos que no pudiendo
sintetizar su propio alimento, la
obtienen del medio exterior por
ingestión de partículas vivas o
muertas.
El parámetro de Carbono Orgánico Total (COT) refleja la riqueza orgánica
de las rocas sedimentarias, y por ende el potencial generador que puede
estar contenido en un nivel estratigráfico dentro de una cuenca
sedimentaria. Si estas rocas alcanzan la madurez suficiente se convertirán
en generadoras de hidrocarburos. Este parámetro se expresa en términos
de por ciento en peso de carbono orgánico.
Tipo de roca COT
Areniscas .03
Lutitas Rojas .04
Lutitas verdes 0.11 a .54
Lutitas grises 1.2 a 3
Lutitas negras 7 a 11
Calizas y dolomias .2 a 3.2
Lutitas calcáreas y
Calizas arcillosas
4 a 18
COT en diferentes tipos de litologías
Cuando la materia orgánica es sepultada sufre importantes
transformaciones físico-químicas controladas por, las condiciones de
temperatura y presión en el subsuelo hasta convertirse en hidrocarburo.
Los siguientes procesos marcan las tres principales etapas de evolución
térmica de la materia orgánica (Tissot y Welte, 1978):
Evolución y maduración de la materia orgánica
65
130
150
Roca inmadura aceite pesado
Roca madura aceite ligero
T (º C)
100
170
Gas húmedo
Gas seco
2100
P (m)
5500
Gas biogenético
Gas termogenético
Diagénesis
Catagénesis
Metagénesis
Etapas diagenéticas
Es el inicio de transformación de la materia orgánica que ocurre a
profundidades someras donde se desarrollan los procesos de alteración
biológica, física y química, ocurriendo la pérdida principal de los
productos oxigenados por lo que se genera principalmente CO2, NH3,
H2O y CH4 biogénico.
Dentro de esta etapa, las sustancias orgánicas contenidas en la materia
orgánica (biopolímeros) son consumidas por algunos organismos y
atacados por microbios que usan enzimas para degradar a estas y
transformarlas en biomonómeros, los cuales se condensan y forman
complejas moléculas (geopolímeros), los cuales son los precursores del
kerógeno.
Durante la diagenésis y bajo condiciones reductoras a temperaturas
relativamente bajas (< 50 °C) se realizan las primeras reacciones
químicas y biológicas para la formación de hidrocarburos.
Diagénesis:
Es la etapa principal de rompimiento térmico del Kerógeno, para
producir la formación de hidrocarburos líquidos de C15 a C30.
Esta es la etapa principal de formación de aceite, condensado y gas
húmedo, conforme se incrementa la temperatura y la profundidad de
sepultamiento.
Esta zona en que las rocas generan petróleo y lo expulsan es
conocida como la “Ventana del petróleo” o “fase principal de
formación de aceite”.
Se encuentra en un rango de temperaturas de 60 °C a 175 °C,
dentro del cual ocurre la generación principal de hidrocarburos
líquidos, mientras que entre 175° a 225 °C se tiene la generación
principal de gases húmedos.
Catagénesis
Es la etapa tardía de alteración de la materia orgánica, posterior a
la generación de los hidrocarburos líquidos, la que se caracteriza
por la formación principal de metano metagenético (gas seco) y un
enriquecimiento de carbono que constituye un kerógeno residual.
La metagenésis ocurre a temperaturas entre 225° a 250° C; a
estas temperaturas la relación H/C es menor de 0.4.
Metagénesis
Transformación de la materia orgánica
en los sedimentos
Condiciones para la generación del gas natural
a partir del tipo de materia orgánica
GAS NATURAL (Termogénico)
Es un hidrocarburo gaseoso que consiste
principalmente de metano(C1) y etano(C2) y
gases no hidrocarburados como: Bióxido de
Carbono, Ácido sulfhídrico, Nitrógeno y Helio,
desprovisto de hidrocarburos pesados es llamado
gas seco.
El gas en la naturaleza se origina de dos fuentes:
-De carbón húmico
-De las rocas con kerógeno durante o después de
la formación del petróleo (R. K. Merrill, 1991)
GAS BIOGÉNICO
Es un gas seco compuesto de metano (C1=99.%),
generado como resultado de la fermentación de la
materia orgánica, con las bacterias anaeróbicas a
una temperatura de 60 - 70 ° C y Profundidades
menores a1000 m..
El 20 % de las reservas del mundo son de origen
biogénico.
Hunt, 1979,en Whiticar,1994
Temperatura
°C
Fases
Diagenéticas
Fuente Sapropélica Fuente Húmica
H2S
H2S
Proporciones Relativas de Gases Formados
(Kerógeno Tipo I-II) (Kerógeno Tipo III)
Bacterial
C2+
N2
Thermogenico
CH4
Thermogenico
N2
CO2
CO2
CH4
CH4
Bacterial
200
20
50
100
150
CH4
C2+
KERÓGENO
 Es la materia orgánica (MO) diseminada en las rocas sedimentarias,
insoluble en solventes orgánicos (p. ej. Cloroformo (CHCl3), Tri ó Di-
Clorometano (CH2Cl2).
 La MO original en sedimentos recientes no es kerógeno, sino que
éste se forma durante la diagénesis. Comienza a formarse en los
sedimentos cuando los organismos mueren.
