SlideShare una empresa de Scribd logo
TALLER PSEINT (ESTADÍSTICAS)
JUAN ESTEBAN BUITRAGO CIFUENTES
MELISSA FORY ORTEGA
BRIANNA SOFIA PARRA CASTILLO
ISABELLA VIAFARA SÁNCHEZ
DANIEL ALEJANDRO PLAZA
LAURA CAMILA SOTO
GRADO 11-1
GUILLERMO MONDRAGÓN
Lic. en Tecnología e Informática
INSTITUCIÓN EDUCATIVA LICEO DEPARTAMENTAL
ÁREA DE TECNOLOGÍA E INFORMÁTICA
SANTIAGO DE CALI
2021
Tabla de Contenido
Metodos estadisticos......................................................................................................1
¿Qué es la estadística? ....……………………………………………………1.1
¿Cuáles son las ramas de la estadística?........................................................................2
Aplicaciones de la estadística ...……………………………………………………….3
Educación …………………………………………………………………… 3.1
Contaduría……………………………………………………………….......3.1.2
Administración…...……………………………………………………………3.1.3
Gerontología .........................................................................................................3.1.4
Deporte………………………………………………………………………….3.1.5
Economía……………………………………………………………………......3.1.6
Hipótesis…………………………………………………………………………3.1.7
Variable………………………………………………………………………….3.1.8
Dato……………………………………………………………………................3.1.9
Población................................................................................................................3.1.10
Muestra………………………………………………………………………...3.1.11
Nivel de medición nominal ………………………………………………........3.1.12
Distribución de frecuencias................................................................................................4
Nombre de la variable…………………………………………………………...4.1
Frecuencia absoluta………………………………………………………...........4.2
Frecuencia relativa porcentual…………………………………………………...4.3
Equivalencia en grados…………………………………………………………..4.4
Mapa conceptual………………………………………………………………………….5
Conclusiones……………………………………………………………………………...6
Referencias……………………………………………………………………………….7
1. MÉTODOS ESTADÍSTICOS
Los métodos estadísticos son procedimientos para manejar datos cuantitativos y cualitativos
mediante técnicas de recolección, recuento, presentación, descripción y análisis. Los métodos
estadísticos permiten comprobar hipótesis o establecer relaciones de causalidad en un
determinado fenómeno.
¿QUÉ ES LA ESTADÍSTICA?
La estadística es una disciplina científica que se ocupa de la obtención, orden y análisis de un
conjunto de datos con el fin de obtener explicaciones y predicciones sobre fenómenos
observados.
La estadística consiste en métodos, procedimientos y fórmulas que permiten recolectar
información para luego analizarla y extraer de ella conclusiones relevantes. Se puede decir
que es la Ciencia de los Datos y que su principal objetivo es mejorar la comprensión de los
hechos a partir de la información disponible.
Conviene saber que la estadística NO es una rama de las matemáticas. Utiliza herramientas
de las matemáticas del mismo modo que lo hace la física, la ingeniería o la economía, pero
eso no las hace ser parte de las matemáticas. Es cierto que tienen una relación estrecha, pero
la estadística y las matemáticas son disciplinas diferentes.
2. ¿CUÁLES SON LAS RAMAS DE LA ESTADÍSTICA?
La estadística se divide en dos grandes áreas: estadística descriptiva y estadística inferencial,
las cuales comprenden la estadística aplicada.
Además de estas dos áreas, existe la estadística matemática, la cual comprende las bases
teóricas de la estadística.
ESTADÍSTICA DESCRIPTIVA
La estadística descriptiva es la rama de la estadística que describe o resume de forma
cuantitativa (medible) características de una colección de una recolección de información. Es
decir, la estadística descriptiva se encarga de resumir una muestra estadística (conjunto de
datos obtenidos de una población) en lugar de aprender sobre la población que representa la
muestra.
ESTADÍSTICA INFERENCIAL
La estadística inferencial se diferencia de la estadística descriptiva principalmente por el uso
de la inferencia y la inducción.
Es decir, esta rama de la estadística busca deducir propiedades de una población estudiada, es
decir, no solo recolecta y resume los datos, sino que busca explicar ciertas propiedades o
características a partir de los datos obtenidos.
En este sentido, la estadística inferencial implica obtener las conclusiones correctas de un
análisis estadístico realizado mediante estadística descriptiva.
3. APLICACIONES DE LA ESTADÍSTICA:
Existen muchas aplicaciones en los campos profesionales y prácticamente en todo campo se
utiliza la estadística
EN LA EDUCACIÓN
La Estadística brinda herramientas insustituibles para comprender la dimensión macro
estructural de la educación y sus vinculaciones con el sistema social global, con cierta
independencia de los cambios inmediatos y mediatos que se buscan desde la función pública
y privada. Todo esto. Induce a las conclusiones y toma de decisiones.
Imagen 1. Estadísticas
Fuente: Estadística aplicada en la educación
EN LA CONTADURÍA
La estadística ayuda a la contabilidad en el empleo de cálculos de tipo estadístico,
permitiendo establecer registros contables que afectan los estados financieros.
● La estadística ayuda a la contabilidad en cuanto a su agilidad, procesamiento, análisis
e interpretación de información, dando como resultado la toma de decisiones
confiables sobre criterios económicos.
● La estadística se aplica para la selección de muestras en una auditoría.
● Ayuda a medir la variación de costos de una producción.
● Brinda información para la toma de decisiones, planeación y control en cuanto a sus
resultados.
● Ayuda para poder diferenciar las ventas que se han realizado en la empresa por medio
de la estadística anual.
● Se elaboran informes más rápido, concisos y detallados.
● Se basa de una gran variedad de información de datos contables.
● Permite comparar los resultados de una empresa en el pasado, con aquellos obtenidos
en el presente.
● La estadística se ejerce dentro de la contabilidad llevando el nombre de “contabilidad
administrativa”.
Es indispensable la aplicación de la estadística en la administración, ya que proporciona
elementos de confiabilidad que sustentan la toma de decisiones en temas administrativos,
como calidad y productividad.
EN LA ADMINISTRACIÓN
En la actualidad en el marco de los criterios de la Administración de la calidad y de la
productividad, así como en la aplicación de los sistemas de gestión de calidad orientados a la
toma de decisiones es imprescindible la aplicación de la Estadística tanto descriptiva y en
cierta medida la estadística inferencial, que a su vez proporcionan elementos de confiabilidad
que científicamente sustenten la decisión tomada.
Tener en cuenta que el objetivo de la estadística como disciplina es brindar soporte en:
a) Planificación de la búsqueda y obtención de la información.
b) Organizar y sistematizar la información para su descripción y análisis.
c) A partir de la información organizada, efectuar inferencias a través de la estimación y
contrastación de la hipótesis.
El modelo de toma de decisión de un tema o problema específico requiere el soporte que
proporciona la estadística, que involucra desde la toma de muestra propiamente hasta la
corroboración de la decisión a un nivel de confiabilidad definido.