 Está constituido de moléculas complejas formadas aleatoriamente por
la recombinación de moléculas biogénicas.
 Cada molécula de Kerógeno es única, químicamente distinta.
 Es la MO más abundante en la Tierra.
 Es la fuente del Petróleo y Gas
Kerógeno
Tipos de Kerógeno
 Prácticamente toda la materia orgánica puede ser clasificada en
Sapropélica y húmica (Potonie 1908).
 El término sapropélico se refiere al producto obtenido de la
descomposición y polimerización de la materia algácea y herbácea
principalmente, depositada en condiciones acuáticas con bajo
contenido de oxígeno atmosférico.
 La materia orgánica sapropélica genera principalmente aceite y tiene
una relación H/C de 1.3 a 1.7
 La palabra húmico se aplica al producto obtenido de la
descomposición de plantas terrestres superiores, depositadas en
medios terrígenos con abundante oxígeno atmosférico.
 Los Kerógenos húmicos producen principalmente gas y tienen una
relación H/C alrededor de 0.9, esta materia orgánica esta constituida
por lignita.
Tipos de Kerógeno
Los Kerógenos sapropélicos y húmicos a su vez se dividen, dependiendo
del análisis visual del Kerógeno en:
(Cernock y Bayliss, 1977; en Hunt, 1979)
Sapropélicos
Amorfo
Algáceo
Herbáceo
Húmicos
Maderáceo o leñoso
Carbonoso o inerte
Origen marino
Origen terrestre
La clasificación del Kerógeno proviene de:
 Petrografía Orgánica.
 Palinología.
 Química.
Del tipo de Kerógeno dependerá:
Donde y cuando se generarán los HC's, si serán
líquidos o gaseosos y… Su cantidad.
Tipos de Kerógeno
Macerales* Tipo de
Kerógeno
Materia Orgánica Original
Alginita
Exinita
Cutinita
Resinita
Liptinita
Vitrinita
Inertinita
I
II
II
II
II
III
IV
Algas de agua dulce.
Polen y esporas.
Cutículas de plantas terrestres.
Resinas de plantas terrestres.
Lípidos de plantas terrestres y algas
marinas.
Material leñoso y celulósico de plantas
terrestres.
Carbón: materia altamente oxidada o
retrabajada
Tipos de Kerógenos
Tipo I
 Poco común, derivado de algas lacustres.
 Se limita a lagos anóxicos y raramente a ambientes marinos.
 Tiene gran capacidad para generar hidrocarburos líquidos.
Ej. Lutita Green River (Eoceno) Wyoming, Utah, Colorado.
Tipo II
 Fuentes diversas: algas marinas, polen, esporas, ceras de
hojas y resinas fósiles y lípidos bacteriales.
 Gran potencial para generar HC's líquidos y gaseosos.
 Se asocia a sedimentos marinos de ambientes reductores.
Ej. Lutitas del Kimmeridgiano del Mar del Norte, del Toarciano en
París, Cenomaniano-Turoniano del Medio Oriente, Fm. Monterey del
Mioceno, USA. Jurásico Superior del Golfo de México
Tipo III
 Se compone de materia orgánica terrestre (celulosa y lignina)
carente de compuestos grasos o cerosos.
 Tiene muy bajo potencial generador, principalmente de gas.
 Con inclusiones de kerógeno tipo II puede generar algo de
líquidos.
Tipo IV
 Consiste principalmente de material orgánico retrabajado y de
compuestos altamente oxidados de cualquier origen.
 Se le considera como un kerógeno sin potencial para generar
hidrocarburos.
Tipos de Kerógeno
Son los cambios que sufre el Kerógeno con el incremento de la
temperatura, durante la Catagénesis y la Metagénesis.
La Catagénesis corresponde a la etapa principal de transformación
del kerógeno donde se genera el petróleo y el gas húmedo (Ventana
del Petróleo).
La Metagénesis corresponde a la etapa de generación del gas seco.
No es sinónimo del metamorfismo de las rocas.
Madurez del Kerógeno
El O2 se elimina rápidamente
durante la diagénesis, en forma de
CO2 y H2O.
El H2 se pierde más rápidamente
durante la catagénesis y meta-
génesis, por la generación de HCs
Con la pérdida de H2 la capacidad
de generación de HC's disminuye
hasta agotar su potencial
petrolífero.
El color cambia progresivamente:
Amarillo-Dorado-Naranja-Café
Claro-Café Oscuro-Negro
Nivel de evolución:
Inmadurez
Madurez.
Fase principal de
generacion de aceite
Sobremadurez.
Fase principal de
generacion de gas
Índice de alteración térmica (tai)
Según el color de la materia orgánica se puede determinar la madurez de la misma
Las características físicas y químicas del kerógeno están directamente
relacionadas con las de la materia orgánica predecesora a la
formación de éste. La composición global del kerógeno consta de tres
elementos principales C, H, y O por lo que para clasificarlo se analizan
las relaciones atómicas H/C y H/O, sin olvidar que también pueden
estar contenidos elementos secundarios como S, Mg, Ni, Va, Cu, Co,
etc. Tipos de Kerógeno.
El Kerógeno tiene composiciones diferentes según su origen y, se
representa por medio del diagrama de Van Krevelen, donde la posición
dentro de este diagrama depende de su naturaleza original y de la
evolución térmica de la materia orgánica. De este modo se diferencian
tres tipos principales de kerógeno (Tissot, 1978), en este diagrama se
representa también la curva de evolución térmica que sigue cada tipo
de kerógeno, y que se caracteriza por una pérdida inicial de los
compuestos oxigenados y más tarde del hidrógeno, hasta alcanzar la
etapa final de transformación y dejar un residuo muy rico en carbono.
Diagrama de Van Krevelen
Diagrama de Van Krevelen
Los Kerógenos se clasifican quimícamente (Tissot y Durand 1974) en Kerógeno
tipo I, II, III y IV, dependiendo de su composición elemental y de su evolución con
respecto a la grafica de Van Krevelen que muestra la relación atómica de H/C vs.
O/C.
Diagrama de Van Krevelen
y las etapas diagenéticas
La expulsión se da a través de
microfracturas originadas por
la sobre-presión en los poros.
Las RG más ricas en MO se
presionarán primero y
expulsarán antes que las RG
menos ricas.
En rocas pobres la expulsión
se da tan tarde solo se llegan
a expulsar productos del
cracking térmico del Petróleo
(gases)
Si el contenido de MO es muy
bajo la expulsión puede no
darse.
Expulsión
 La composición química del Kerógeno va a depender de la Materia
Orgánica original y de sus cambios durante la diagénesis.
 Durante la Catagénesis se produce Kerógeno residual cada vez
más aromático y más pobre en H2. Al mismo tiempo se producen
moléculas pequeñas (bitúmenes), precursoras del petróleo y gas.
 La composición química del Kerógeno define el tiempo de
generación de los HC's y el tipo de productos a obtener.
 Los Kerógenos ricos en lípidos son propensos a generar HC's
líquidos, mientras que los que son pobres en lípidos generarán
principalmente gas.
Resumen
 El Kerógeno resinítico genera aceite o condensados antes que los
otros kerógenos.
 Los Kerógenos ricos en azufre producen aceites pesados,
azufrosos, en condiciones de madurez incipiente.
 Las rocas generadoras que generan HC's temprano también son
capaces de expulsarlos antes (ricas en resinas y azufre).
 Las rocas generadoras que generan pocos HC's pueden no son
capaces de expulsarlos sino hasta que han sido craqueados a gas.
Resumen
MO laminada, lagunar MO en agregados
Distribución difusa de la MO
Secciones delgadas de rocas
generadoras ricas en materia
orgánica (luz transmitida)
Luz transmitida
MO amorfa
Luz natural reflejada
Lignina
Luz polarizada Fluorescencia, excitación UV
Agregados
minerales
Algas
fluorescentes
Algáceo, es el material que puede ser positivamente relacionado con algas.
Químicamente consiste de moléculas de bajo peso molecular con menos
anillos condensados y más cadenas parafínicas largas, con anillos de
naftenos.
Tipos de Kerógeno
Luz fluorescente
Alginita
-
-
0.1 mm
-1
Herbaceo, es el material que abarca todos los materiales membranosos
de las plantas, incluyendo cutículas, hojas, polen, esporas etc.
Tipos de Kerógeno
Kerógeno en luz transmitida
Kerógeno en luz fluorescente
Maderáceo, esta formado por los detritos más lignitificados de los remanentes de
la estructura de las plantas (ramas y tallos). Químicamente consiste de moléculas
de alto peso molecular que contiene anillos aromáticos condensados.
LIGNOCELULOSICA
Tipos de Kerógeno
Carbonáceo, esta más relacionado a la apariencia negra que presentan las partículas
que lo constituyen. Puede provenir de cualquier tipo de Kerógeno re trabajado o
sobre maduro
FACIES ORGÁNICA DEL TIPO CARBONOSO DE
Tipos de Kerógeno
Pirólisis (Rock-Eval).
Este método (Espitalié, et. al, 1977) tiene la finalidad de caracterizar el
potencial generador de la materia orgánica asociada a las rocas
sedimentarias predecesoras a la generación de hidrocarburos. Los
resultados obtenidos de pirólisis de una muestra de roca permiten:
 Caracterizar el tipo de materia orgánica.
 Evaluar la madurez térmica de la misma.
 Calcular el contenido de hidrocarburos libres.
 Cuantificar el potencial petrolero residual.
 Determinar el contenido de carbono orgánico total.
Potencial generador.