La aplicación de la estadística es a todo ámbito y siempre va a requerir considerar una data
muestral o poblacional de un determinado caso como por ejemplo; nivel de hemoglobina de
1000 pacientes damas de un hospital se encuentra en un rango definido y tiene tendencia a
disminuir, que la variabilidad de pesos netos de galletas que produce la empresa X está en un
rango de peso evitando generar pérdidas al productor y detrimento al consumidor, que los
valores de venta diaria van en crecimiento en Y% en meses definido dentro de un negocio, o
simplemente la curva de resultados de un examen de matemáticas básicas en un salón de
clase fue en un rango específico pudiendo definir un pronóstico de nivel de aprobados final o
de dificultad para subsiguientes evaluaciones
La estadística descriptiva nos ofrece el detalle de las herramientas para definir elementos
básicos en la toma de decisión como son la media, mediana, moda, desviación estándar y los
diferentes diagramas de cajas, histogramas, tablas de contingencia y gráficas de dispersión
entre otros. Que nos ayudará en la obtención, organización, presentación y descripción de la
información numérica.
Imagen 2. Ejemplo de estadísticas en la administración
Fuente: La Importancia de la Estadística en la Administración
EN LA GERONTOLOGÍA
La gerontología es además el estudio del proceso de envejecimiento de los individuos y las
poblaciones. A nivel individual desde una perspectiva integral se concibe el envejecimiento
desde la concepción hasta la muerte, y debe considerar las dimensiones: biológica,
psicológica, social, espiritual, cultural, económica, ecológica, recreativa, ocupacional o
productiva, educativa, cognitiva, sexual, legal y sanitaria. A nivel poblacional corresponde al
estudio de los diferentes grupos de edad según perfil demográfico, el perfil epidemiológico,
los factores determinantes y de riesgo de la salud, las políticas públicas, entre otros.La
gerontología tiene un doble objetivo:
● Desde un punto de vista cuantitativo, la prolongación de la vida (dar más años a la
vida, retardar la muerte).
● Desde un punto de vista cualitativo, la mejora de la calidad de vida de las personas
mayores (dar más vida a los años).
La gerontología es un estudio multidisciplinar porque, como toda nueva área de
conocimiento, se ha nutrido y nutre del conocimiento aportados por otras. Así, la biología, la
sociología, la psicología, la antropología, la demografía, la educación y otros campos del
saber vierten su cuota de participación para hacer de la gerontología una realidad como
campo de conocimiento independiente:
La gerontología incide en la calidad y condiciones de vida del anciano mediante el diseño,
ejecución y seguimiento a políticas y programas destinados al beneficio de la población
anciana. De esta forma suma vida a los años más que años a la vida; este último sería un
objetivo de la geriatría.
EN EL DEPORTE
La contribución de la Estadística a la cientificidad del sistema de preparación del deportista
se patentiza en aplicar modelos estadísticos que permitan, entre otros: obtener una
información objetiva sobre la caracterización de los atletas en diferentes etapas de su
preparación, obtener una información objetiva de la actuación de los atletas y del equipo
frente a sus adversarios, más exactitud en el pronóstico del rendimiento deportivo, más
eficiencia en la detección de talentos deportivos y un mayor rigor en el establecimiento de
características modelo.Hacer de los tests elaborados o adaptados por los entrenadores de
acuerdo a la especificidad de su deporte verdaderos instrumentos de recogida de información
confiable para el perfeccionamiento del control del estado de preparación de los atletas y
garantizar a la vez la correcta validación y normativas de los mismos.Utilizar nuevos sistemas
metodológicos de preparación tras la comprobación estadística de su efectividad.Si no se
tiene en cuenta lo que aporta la utilización de modelos estadísticos a la solución de muchos
problemas en el deporte, los resultados en la preparación deportiva están más sujetos a la
casualidad y no a la causalidad.
Es importante apuntar que la actividad científica se desarrolla en el marco de diferentes
paradigmas. Se concilian métodos propios de los enfoques cuantitativos con los propios de
los enfoques cualitativos, lo que resulta válido para acceder de la mejor manera posible al
conocimiento de la verdad. Por tanto, la Estadística es una herramienta de trabajo valiosa no
solamente para la investigación cuantitativa, sino también para la investigación cualitativa la
cual no está ausente en la esfera del deporte.
EN LA ECONOMÍA
En el caso de la Economía, la estadística es de gran importancia, pues la economía necesita
de la Estadística, ya que esta constituye un instrumento de suma importancia para que se
conozca el comportamiento de la economía a diferentes niveles ya sea en una empresa,
municipio, provincia, nación, así como a escala internacional, el amplio campo de su
aplicación permite incursionar en cada uno de los elementos que componen el complejo
sistema socio-económico, así como investigar de una manera integral la relación entre sus
principales variables. Es por esto que en el estudio de la economía la Estadística constituye
un elemento de inestimable valor. Con la ayuda de la estadística se confeccionan los planes
de desarrollo de la economía de un país, se supervisa el control de su cumplimiento y se
determinan las necesidades de recursos por territorios, así como las reservas con que cuenta
la economía a cualquier nivel. El conocimiento de la Estadística en la economía permite
apoyar la toma de decisiones para la aplicación de la política económica que se proponen los
países para conducir la sociedad, así como para trazar la estrategia de desarrollo acorde con
los programas que se consideran según las condiciones imperantes en cada nación. La
estadística es aplicada por economistas con el fin de poder predecir y comprender futuros
Activar acontecimientos, a partir del análisis estadístico y matemático, de esta manera.poder
sugerir medidas de políticas económicas conforme a objetivos deseados; ésta también
suministra los valores que ayudan a descubrir interrelaciones entre múltiples parámetros
macro y microeconómicos.
EN LA HIPÓTESIS
Prueba de hipótesis no es sólo para los medios de la población y las desviaciones estándar.
Puede usar este procedimiento para probar diferentes tipos de proposiciones. Por ejemplo, un
juicio por jurado puede ser visto como una prueba de hipótesis con una hipótesis nula de
"inocente" y una hipótesis alternativa de "culpable". Como parte de la prueba, las muestras de
monedas producidas a lo largo del año se han destinado para determinar si tienen el peso
adecuado, el diámetro y la composición química. Las monedas se presentan a un jurado para
la prueba. El juicio de Pyx puede ser visto como una prueba de hipótesis, donde las hipótesis
nula y alternativa son los siguientes
● Hipótesis nula: Las monedas se ajustan a la requerida peso, diámetro, y composición.
● Hipótesis alternativa: las monedas no se ajustan al, peso, diámetro y composición
requerida
VARIABLE
El conjunto de valores que constituyen un carácter estadístico se denomina variable estadística.
En términos estrictos, se denomina variable estadística a todo carácter cuantitativo de un
individuo, mientras que los caracteres cualitativos se suelen llamar atributos.