Sistemas generadores
EXPLORACIÓN Y PRODUCCIÓN
EXPLORACIÓN Y PRODUCCIÓN
Property
EXPLORACIÓN Y PRODUCCIÓN
EXPLORACIÓN Y PRODUCCIÓN
Property
Sureste Basin
Sureste Basin
Generative Systems
Generative Systems
VILLAHERMOSA
CARDENAS
FRONTERA
CD. PEMEX
MACUSPANA
TEAPA
HUIMANGUILLO
COMALCALCO
CD. DEL CARMEN
CAMPECHE
TABASCO
TABASCO
CHIAPAS
TABASCO
LAS CHOAPAS
COATZACOALCOS
MINATITLAN
NANCHITAL
AGUA DULCE
LA VENTA
ESC: GRAFICA
30
20
10
0
0
10
20
MILLAS
50
25
40 KILOMETROS
PARAISO
Gulf of Mexico
N
S
W E
Clara, V.L, Caballero, G. E, Maldonado,
V.R, Pacheco, J, Villanueva, R. L, 2004
PROY. SIST. PETROLEROS
Tithonian (JSI)
LEGEND
Tithonian (JS)
Cretaceous
Mix Tithonian-Tertiary
Oxfordian
TERTIARY FIELDS
CRETACEOUS FIELDS
JURASSIC FIELDS
Early Miocene
Thermogenic-biogenic
Gas
Biogenic Gas
Mix Tithonian-
Cretaceous
LEYENDA
Campos Terciarios Campos Jurásicos
Campos Cretácicos
Tithoniano (js)
Cretácico
Mezcla de tithoniano
y terciario
Oxfordiano
Tithoniano (js)
Mioceno temprano
Gas termogénico
Gas biogénico
Mezcla de Tithoniano
y Cretacico
Preguntas
Roca-generadora - Scribd.pdf

Más contenido relacionado

PPTX
Roca generadora
PPTX
2.4 roca generadora
PPTX
Origen, acumulacion y preservacion de la materia organica
PPTX
Ciclos biogeoquímicos
PPTX
Presentación Diapositivas Proyecto Naturaleza Orgánico Creativo Verde.pptx
PPTX
Presentación Diapositivas Proyecto Naturaleza Orgánico Creativo Verde.pptx
DOCX
Bioquimica trabajo
PPTX
El Metano con audio
Roca generadora
2.4 roca generadora
Origen, acumulacion y preservacion de la materia organica
Ciclos biogeoquímicos
Presentación Diapositivas Proyecto Naturaleza Orgánico Creativo Verde.pptx
Presentación Diapositivas Proyecto Naturaleza Orgánico Creativo Verde.pptx
Bioquimica trabajo
El Metano con audio

Similar a Roca-generadora - Scribd.pdf (20)

DOCX
Trabajo de química
DOCX
Energía térmica
PPTX
Diapositivas el petroleo diana americo
PPTX
¿puedo dejar de utilizar los derivados del petróleo y sustituirlos por otros ...
PPTX
CICLO BIOGEOQUIMICO DEL CARBONO.pptx
DOCX
brochure de los metanos Liceo Rubén Darío
PPT
Energias Renovables
PPT
Cómo aprovechar los recursos energéticosi
PPTX
Petroleo
PPTX
El Metano
PPT
Biogas Equipo 7
PPT
Petroleo
PPT
Petroleo
PPTX
Quimica en la naturaleza
PPTX
Ciclo del carbono.pptx
PPT
PETROLEO YORIGEN.PPT
PPTX
El petroleo
DOCX
Ciclo del carbono ing ambiental
PPTX
El agua y el suelo : ppt that will be an app- Stucom
Trabajo de química
Energía térmica
Diapositivas el petroleo diana americo
¿puedo dejar de utilizar los derivados del petróleo y sustituirlos por otros ...
CICLO BIOGEOQUIMICO DEL CARBONO.pptx
brochure de los metanos Liceo Rubén Darío
Energias Renovables
Cómo aprovechar los recursos energéticosi
Petroleo
El Metano
Biogas Equipo 7
Petroleo
Petroleo
Quimica en la naturaleza
Ciclo del carbono.pptx
PETROLEO YORIGEN.PPT
El petroleo
Ciclo del carbono ing ambiental
El agua y el suelo : ppt that will be an app- Stucom
Publicidad

Último (20)

PPTX
VENTILACIÓN MECÁNICA NO INVASIVA Y CÁNULA NASAL DE.pptx
PPTX
Clase 1 Física 3 introductoria para estudiantes universitarios
PPTX
PLATON.pptx[una presentación efectiva]10
PPTX
Sesión 1 Epidemiologia.pptxxxxxxxxxxxxxxxx
PPTX
Púrpura en pediatría tema de nefrologíaa
PPTX
Agar plates de la marca 3M portfolio de usos
PPTX
Cancer de ovario y su fisiopatologia completa
PDF
Física BIO.cepuns 2021-preuniversitario.
PDF
Esófago de barret y cancer esofagico Nutrición
PPT
clase ICC cardiologia medicina humana 2025
PPTX
MICOSIS SUPERFICIALES Y PROFUNDAS, CONCEPTOS BASICOS
PPTX
CUIDADO DE ENFERMERÍA EN EL PUERPERIO sem 09 - copia.pptx
PDF
_APENDICITIS - CIRUGIA TUTO.pdf cirugía 1
PPTX
Ciencia moderna. origen y características.
PPTX
Caso Clinico de ANATOMÍA Y FRACTURA DE TOBILLO.pptx
PDF
Presentación Propuesta de Proyecto Portfolio Scrapbook Marrón y Negro.pdf
PPTX
EXAMEN FISICO DEL RN sem 11 - copia-1.pptx
PPTX
MECANISMOS DE RESPUESTA A NIVEL CELULAR.pptx
PPTX
PRESENTACION PARENTALkkkkkk NICOLAS.pptx
PPTX
Sesión 2 Vigilancia Epidemiológica.pptxt
VENTILACIÓN MECÁNICA NO INVASIVA Y CÁNULA NASAL DE.pptx
Clase 1 Física 3 introductoria para estudiantes universitarios
PLATON.pptx[una presentación efectiva]10
Sesión 1 Epidemiologia.pptxxxxxxxxxxxxxxxx
Púrpura en pediatría tema de nefrologíaa
Agar plates de la marca 3M portfolio de usos
Cancer de ovario y su fisiopatologia completa
Física BIO.cepuns 2021-preuniversitario.