Las variables estadísticas se clasifican en dos grandes grupos:
Variables discretas, que toman únicamente valores puntuales. Por ejemplo, el número de hijos
de una mujer es siempre un valor entero: 0, 1, 2, 3, ...
Variables continuas, que pueden tomar cualquier valor dentro del conjunto de los números
reales R o de un intervalo suyo. Ejemplos de variables continuas son las medidas
antropomórficas de los recién nacidos, la altura de los ciudadanos de un determinado colectivo,
la medición de temperaturas, etcétera.
Se llama recorrido de una variable a la máxima diferencia que existe entre sus valores.
Imagen 3. Caracteres
Fuente. Las variables estadísticas
DATO
Son números que representan las modalidades de las variables. Por ejemplo, el 1 puede
representar la modalidad "Mujer", el 6.3 representa una de las magnitudes que podemos
registrar en la variable "grado de conocimiento de las técnicas estadísticas". Los datos pueden
ser clasificados según diferentes criterios, uno de los cuales se basa en las modalidades que
presentan: Se dirá que son datos dicotómicos los que provienen de variables que solo admiten
dos modalidades (por ejemplo la variable "género"), son datos dicotomizados aquellos que
presentan dos categorías pero provienen de variables con más de dos modalidades (por
ejemplo datos con valores 1 y 0 que representan aprobado y suspenso).
Imagen 4. Ejemplos de los datos
Fuente. Datos en la estadística
POBLACIÓN
Una población estadística es un conjunto de sujetos o elementos que presentan características
comunes. Sobre esta población se realiza el estudio estadístico con el fin de sacar
conclusiones.
Imagen de una población estadística con todos los individuos
El tamaño poblacional es el número de individuos que constituyen la población. Según el
número de sujetos, el tamaño puede ser finito o infinito. Los conjuntos infinitos son algo
artificial o conceptual, ya que toda población de entidades físicas es finita. Por ejemplo:
Imagen 5. Ejemplo de población
Fuente: Población en la estadística
● Población finita: el conjunto de habitantes de una ciudad, los bolígrafos producidos en
una fábrica en un día, etc.
● Población infinita: el conjunto de los números positivos.
Cuando la población es muy grande, normalmente es imposible estudiar a todos los
individuos.
Supongamos que queremos saber cual es el nivel de colesterol de la población de Estados
Unidos. Por cuestiones económicas y de tiempo obvias, no está al alcance realizar un análisis
de sangre a toda la población de EEUU. Para solucionar este impedimento, se utiliza una
muestra estadística.
MUESTRA
La muestra estadística consiste en la porción que se extrae de una población estadística para
un determinado estudio, con el fin de representar, conocer y determinar los aspectos de dicha
población.
Este método se utiliza cuando no se puede aplicar un censo en ciertas poblaciones, ya que a
través del muestreo se puede establecer una porción de la realidad a estudiar.
Imagen 6. Tipos de muestra
Fuente. La muestra en la estadística
NIVEL DE MEDICIÓN NOMINAL
Una escala nominal es una escala de medición en la cual los números sirven como “etiquetas”
solamente para identificar o clasificar un objeto. Una escala de medición nominal
normalmente se trata sólo con variables no numéricas (no cuantitativas).
Por ejemplo, supongamos que se realiza esta pregunta: “¿Podrías seleccionar el grado de
incomodidad de tu enfermedad?”
Las opciones de respuesta utilizadas para este tipo de escala serían:
1. Leve
2. Moderado
3. Severo
En este ejemplo en particular, 1 = leve, 2 = Moderado y 3 = Severo. Aquí los números
simplemente son utilizados como etiquetas y no tienen ni un solo valor.
Existen cuatro niveles de medición: la escala nominal, la escala ordinal, la escala de intervalo
y la escala de razón. Estas escalas de medición sirven para categorizar diferentes variables
(un elemento, característica o factor que es probable que varíe).
4. DISTRIBUCIÓN DE FRECUENCIAS
Las distribuciones de frecuencias son tablas en que se dispone las modalidades de la variable
por filas. En las columnas se dispone el número de ocurrencias por cada valor, porcentajes,
etc. La finalidad de las agrupaciones en frecuencias es facilitar la obtención de la información
que contienen los datos.
Ejemplo: Quieren conocer si un grupo de individuos está a favor o en contra de la
exhibición de imágenes violentas por televisión, para lo cual han recogido los siguientes
datos:
Imagen 7. Ejemplo de la distribución de frecuencias
Fuente. Distribución de Frecuencias
4.1 NOMBREDE LA VARIABLE
Una variable es un espacio de la memoria del ordenador a la que asignamos un
contenido que puede ser un valor numérico (sólo números, con su valor de cálculo) o
alfanumérico (sólo texto o texto con números). Cada variable tiene un único nombre el cual
no puede ser cambiado. Dos o más variables pueden tener el mismo contenido, pero no el
mismo nombre. El nombre de una variable comenzará siempre por una letra, pudiendo
contener a continuación tanto letras como números.
Las letras pueden ser tanto mayúsculas como minúsculas. No se admiten nombres de
variables incluyendo espacios en blanco ni símbolos especiales como guiones, puntos, comas,
comillas, etc. ni símbolos matemáticos ni palabras clave (que veremos más adelante, y que
incluyen “inicio”, “fin”, “verdadero”, “falso”,“entonces”...).
El nombre de una variable será lo suficientemente largo como para impedir que pueda
confundirse con otra variable por tener nombre similar, así como para aportar una indicación
de cuál es el contenido o función que cumple.
4.2 FRECUENCIA ABSOLUTA
La frecuencia absoluta es una medida estadística que nos da información acerca de la
cantidad de veces que se repite un suceso al realizar un número determinado de experimentos
aleatorios. Esta medida se representa mediante las letras fi. La letra f se refiere a la palabra
frecuencia y la letra i se refiere a la realización i-ésima del experimento aleatorio.
La frecuencia absoluta es muy utilizada en estadística descriptiva y es útil para saber acerca
de las características de una población y/o muestra. Esta medida se puede utilizar con
variables cualitativas o cuantitativas siempre que estas se puedan ordenar.
La frecuencia absoluta se puede usar para variables discretas (las variables se ordenan de
menor a mayor) y para variables continuas (las variables se ordenan de menor a mayor
agrupadas por intervalos). La frecuencia absoluta se utiliza para calcular la frecuencia
relativa.
4.3 FRECUENCIA RELATIVA PORCENTUAL
La frecuencia relativa porcentual es el porcentaje de la frecuencia relativa, siendo esta la
división de la frecuencia absoluta entre el total de valores en una selección de datos.
La frecuencia relativa es muy usada en probabilidad, y hace referencia a la relación de una
frecuencia absoluta entre un total.
Este valor valor de frecuencia relativa porcentual representa la posibilidad sobre 100% de
encontrar este número en una serie de datos, es por esta razón que es una relación de
frecuencias.