Esófago de barret y cancer esofagico Nutrición
clase ICC cardiologia medicina humana 2025
MICOSIS SUPERFICIALES Y PROFUNDAS, CONCEPTOS BASICOS
CUIDADO DE ENFERMERÍA EN EL PUERPERIO sem 09 - copia.pptx
_APENDICITIS - CIRUGIA TUTO.pdf cirugía 1
Ciencia moderna. origen y características.
Caso Clinico de ANATOMÍA Y FRACTURA DE TOBILLO.pptx
Presentación Propuesta de Proyecto Portfolio Scrapbook Marrón y Negro.pdf
EXAMEN FISICO DEL RN sem 11 - copia-1.pptx
MECANISMOS DE RESPUESTA A NIVEL CELULAR.pptx
PRESENTACION PARENTALkkkkkk NICOLAS.pptx
Sesión 2 Vigilancia Epidemiológica.pptxt
Publicidad

Roca-generadora - Scribd.pdf

  • 3. Roca generadora Roca sedimentaria con alto contenido de materia orgánica enterrada a gran profundidad de sepultamiento y con alta temperatura. Contenido de materia orgánica color de roca entre 1% y 3% (hasta 20%) negro 0.5% verde a gris Tipo Kerógeno Profundidad (km) Temperatura (º c) Aceite sapropélico 2 a 4 110 Origen marino Gas húmico > 6 150 Origen terrestre
  • 4. El término Roca Generadora se ha empleado para asignar a las rocas que son ricas en materia orgánica que son o han sido capaz de generar hidrocarburos para formar yacimientos de petróleo económicamente explotables (Tissot y Welte, 1978). Actualmente se distinguen 3 tipos de roca generadora (Waples, 1985):  Roca Generadora Efectiva: cualquier roca sedimentaria que ha generado y expelido hidrocarburos.  Roca Generadora Posible: cualquier roca sedimentaria en la que su potencial generador no ha sido aún evaluado pero la cual pudo haber generado y expelido hidrocarburos.  Roca Generadora Potencial: cualquier roca sedimentaria inmadura con riqueza orgánica, la cual puede generar y expeler hidrocarburos si su nivel de maduración termal fuera más alto. Tipos de roca generadora
  • 5. La determinación e identificación de una roca generadora esta basada en dos factores:  Contenido de Materia Orgánica.  Tipo de Materia Orgánica. En sentido tradicional la materia orgánica es el material compuesto de moléculas orgánicas (monómeros y polímeros) derivados directa o indirectamente de la parte orgánica de los organismos, es decir, que primero es sintetizada por medio de organismos vivos, una vez que mueren se depositan y se preservan, sí el medio sedimentario esta en condiciones reductoras; entonces parte de la materia orgánica sedimentada se puede transformar en compuestos del tipo del petróleo. En la actualidad la producción de materia orgánica terrestre proviene de las plantas superiores y está regida por las condiciones climáticas y geográficas. El fitoplancton (diatomeas, dinoflagelados y cocolitofóridos), es el productor primario más importante de la materia orgánica marina la cual esta controlada por las condiciones físico-químicas del agua de mar, Los productores más importantes de materia orgánica marina es el fitoplancton, seguido del zooplancton y por último las bacterias. Roca generadora
  • 6. Fitoplancton y Zooplancton Dependiendo de su nutrición se distinguen, el fitoplancton o plancton vegetal y el zooplancton o plancton animal. El fitoplancton es capaz de sintetizar su propio alimento. Al igual que la mayoría de plantas, fijan carbono por medio del proceso fotosíntesis, a partir del agua, gas carbónico y energía luminosa. La importancia del fitoplancton es evidente ya que la tierra está compuesta por tres cuartas partes de agua. Clasificación del plancton por tamaño Otros criterios de clasificación del plancton se basan en el tamaño de los organismos. Se distinguen cuatro categorías que agrupan la mayor parte de los elementos del fitoplancton: el picoplancton con un tamaño inferior a 2 micras, el ultraplancton de 2 a 5 micras, el nanoplancton de 5 a 50 micras y el microplancton de 50 a 500 micras, y otras tres que agrupan a la mayor parte de los elementos de zooplancton: el mesoplancton de 0.5 a 5 mm., el macroplancton de 5 a 500 mm. y el megaloplancton de tallas mayores a 500 mm. 1000 micras = 1 mm Micra = 1 milesima de mm. Tipo de roca generadora marina
  • 7. El 95% de la productividad primaria en el mar se debe al fitoplancton. Este constituye la base de la pirámide alimenticia de todo el ecosistema marino. Está constituido principalmente por algas unicelulares microscópicas. El zooplancton, por el contrario, está constituido por organismos heterótrofos que no pudiendo sintetizar su propio alimento, la obtienen del medio exterior por ingestión de partículas vivas o muertas.