Mira algunos ejemplos en la imagen adjunta.
Tenemos el término x = 3, tiene una frecuencia absoluta de 2 y el total de dígitos es 30,
entonces:
fr = (2/30)· 100%
fr = 7% Siendo la frecuencia relativa porcentual del 7%.
4.4 EQUIVALENCIA EN GRADOS
Los grados en una tabla de frecuencias: son iguales al número de muestras independientes
que son libres de modificar, por ejemplo el número de personas en unos datos, menos el
número de parámetros estimados (el número de 1,9,10 relaciones impuestas a los datos). Es
decir, están relacionados al tamaño de la muestra. Estos son utilizados para definir las
distribuciones estadísticas y con ellos poder realizar las pruebas de hipótesis.
Por ejemplo, si se tiene un rango estadístico de edades [20 años -25 años)
El Grado se calcula= (25-1) + (28-1) = 51
5. MAPA CONCEPTUAL
6. CONCLUSIONES
Llegamos a la conclusión de que la estadística es una disciplina científica que se ocupa de la
obtención, orden y análisis de un conjunto de datos con el fin de obtener explicaciones y
predicciones sobre fenómenos observados.La estadística se divide en dos grandes áreas:
estadística descriptiva y estadística inferencial, las cuales comprenden la estadística aplicada.
Además de estas dos áreas, existe la estadística matemática, la cual comprende las bases
teóricas de la estadística.
ESTADÍSTICA INFERENCIAL
La estadística inferencial se diferencia de la estadística descriptiva principalmente por el uso
de la inferencia y la inducción.
EN LA GERONTOLOGÍA
La gerontología es además el estudio del proceso de envejecimiento de los individuos y las
poblaciones.
DATO
Son números que representan las modalidades de las variables. Por ejemplo, el 1 puede
representar la modalidad «Mujer», el 6.3 representa una de las magnitudes que podemos
registrar en la variable «grado de conocimiento de las técnicas estadísticas».
El tamaño poblacional es el número de individuos que constituyen la población.
EN LA ECONOMÍA
En el caso de la Economía, la estadística es de gran importancia, pues la economía necesita
de la Estadística, ya que esta constituye un instrumento de suma importancia para que se
conozca el comportamiento de la economía a diferentes niveles ya sea en una empresa,
municipio, provincia, nación, así como a escala internacional, el amplio campo de su
aplicación permite incursionar en cada uno de los elementos que componen el complejo
sistema socio-económico, así como investigar de una manera integral la relación entre sus
principales variables.
EN LA HIPÓTESIS
Prueba de hipótesis no es sólo para los medios de la población y las desviaciones estándar.
Puede usar este procedimiento para probar diferentes tipos de proposiciones.
VARIABLE
El conjunto de valores que constituyen un carácter estadístico se denomina variable
estadística.Las variables estadísticas se clasifican en dos grandes grupos
Variables discretas, que toman únicamente valores puntuales. Por ejemplo, el número de
hijos de una mujer es siempre un valor entero: 0, 1, 2, 3, ...
7. REFERENCIAS
(17 de abril 2017). recuperado de
http://www.eloriente.net/home/2017/04/17/educacion-uso-estadisticas-aula-diego-
gonzalez-
algara/#:~:text=Esencialmente%2C%20la%20toma%20de%20decisiones,recursos%2
C%20los%20procesos%20y%20los
(1980). recuperado de
https://www.cimat.mx/es/node/798#:~:text=Los%20m%C3%A9todos%20esta
d%C3%ADsticos%20son%20procedimientos,causalidad%20en%20un%20de
terminado%20fen%C3%B3meno.
Roldan, P. (31 de julio, 2017). Estadística. recuperado de
https://economipedia.com/definiciones/estadistica.html
González, S. H. (Mayo-agosto de 2005). Historia de la estadística. recuperado de
https://sites.google.com/site/historiadelaestadisticaacti/home
Glenday, Craig; Fall, Stephen, eds. (2013). «Introducción. Hasta el límite.».
Guinness World Records 2013 (Alberto Delgado; Olga Marín; Daniel Montsech;
Nioelia Palacios y Roser Soms, trads.). España. p. 2b. ISBN 9788408008651.
Mero Vélez, Alexandra (2014). «Acción del trabajador social y su impacto en los
adultos mayores en condición de abandono en el Hospital Rafael Rodríguez
Zambrano de Manta en el periodo 2013-2014.». Tesis. Consultado el 5 de junio de
2020.
Lau, Norma. (1999). Significado y Práctica del Autocuidado Integral y Holístico en
Personas Adultas Mayores de Barva de Heredia. Costa Rica: Maestría de
Gerontología-Universidad de Costa Rica
Mesa Anoceto,Magda (2001) Asesoría Estadística con enfoque procesual en la Investigación
Científica aplicada al Deporte. Tesis de grado (Doctor en Ciencias de la Cultura Física) La
Habana,ISCF “Manuel Fajardo”.
http://ceidis.uds.edu.ve/blogRedDocente/raquelrodriguez/?p=110#:~:text=La%20cont
ribuci%C3%B3n%20de%20la%20Estad%C3%ADstica,una%20informaci%C3%B3n
%20objetiva%20de%20la
https://es.scribd.com/document/282916871/Aplicaciones-de-La-Estadistica-en-La-
Economia
Galli, L. Los grados en una tabla de frecuencia. recuperado de
https://brainly.lat/tarea/6628501#:~:text=Los%20grados%20en%20una%20tabla%20
de%20frecuencias%3A%20son%20iguales%20al,al%20tama%C3%B1o%20de%20la
%20muestra.
BLOGS
Melissa Fory- https://haciendojsjkaj.blogspot.com/p/3-periodo.html
Isabella Viafara- https://isabellaviafara73.blogspot.com/
Brianna Parra- https://tecnologialibrepos.blogspot.com/
Juan Buitrago-https://blogdetecnologia0411.blogspot.com/p/2-periodo.html
Daniel Plaza- https://daniel059.blogspot.com/
Laura Soto- https://lcamilasoto22.blogspot.com/

Más contenido relacionado

PDF
Metodos estadisticos y_distribucion_de_frecuencias
DOCX
Conceptos de programación, métodos estadísticos.
PDF
Trabajo de tecnologia (1)
PDF
Metodos estadisticos y distribucion de frecuencias
PDF
taller (1).pdf
PDF
Conceptos de programacion y estadistica 11 5 (2)
DOCX
Conceptos de programación y métodos estadísticos
Metodos estadisticos y_distribucion_de_frecuencias
Conceptos de programación, métodos estadísticos.
Trabajo de tecnologia (1)
Metodos estadisticos y distribucion de frecuencias
taller (1).pdf
Conceptos de programacion y estadistica 11 5 (2)
Conceptos de programación y métodos estadísticos

La actualidad más candente (11)

PDF
Taller tecnología pseint
PDF
Taller anexo pseint
PDF
LA ESTADISTICA
DOCX
Tecnologia (1)
PDF
Tecnologia
PDF
Conceptos de programación, métodos estadísticos
PDF
Conceptos de programación, métodos estadísticos.
PDF
Tecnologia
PDF
Blog, conceptos de programación, métodos estadísticos (1)
DOCX
Estadistica
PDF
Conceptos de programación y estadistica
Taller tecnología pseint
Taller anexo pseint
LA ESTADISTICA
Tecnologia (1)
Tecnologia
Conceptos de programación, métodos estadísticos
Conceptos de programación, métodos estadísticos.
Tecnologia
Blog, conceptos de programación, métodos estadísticos (1)
Estadistica
Conceptos de programación y estadistica
Publicidad

Similar a Taller pseint (estadisticas) (20)

PDF
CONCEPTOS DE PROGRAMACIÓN Y MÉTODOS ESTADÍSTICOS.docx.pdf
PDF
Informe escrito de tecnología
PDF
Que es la estadistica
PDF
Que es la estadistica
PDF
Informe escrito de tecnologia convertido
DOCX
Estadistica
DOCX
Estadistica
DOCX
Estadistica
DOCX
Estadistica
DOCX
Estadisticas 1
DOCX
Tecnologia
DOCX
Conceptos estadísticos
DOCX
Trabajo de estadistica
DOCX
Trabajo de estadistica
DOCX
Estadistica
DOCX
Documnot escrito tecnologia 2020
DOCX
Trabajo de informatica
DOCX
Estadistica
DOCX
Tecno
CONCEPTOS DE PROGRAMACIÓN Y MÉTODOS ESTADÍSTICOS.docx.pdf
Informe escrito de tecnología
Que es la estadistica
Que es la estadistica
Informe escrito de tecnologia convertido
Estadistica
Estadistica
Estadistica
Estadistica
Estadisticas 1
Tecnologia
Conceptos estadísticos
Trabajo de estadistica
Trabajo de estadistica
Estadistica
Documnot escrito tecnologia 2020
Trabajo de informatica
Estadistica
Tecno
Publicidad

Más de melissafory (8)

PDF
Escarapelas grupo recicladores
PDF
Tablas y graficas proyecto cts
PDF
Folleto proyrcto cts
PDF
Proyecto cts presentación
PDF
Proyecto cts
DOCX
Proyecto cts (1)
DOCX
Informe diagrama de pareto en excel
PDF
Ley de sturges
Escarapelas grupo recicladores
Tablas y graficas proyecto cts
Folleto proyrcto cts
Proyecto cts presentación
Proyecto cts
Proyecto cts (1)
Informe diagrama de pareto en excel
Ley de sturges

Último (20)

PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
PDF
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
PDF
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
PDF
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
PDF
biología es un libro sobre casi todo el tema de biología
DOCX
PROYECTO DE APRENDIZAJE para la semana de fiestas patrias
PDF
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
PDF
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
PDF
Tomo 1 de biologia gratis ultra plusenmas
PDF
TOMO II - LITERATURA.pd plusenmas ultras
PDF
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
PDF
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
PDF
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
DOCX
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
PDF
CIRSOC-201-2024_Proyecto de Reglamento Argentino de Estructuras de Hormigón
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
2.0 Introduccion a processing, y como obtenerlo
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
biología es un libro sobre casi todo el tema de biología
PROYECTO DE APRENDIZAJE para la semana de fiestas patrias
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
Tomo 1 de biologia gratis ultra plusenmas
TOMO II - LITERATURA.pd plusenmas ultras
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
CIRSOC-201-2024_Proyecto de Reglamento Argentino de Estructuras de Hormigón
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
2.0 Introduccion a processing, y como obtenerlo

Taller pseint (estadisticas)

  • 1. TALLER PSEINT (ESTADÍSTICAS) JUAN ESTEBAN BUITRAGO CIFUENTES MELISSA FORY ORTEGA BRIANNA SOFIA PARRA CASTILLO ISABELLA VIAFARA SÁNCHEZ DANIEL ALEJANDRO PLAZA LAURA CAMILA SOTO GRADO 11-1 GUILLERMO MONDRAGÓN Lic. en Tecnología e Informática INSTITUCIÓN EDUCATIVA LICEO DEPARTAMENTAL ÁREA DE TECNOLOGÍA E INFORMÁTICA SANTIAGO DE CALI 2021
  • 2. Tabla de Contenido Metodos estadisticos......................................................................................................1 ¿Qué es la estadística? ....……………………………………………………1.1 ¿Cuáles son las ramas de la estadística?........................................................................2 Aplicaciones de la estadística ...……………………………………………………….3 Educación …………………………………………………………………… 3.1 Contaduría……………………………………………………………….......3.1.2 Administración…...……………………………………………………………3.1.3 Gerontología .........................................................................................................3.1.4 Deporte………………………………………………………………………….3.1.5 Economía……………………………………………………………………......3.1.6 Hipótesis…………………………………………………………………………3.1.7 Variable………………………………………………………………………….3.1.8 Dato……………………………………………………………………................3.1.9 Población................................................................................................................3.1.10 Muestra………………………………………………………………………...3.1.11 Nivel de medición nominal ………………………………………………........3.1.12 Distribución de frecuencias................................................................................................4 Nombre de la variable…………………………………………………………...4.1 Frecuencia absoluta………………………………………………………...........4.2 Frecuencia relativa porcentual…………………………………………………...4.3 Equivalencia en grados…………………………………………………………..4.4 Mapa conceptual………………………………………………………………………….5 Conclusiones……………………………………………………………………………...6 Referencias……………………………………………………………………………….7
  • 3. 1. MÉTODOS ESTADÍSTICOS Los métodos estadísticos son procedimientos para manejar datos cuantitativos y cualitativos mediante técnicas de recolección, recuento, presentación, descripción y análisis. Los métodos estadísticos permiten comprobar hipótesis o establecer relaciones de causalidad en un determinado fenómeno. ¿QUÉ ES LA ESTADÍSTICA? La estadística es una disciplina científica que se ocupa de la obtención, orden y análisis de un conjunto de datos con el fin de obtener explicaciones y predicciones sobre fenómenos observados. La estadística consiste en métodos, procedimientos y fórmulas que permiten recolectar información para luego analizarla y extraer de ella conclusiones relevantes. Se puede decir que es la Ciencia de los Datos y que su principal objetivo es mejorar la comprensión de los hechos a partir de la información disponible. Conviene saber que la estadística NO es una rama de las matemáticas. Utiliza herramientas de las matemáticas del mismo modo que lo hace la física, la ingeniería o la economía, pero eso no las hace ser parte de las matemáticas. Es cierto que tienen una relación estrecha, pero la estadística y las matemáticas son disciplinas diferentes. 2. ¿CUÁLES SON LAS RAMAS DE LA ESTADÍSTICA? La estadística se divide en dos grandes áreas: estadística descriptiva y estadística inferencial, las cuales comprenden la estadística aplicada. Además de estas dos áreas, existe la estadística matemática, la cual comprende las bases teóricas de la estadística. ESTADÍSTICA DESCRIPTIVA La estadística descriptiva es la rama de la estadística que describe o resume de forma cuantitativa (medible) características de una colección de una recolección de información. Es decir, la estadística descriptiva se encarga de resumir una muestra estadística (conjunto de datos obtenidos de una población) en lugar de aprender sobre la población que representa la muestra.