  • 8. El parámetro de Carbono Orgánico Total (COT) refleja la riqueza orgánica de las rocas sedimentarias, y por ende el potencial generador que puede estar contenido en un nivel estratigráfico dentro de una cuenca sedimentaria. Si estas rocas alcanzan la madurez suficiente se convertirán en generadoras de hidrocarburos. Este parámetro se expresa en términos de por ciento en peso de carbono orgánico. Tipo de roca COT Areniscas .03 Lutitas Rojas .04 Lutitas verdes 0.11 a .54 Lutitas grises 1.2 a 3 Lutitas negras 7 a 11 Calizas y dolomias .2 a 3.2 Lutitas calcáreas y Calizas arcillosas 4 a 18 COT en diferentes tipos de litologías
  • 9. Cuando la materia orgánica es sepultada sufre importantes transformaciones físico-químicas controladas por, las condiciones de temperatura y presión en el subsuelo hasta convertirse en hidrocarburo. Los siguientes procesos marcan las tres principales etapas de evolución térmica de la materia orgánica (Tissot y Welte, 1978): Evolución y maduración de la materia orgánica
  • 10. 65 130 150 Roca inmadura aceite pesado Roca madura aceite ligero T (º C) 100 170 Gas húmedo Gas seco 2100 P (m) 5500 Gas biogenético Gas termogenético Diagénesis Catagénesis Metagénesis Etapas diagenéticas
  • 11. Es el inicio de transformación de la materia orgánica que ocurre a profundidades someras donde se desarrollan los procesos de alteración biológica, física y química, ocurriendo la pérdida principal de los productos oxigenados por lo que se genera principalmente CO2, NH3, H2O y CH4 biogénico. Dentro de esta etapa, las sustancias orgánicas contenidas en la materia orgánica (biopolímeros) son consumidas por algunos organismos y atacados por microbios que usan enzimas para degradar a estas y transformarlas en biomonómeros, los cuales se condensan y forman complejas moléculas (geopolímeros), los cuales son los precursores del kerógeno. Durante la diagenésis y bajo condiciones reductoras a temperaturas relativamente bajas (< 50 °C) se realizan las primeras reacciones químicas y biológicas para la formación de hidrocarburos. Diagénesis:
  • 12. Es la etapa principal de rompimiento térmico del Kerógeno, para producir la formación de hidrocarburos líquidos de C15 a C30. Esta es la etapa principal de formación de aceite, condensado y gas húmedo, conforme se incrementa la temperatura y la profundidad de sepultamiento. Esta zona en que las rocas generan petróleo y lo expulsan es conocida como la “Ventana del petróleo” o “fase principal de formación de aceite”. Se encuentra en un rango de temperaturas de 60 °C a 175 °C, dentro del cual ocurre la generación principal de hidrocarburos líquidos, mientras que entre 175° a 225 °C se tiene la generación principal de gases húmedos. Catagénesis
  • 13. Es la etapa tardía de alteración de la materia orgánica, posterior a la generación de los hidrocarburos líquidos, la que se caracteriza por la formación principal de metano metagenético (gas seco) y un enriquecimiento de carbono que constituye un kerógeno residual. La metagenésis ocurre a temperaturas entre 225° a 250° C; a estas temperaturas la relación H/C es menor de 0.4. Metagénesis
  • 14. Transformación de la materia orgánica en los sedimentos
  • 15. Condiciones para la generación del gas natural a partir del tipo de materia orgánica GAS NATURAL (Termogénico) Es un hidrocarburo gaseoso que consiste principalmente de metano(C1) y etano(C2) y gases no hidrocarburados como: Bióxido de Carbono, Ácido sulfhídrico, Nitrógeno y Helio, desprovisto de hidrocarburos pesados es llamado gas seco. El gas en la naturaleza se origina de dos fuentes: -De carbón húmico -De las rocas con kerógeno durante o después de la formación del petróleo (R. K. Merrill, 1991) GAS BIOGÉNICO Es un gas seco compuesto de metano (C1=99.%), generado como resultado de la fermentación de la materia orgánica, con las bacterias anaeróbicas a una temperatura de 60 - 70 ° C y Profundidades menores a1000 m.. El 20 % de las reservas del mundo son de origen biogénico. Hunt, 1979,en Whiticar,1994 Temperatura °C Fases Diagenéticas Fuente Sapropélica Fuente Húmica H2S H2S Proporciones Relativas de Gases Formados (Kerógeno Tipo I-II) (Kerógeno Tipo III) Bacterial C2+ N2 Thermogenico CH4 Thermogenico N2 CO2 CO2 CH4 CH4 Bacterial 200 20 50 100 150 CH4 C2+
  • 17.  Es la materia orgánica (MO) diseminada en las rocas sedimentarias, insoluble en solventes orgánicos (p. ej. Cloroformo (CHCl3), Tri ó Di- Clorometano (CH2Cl2).  La MO original en sedimentos recientes no es kerógeno, sino que éste se forma durante la diagénesis. Comienza a formarse en los sedimentos cuando los organismos mueren.  Está constituido de moléculas complejas formadas aleatoriamente por la recombinación de moléculas biogénicas.  Cada molécula de Kerógeno es única, químicamente distinta.  Es la MO más abundante en la Tierra.  Es la fuente del Petróleo y Gas Kerógeno
  • 18. Tipos de Kerógeno  Prácticamente toda la materia orgánica puede ser clasificada en Sapropélica y húmica (Potonie 1908).  El término sapropélico se refiere al producto obtenido de la descomposición y polimerización de la materia algácea y herbácea principalmente, depositada en condiciones acuáticas con bajo contenido de oxígeno atmosférico.  La materia orgánica sapropélica genera principalmente aceite y tiene una relación H/C de 1.3 a 1.7  La palabra húmico se aplica al producto obtenido de la descomposición de plantas terrestres superiores, depositadas en medios terrígenos con abundante oxígeno atmosférico.  Los Kerógenos húmicos producen principalmente gas y tienen una relación H/C alrededor de 0.9, esta materia orgánica esta constituida por lignita.