  • 4. ESTADÍSTICA INFERENCIAL La estadística inferencial se diferencia de la estadística descriptiva principalmente por el uso de la inferencia y la inducción. Es decir, esta rama de la estadística busca deducir propiedades de una población estudiada, es decir, no solo recolecta y resume los datos, sino que busca explicar ciertas propiedades o características a partir de los datos obtenidos. En este sentido, la estadística inferencial implica obtener las conclusiones correctas de un análisis estadístico realizado mediante estadística descriptiva. 3. APLICACIONES DE LA ESTADÍSTICA: Existen muchas aplicaciones en los campos profesionales y prácticamente en todo campo se utiliza la estadística EN LA EDUCACIÓN La Estadística brinda herramientas insustituibles para comprender la dimensión macro estructural de la educación y sus vinculaciones con el sistema social global, con cierta independencia de los cambios inmediatos y mediatos que se buscan desde la función pública y privada. Todo esto. Induce a las conclusiones y toma de decisiones. Imagen 1. Estadísticas Fuente: Estadística aplicada en la educación
  • 5. EN LA CONTADURÍA La estadística ayuda a la contabilidad en el empleo de cálculos de tipo estadístico, permitiendo establecer registros contables que afectan los estados financieros. ● La estadística ayuda a la contabilidad en cuanto a su agilidad, procesamiento, análisis e interpretación de información, dando como resultado la toma de decisiones confiables sobre criterios económicos. ● La estadística se aplica para la selección de muestras en una auditoría. ● Ayuda a medir la variación de costos de una producción. ● Brinda información para la toma de decisiones, planeación y control en cuanto a sus resultados. ● Ayuda para poder diferenciar las ventas que se han realizado en la empresa por medio de la estadística anual. ● Se elaboran informes más rápido, concisos y detallados. ● Se basa de una gran variedad de información de datos contables. ● Permite comparar los resultados de una empresa en el pasado, con aquellos obtenidos en el presente. ● La estadística se ejerce dentro de la contabilidad llevando el nombre de “contabilidad administrativa”. Es indispensable la aplicación de la estadística en la administración, ya que proporciona elementos de confiabilidad que sustentan la toma de decisiones en temas administrativos, como calidad y productividad. EN LA ADMINISTRACIÓN En la actualidad en el marco de los criterios de la Administración de la calidad y de la productividad, así como en la aplicación de los sistemas de gestión de calidad orientados a la toma de decisiones es imprescindible la aplicación de la Estadística tanto descriptiva y en cierta medida la estadística inferencial, que a su vez proporcionan elementos de confiabilidad que científicamente sustenten la decisión tomada. Tener en cuenta que el objetivo de la estadística como disciplina es brindar soporte en: a) Planificación de la búsqueda y obtención de la información. b) Organizar y sistematizar la información para su descripción y análisis. c) A partir de la información organizada, efectuar inferencias a través de la estimación y contrastación de la hipótesis. El modelo de toma de decisión de un tema o problema específico requiere el soporte que proporciona la estadística, que involucra desde la toma de muestra propiamente hasta la corroboración de la decisión a un nivel de confiabilidad definido. La aplicación de la estadística es a todo ámbito y siempre va a requerir considerar una data muestral o poblacional de un determinado caso como por ejemplo; nivel de hemoglobina de
  • 6. 1000 pacientes damas de un hospital se encuentra en un rango definido y tiene tendencia a disminuir, que la variabilidad de pesos netos de galletas que produce la empresa X está en un rango de peso evitando generar pérdidas al productor y detrimento al consumidor, que los valores de venta diaria van en crecimiento en Y% en meses definido dentro de un negocio, o simplemente la curva de resultados de un examen de matemáticas básicas en un salón de clase fue en un rango específico pudiendo definir un pronóstico de nivel de aprobados final o de dificultad para subsiguientes evaluaciones La estadística descriptiva nos ofrece el detalle de las herramientas para definir elementos básicos en la toma de decisión como son la media, mediana, moda, desviación estándar y los diferentes diagramas de cajas, histogramas, tablas de contingencia y gráficas de dispersión entre otros. Que nos ayudará en la obtención, organización, presentación y descripción de la información numérica. Imagen 2. Ejemplo de estadísticas en la administración Fuente: La Importancia de la Estadística en la Administración EN LA GERONTOLOGÍA La gerontología es además el estudio del proceso de envejecimiento de los individuos y las poblaciones. A nivel individual desde una perspectiva integral se concibe el envejecimiento desde la concepción hasta la muerte, y debe considerar las dimensiones: biológica, psicológica, social, espiritual, cultural, económica, ecológica, recreativa, ocupacional o productiva, educativa, cognitiva, sexual, legal y sanitaria. A nivel poblacional corresponde al estudio de los diferentes grupos de edad según perfil demográfico, el perfil epidemiológico, los factores determinantes y de riesgo de la salud, las políticas públicas, entre otros.La gerontología tiene un doble objetivo:
  • 7. ● Desde un punto de vista cuantitativo, la prolongación de la vida (dar más años a la vida, retardar la muerte). ● Desde un punto de vista cualitativo, la mejora de la calidad de vida de las personas mayores (dar más vida a los años). La gerontología es un estudio multidisciplinar porque, como toda nueva área de conocimiento, se ha nutrido y nutre del conocimiento aportados por otras. Así, la biología, la sociología, la psicología, la antropología, la demografía, la educación y otros campos del saber vierten su cuota de participación para hacer de la gerontología una realidad como campo de conocimiento independiente: La gerontología incide en la calidad y condiciones de vida del anciano mediante el diseño, ejecución y seguimiento a políticas y programas destinados al beneficio de la población anciana. De esta forma suma vida a los años más que años a la vida; este último sería un objetivo de la geriatría. EN EL DEPORTE La contribución de la Estadística a la cientificidad del sistema de preparación del deportista se patentiza en aplicar modelos estadísticos que permitan, entre otros: obtener una información objetiva sobre la caracterización de los atletas en diferentes etapas de su preparación, obtener una información objetiva de la actuación de los atletas y del equipo frente a sus adversarios, más exactitud en el pronóstico del rendimiento deportivo, más eficiencia en la detección de talentos deportivos y un mayor rigor en el establecimiento de características modelo.Hacer de los tests elaborados o adaptados por los entrenadores de acuerdo a la especificidad de su deporte verdaderos instrumentos de recogida de información confiable para el perfeccionamiento del control del estado de preparación de los atletas y garantizar a la vez la correcta validación y normativas de los mismos.Utilizar nuevos sistemas metodológicos de preparación tras la comprobación estadística de su efectividad.Si no se tiene en cuenta lo que aporta la utilización de modelos estadísticos a la solución de muchos problemas en el deporte, los resultados en la preparación deportiva están más sujetos a la casualidad y no a la causalidad. Es importante apuntar que la actividad científica se desarrolla en el marco de diferentes paradigmas. Se concilian métodos propios de los enfoques cuantitativos con los propios de los enfoques cualitativos, lo que resulta válido para acceder de la mejor manera posible al conocimiento de la verdad. Por tanto, la Estadística es una herramienta de trabajo valiosa no solamente para la investigación cuantitativa, sino también para la investigación cualitativa la cual no está ausente en la esfera del deporte.