  • 19. Tipos de Kerógeno Los Kerógenos sapropélicos y húmicos a su vez se dividen, dependiendo del análisis visual del Kerógeno en: (Cernock y Bayliss, 1977; en Hunt, 1979) Sapropélicos Amorfo Algáceo Herbáceo Húmicos Maderáceo o leñoso Carbonoso o inerte Origen marino Origen terrestre
  • 20. La clasificación del Kerógeno proviene de:  Petrografía Orgánica.  Palinología.  Química. Del tipo de Kerógeno dependerá: Donde y cuando se generarán los HC's, si serán líquidos o gaseosos y… Su cantidad. Tipos de Kerógeno
  • 21. Macerales* Tipo de Kerógeno Materia Orgánica Original Alginita Exinita Cutinita Resinita Liptinita Vitrinita Inertinita I II II II II III IV Algas de agua dulce. Polen y esporas. Cutículas de plantas terrestres. Resinas de plantas terrestres. Lípidos de plantas terrestres y algas marinas. Material leñoso y celulósico de plantas terrestres. Carbón: materia altamente oxidada o retrabajada
  • 22. Tipos de Kerógenos Tipo I  Poco común, derivado de algas lacustres.  Se limita a lagos anóxicos y raramente a ambientes marinos.  Tiene gran capacidad para generar hidrocarburos líquidos. Ej. Lutita Green River (Eoceno) Wyoming, Utah, Colorado. Tipo II  Fuentes diversas: algas marinas, polen, esporas, ceras de hojas y resinas fósiles y lípidos bacteriales.  Gran potencial para generar HC's líquidos y gaseosos.  Se asocia a sedimentos marinos de ambientes reductores. Ej. Lutitas del Kimmeridgiano del Mar del Norte, del Toarciano en París, Cenomaniano-Turoniano del Medio Oriente, Fm. Monterey del Mioceno, USA. Jurásico Superior del Golfo de México
  • 23. Tipo III  Se compone de materia orgánica terrestre (celulosa y lignina) carente de compuestos grasos o cerosos.  Tiene muy bajo potencial generador, principalmente de gas.  Con inclusiones de kerógeno tipo II puede generar algo de líquidos. Tipo IV  Consiste principalmente de material orgánico retrabajado y de compuestos altamente oxidados de cualquier origen.  Se le considera como un kerógeno sin potencial para generar hidrocarburos. Tipos de Kerógeno
  • 24. Son los cambios que sufre el Kerógeno con el incremento de la temperatura, durante la Catagénesis y la Metagénesis. La Catagénesis corresponde a la etapa principal de transformación del kerógeno donde se genera el petróleo y el gas húmedo (Ventana del Petróleo). La Metagénesis corresponde a la etapa de generación del gas seco. No es sinónimo del metamorfismo de las rocas. Madurez del Kerógeno
  • 25. El O2 se elimina rápidamente durante la diagénesis, en forma de CO2 y H2O. El H2 se pierde más rápidamente durante la catagénesis y meta- génesis, por la generación de HCs Con la pérdida de H2 la capacidad de generación de HC's disminuye hasta agotar su potencial petrolífero. El color cambia progresivamente: Amarillo-Dorado-Naranja-Café Claro-Café Oscuro-Negro Nivel de evolución: Inmadurez Madurez. Fase principal de generacion de aceite Sobremadurez. Fase principal de generacion de gas Índice de alteración térmica (tai) Según el color de la materia orgánica se puede determinar la madurez de la misma
  • 26. Las características físicas y químicas del kerógeno están directamente relacionadas con las de la materia orgánica predecesora a la formación de éste. La composición global del kerógeno consta de tres elementos principales C, H, y O por lo que para clasificarlo se analizan las relaciones atómicas H/C y H/O, sin olvidar que también pueden estar contenidos elementos secundarios como S, Mg, Ni, Va, Cu, Co, etc. Tipos de Kerógeno. El Kerógeno tiene composiciones diferentes según su origen y, se representa por medio del diagrama de Van Krevelen, donde la posición dentro de este diagrama depende de su naturaleza original y de la evolución térmica de la materia orgánica. De este modo se diferencian tres tipos principales de kerógeno (Tissot, 1978), en este diagrama se representa también la curva de evolución térmica que sigue cada tipo de kerógeno, y que se caracteriza por una pérdida inicial de los compuestos oxigenados y más tarde del hidrógeno, hasta alcanzar la etapa final de transformación y dejar un residuo muy rico en carbono. Diagrama de Van Krevelen
  • 27. Diagrama de Van Krevelen Los Kerógenos se clasifican quimícamente (Tissot y Durand 1974) en Kerógeno tipo I, II, III y IV, dependiendo de su composición elemental y de su evolución con respecto a la grafica de Van Krevelen que muestra la relación atómica de H/C vs. O/C.