  • 8. EN LA ECONOMÍA En el caso de la Economía, la estadística es de gran importancia, pues la economía necesita de la Estadística, ya que esta constituye un instrumento de suma importancia para que se conozca el comportamiento de la economía a diferentes niveles ya sea en una empresa, municipio, provincia, nación, así como a escala internacional, el amplio campo de su aplicación permite incursionar en cada uno de los elementos que componen el complejo sistema socio-económico, así como investigar de una manera integral la relación entre sus principales variables. Es por esto que en el estudio de la economía la Estadística constituye un elemento de inestimable valor. Con la ayuda de la estadística se confeccionan los planes de desarrollo de la economía de un país, se supervisa el control de su cumplimiento y se determinan las necesidades de recursos por territorios, así como las reservas con que cuenta la economía a cualquier nivel. El conocimiento de la Estadística en la economía permite apoyar la toma de decisiones para la aplicación de la política económica que se proponen los países para conducir la sociedad, así como para trazar la estrategia de desarrollo acorde con los programas que se consideran según las condiciones imperantes en cada nación. La estadística es aplicada por economistas con el fin de poder predecir y comprender futuros Activar acontecimientos, a partir del análisis estadístico y matemático, de esta manera.poder sugerir medidas de políticas económicas conforme a objetivos deseados; ésta también suministra los valores que ayudan a descubrir interrelaciones entre múltiples parámetros macro y microeconómicos. EN LA HIPÓTESIS Prueba de hipótesis no es sólo para los medios de la población y las desviaciones estándar. Puede usar este procedimiento para probar diferentes tipos de proposiciones. Por ejemplo, un juicio por jurado puede ser visto como una prueba de hipótesis con una hipótesis nula de "inocente" y una hipótesis alternativa de "culpable". Como parte de la prueba, las muestras de monedas producidas a lo largo del año se han destinado para determinar si tienen el peso adecuado, el diámetro y la composición química. Las monedas se presentan a un jurado para la prueba. El juicio de Pyx puede ser visto como una prueba de hipótesis, donde las hipótesis nula y alternativa son los siguientes ● Hipótesis nula: Las monedas se ajustan a la requerida peso, diámetro, y composición. ● Hipótesis alternativa: las monedas no se ajustan al, peso, diámetro y composición requerida
  • 9. VARIABLE El conjunto de valores que constituyen un carácter estadístico se denomina variable estadística. En términos estrictos, se denomina variable estadística a todo carácter cuantitativo de un individuo, mientras que los caracteres cualitativos se suelen llamar atributos. Las variables estadísticas se clasifican en dos grandes grupos: Variables discretas, que toman únicamente valores puntuales. Por ejemplo, el número de hijos de una mujer es siempre un valor entero: 0, 1, 2, 3, ... Variables continuas, que pueden tomar cualquier valor dentro del conjunto de los números reales R o de un intervalo suyo. Ejemplos de variables continuas son las medidas antropomórficas de los recién nacidos, la altura de los ciudadanos de un determinado colectivo, la medición de temperaturas, etcétera. Se llama recorrido de una variable a la máxima diferencia que existe entre sus valores. Imagen 3. Caracteres Fuente. Las variables estadísticas DATO Son números que representan las modalidades de las variables. Por ejemplo, el 1 puede representar la modalidad "Mujer", el 6.3 representa una de las magnitudes que podemos registrar en la variable "grado de conocimiento de las técnicas estadísticas". Los datos pueden ser clasificados según diferentes criterios, uno de los cuales se basa en las modalidades que presentan: Se dirá que son datos dicotómicos los que provienen de variables que solo admiten dos modalidades (por ejemplo la variable "género"), son datos dicotomizados aquellos que presentan dos categorías pero provienen de variables con más de dos modalidades (por ejemplo datos con valores 1 y 0 que representan aprobado y suspenso). Imagen 4. Ejemplos de los datos
  • 10. Fuente. Datos en la estadística POBLACIÓN Una población estadística es un conjunto de sujetos o elementos que presentan características comunes. Sobre esta población se realiza el estudio estadístico con el fin de sacar conclusiones. Imagen de una población estadística con todos los individuos El tamaño poblacional es el número de individuos que constituyen la población. Según el número de sujetos, el tamaño puede ser finito o infinito. Los conjuntos infinitos son algo artificial o conceptual, ya que toda población de entidades físicas es finita. Por ejemplo: Imagen 5. Ejemplo de población
  • 11. Fuente: Población en la estadística ● Población finita: el conjunto de habitantes de una ciudad, los bolígrafos producidos en una fábrica en un día, etc. ● Población infinita: el conjunto de los números positivos. Cuando la población es muy grande, normalmente es imposible estudiar a todos los individuos. Supongamos que queremos saber cual es el nivel de colesterol de la población de Estados Unidos. Por cuestiones económicas y de tiempo obvias, no está al alcance realizar un análisis de sangre a toda la población de EEUU. Para solucionar este impedimento, se utiliza una muestra estadística. MUESTRA La muestra estadística consiste en la porción que se extrae de una población estadística para un determinado estudio, con el fin de representar, conocer y determinar los aspectos de dicha población. Este método se utiliza cuando no se puede aplicar un censo en ciertas poblaciones, ya que a través del muestreo se puede establecer una porción de la realidad a estudiar. Imagen 6. Tipos de muestra
  • 12. Fuente. La muestra en la estadística NIVEL DE MEDICIÓN NOMINAL Una escala nominal es una escala de medición en la cual los números sirven como “etiquetas” solamente para identificar o clasificar un objeto. Una escala de medición nominal normalmente se trata sólo con variables no numéricas (no cuantitativas). Por ejemplo, supongamos que se realiza esta pregunta: “¿Podrías seleccionar el grado de incomodidad de tu enfermedad?” Las opciones de respuesta utilizadas para este tipo de escala serían: 1. Leve 2. Moderado 3. Severo En este ejemplo en particular, 1 = leve, 2 = Moderado y 3 = Severo. Aquí los números simplemente son utilizados como etiquetas y no tienen ni un solo valor.