  • 28. Diagrama de Van Krevelen y las etapas diagenéticas
  • 29. La expulsión se da a través de microfracturas originadas por la sobre-presión en los poros. Las RG más ricas en MO se presionarán primero y expulsarán antes que las RG menos ricas. En rocas pobres la expulsión se da tan tarde solo se llegan a expulsar productos del cracking térmico del Petróleo (gases) Si el contenido de MO es muy bajo la expulsión puede no darse. Expulsión
  • 30.  La composición química del Kerógeno va a depender de la Materia Orgánica original y de sus cambios durante la diagénesis.  Durante la Catagénesis se produce Kerógeno residual cada vez más aromático y más pobre en H2. Al mismo tiempo se producen moléculas pequeñas (bitúmenes), precursoras del petróleo y gas.  La composición química del Kerógeno define el tiempo de generación de los HC's y el tipo de productos a obtener.  Los Kerógenos ricos en lípidos son propensos a generar HC's líquidos, mientras que los que son pobres en lípidos generarán principalmente gas. Resumen
  • 31.  El Kerógeno resinítico genera aceite o condensados antes que los otros kerógenos.  Los Kerógenos ricos en azufre producen aceites pesados, azufrosos, en condiciones de madurez incipiente.  Las rocas generadoras que generan HC's temprano también son capaces de expulsarlos antes (ricas en resinas y azufre).  Las rocas generadoras que generan pocos HC's pueden no son capaces de expulsarlos sino hasta que han sido craqueados a gas. Resumen
  • 32. MO laminada, lagunar MO en agregados Distribución difusa de la MO Secciones delgadas de rocas generadoras ricas en materia orgánica (luz transmitida)
  • 33. Luz transmitida MO amorfa Luz natural reflejada Lignina
  • 34. Luz polarizada Fluorescencia, excitación UV Agregados minerales Algas fluorescentes
  • 35. Algáceo, es el material que puede ser positivamente relacionado con algas. Químicamente consiste de moléculas de bajo peso molecular con menos anillos condensados y más cadenas parafínicas largas, con anillos de naftenos. Tipos de Kerógeno
  • 37. - - 0.1 mm -1 Herbaceo, es el material que abarca todos los materiales membranosos de las plantas, incluyendo cutículas, hojas, polen, esporas etc. Tipos de Kerógeno
  • 38. Kerógeno en luz transmitida Kerógeno en luz fluorescente
  • 39. Maderáceo, esta formado por los detritos más lignitificados de los remanentes de la estructura de las plantas (ramas y tallos). Químicamente consiste de moléculas de alto peso molecular que contiene anillos aromáticos condensados. LIGNOCELULOSICA Tipos de Kerógeno
  • 40. Carbonáceo, esta más relacionado a la apariencia negra que presentan las partículas que lo constituyen. Puede provenir de cualquier tipo de Kerógeno re trabajado o sobre maduro FACIES ORGÁNICA DEL TIPO CARBONOSO DE Tipos de Kerógeno
  • 41. Pirólisis (Rock-Eval). Este método (Espitalié, et. al, 1977) tiene la finalidad de caracterizar el potencial generador de la materia orgánica asociada a las rocas sedimentarias predecesoras a la generación de hidrocarburos. Los resultados obtenidos de pirólisis de una muestra de roca permiten:  Caracterizar el tipo de materia orgánica.  Evaluar la madurez térmica de la misma.  Calcular el contenido de hidrocarburos libres.  Cuantificar el potencial petrolero residual.  Determinar el contenido de carbono orgánico total. Potencial generador.
  • 42. Sistemas generadores EXPLORACIÓN Y PRODUCCIÓN EXPLORACIÓN Y PRODUCCIÓN Property EXPLORACIÓN Y PRODUCCIÓN EXPLORACIÓN Y PRODUCCIÓN Property Sureste Basin Sureste Basin Generative Systems Generative Systems VILLAHERMOSA CARDENAS FRONTERA CD. PEMEX MACUSPANA TEAPA HUIMANGUILLO COMALCALCO CD. DEL CARMEN CAMPECHE TABASCO TABASCO CHIAPAS TABASCO LAS CHOAPAS COATZACOALCOS MINATITLAN NANCHITAL AGUA DULCE LA VENTA ESC: GRAFICA 30 20 10 0 0 10 20 MILLAS 50 25 40 KILOMETROS PARAISO Gulf of Mexico N S W E Clara, V.L, Caballero, G. E, Maldonado, V.R, Pacheco, J, Villanueva, R. L, 2004 PROY. SIST. PETROLEROS Tithonian (JSI) LEGEND Tithonian (JS) Cretaceous Mix Tithonian-Tertiary Oxfordian TERTIARY FIELDS CRETACEOUS FIELDS JURASSIC FIELDS Early Miocene Thermogenic-biogenic Gas Biogenic Gas Mix Tithonian- Cretaceous LEYENDA Campos Terciarios Campos Jurásicos Campos Cretácicos Tithoniano (js) Cretácico Mezcla de tithoniano y terciario Oxfordiano Tithoniano (js) Mioceno temprano Gas termogénico Gas biogénico Mezcla de Tithoniano y Cretacico