  • 13. Existen cuatro niveles de medición: la escala nominal, la escala ordinal, la escala de intervalo y la escala de razón. Estas escalas de medición sirven para categorizar diferentes variables (un elemento, característica o factor que es probable que varíe). 4. DISTRIBUCIÓN DE FRECUENCIAS Las distribuciones de frecuencias son tablas en que se dispone las modalidades de la variable por filas. En las columnas se dispone el número de ocurrencias por cada valor, porcentajes, etc. La finalidad de las agrupaciones en frecuencias es facilitar la obtención de la información que contienen los datos. Ejemplo: Quieren conocer si un grupo de individuos está a favor o en contra de la exhibición de imágenes violentas por televisión, para lo cual han recogido los siguientes datos: Imagen 7. Ejemplo de la distribución de frecuencias Fuente. Distribución de Frecuencias 4.1 NOMBREDE LA VARIABLE Una variable es un espacio de la memoria del ordenador a la que asignamos un contenido que puede ser un valor numérico (sólo números, con su valor de cálculo) o alfanumérico (sólo texto o texto con números). Cada variable tiene un único nombre el cual no puede ser cambiado. Dos o más variables pueden tener el mismo contenido, pero no el mismo nombre. El nombre de una variable comenzará siempre por una letra, pudiendo contener a continuación tanto letras como números. Las letras pueden ser tanto mayúsculas como minúsculas. No se admiten nombres de variables incluyendo espacios en blanco ni símbolos especiales como guiones, puntos, comas,
  • 14. comillas, etc. ni símbolos matemáticos ni palabras clave (que veremos más adelante, y que incluyen “inicio”, “fin”, “verdadero”, “falso”,“entonces”...). El nombre de una variable será lo suficientemente largo como para impedir que pueda confundirse con otra variable por tener nombre similar, así como para aportar una indicación de cuál es el contenido o función que cumple. 4.2 FRECUENCIA ABSOLUTA La frecuencia absoluta es una medida estadística que nos da información acerca de la cantidad de veces que se repite un suceso al realizar un número determinado de experimentos aleatorios. Esta medida se representa mediante las letras fi. La letra f se refiere a la palabra frecuencia y la letra i se refiere a la realización i-ésima del experimento aleatorio. La frecuencia absoluta es muy utilizada en estadística descriptiva y es útil para saber acerca de las características de una población y/o muestra. Esta medida se puede utilizar con variables cualitativas o cuantitativas siempre que estas se puedan ordenar. La frecuencia absoluta se puede usar para variables discretas (las variables se ordenan de menor a mayor) y para variables continuas (las variables se ordenan de menor a mayor agrupadas por intervalos). La frecuencia absoluta se utiliza para calcular la frecuencia relativa. 4.3 FRECUENCIA RELATIVA PORCENTUAL La frecuencia relativa porcentual es el porcentaje de la frecuencia relativa, siendo esta la división de la frecuencia absoluta entre el total de valores en una selección de datos. La frecuencia relativa es muy usada en probabilidad, y hace referencia a la relación de una frecuencia absoluta entre un total. Este valor valor de frecuencia relativa porcentual representa la posibilidad sobre 100% de encontrar este número en una serie de datos, es por esta razón que es una relación de frecuencias. Mira algunos ejemplos en la imagen adjunta. Tenemos el término x = 3, tiene una frecuencia absoluta de 2 y el total de dígitos es 30, entonces:
  • 15. fr = (2/30)· 100% fr = 7% Siendo la frecuencia relativa porcentual del 7%. 4.4 EQUIVALENCIA EN GRADOS Los grados en una tabla de frecuencias: son iguales al número de muestras independientes que son libres de modificar, por ejemplo el número de personas en unos datos, menos el número de parámetros estimados (el número de 1,9,10 relaciones impuestas a los datos). Es decir, están relacionados al tamaño de la muestra. Estos son utilizados para definir las distribuciones estadísticas y con ellos poder realizar las pruebas de hipótesis. Por ejemplo, si se tiene un rango estadístico de edades [20 años -25 años) El Grado se calcula= (25-1) + (28-1) = 51 5. MAPA CONCEPTUAL
  • 16. 6. CONCLUSIONES Llegamos a la conclusión de que la estadística es una disciplina científica que se ocupa de la obtención, orden y análisis de un conjunto de datos con el fin de obtener explicaciones y predicciones sobre fenómenos observados.La estadística se divide en dos grandes áreas: estadística descriptiva y estadística inferencial, las cuales comprenden la estadística aplicada. Además de estas dos áreas, existe la estadística matemática, la cual comprende las bases teóricas de la estadística. ESTADÍSTICA INFERENCIAL La estadística inferencial se diferencia de la estadística descriptiva principalmente por el uso de la inferencia y la inducción. EN LA GERONTOLOGÍA La gerontología es además el estudio del proceso de envejecimiento de los individuos y las poblaciones. DATO Son números que representan las modalidades de las variables. Por ejemplo, el 1 puede representar la modalidad «Mujer», el 6.3 representa una de las magnitudes que podemos registrar en la variable «grado de conocimiento de las técnicas estadísticas». El tamaño poblacional es el número de individuos que constituyen la población. EN LA ECONOMÍA En el caso de la Economía, la estadística es de gran importancia, pues la economía necesita de la Estadística, ya que esta constituye un instrumento de suma importancia para que se conozca el comportamiento de la economía a diferentes niveles ya sea en una empresa, municipio, provincia, nación, así como a escala internacional, el amplio campo de su aplicación permite incursionar en cada uno de los elementos que componen el complejo sistema socio-económico, así como investigar de una manera integral la relación entre sus principales variables. EN LA HIPÓTESIS Prueba de hipótesis no es sólo para los medios de la población y las desviaciones estándar. Puede usar este procedimiento para probar diferentes tipos de proposiciones. VARIABLE El conjunto de valores que constituyen un carácter estadístico se denomina variable estadística.Las variables estadísticas se clasifican en dos grandes grupos Variables discretas, que toman únicamente valores puntuales. Por ejemplo, el número de hijos de una mujer es siempre un valor entero: 0, 1, 2, 3, ...
  • 17. 7. REFERENCIAS (17 de abril 2017). recuperado de http://www.eloriente.net/home/2017/04/17/educacion-uso-estadisticas-aula-diego- gonzalez- algara/#:~:text=Esencialmente%2C%20la%20toma%20de%20decisiones,recursos%2 C%20los%20procesos%20y%20los (1980). recuperado de https://www.cimat.mx/es/node/798#:~:text=Los%20m%C3%A9todos%20esta d%C3%ADsticos%20son%20procedimientos,causalidad%20en%20un%20de terminado%20fen%C3%B3meno. Roldan, P. (31 de julio, 2017). Estadística. recuperado de https://economipedia.com/definiciones/estadistica.html González, S. H. (Mayo-agosto de 2005). Historia de la estadística. recuperado de https://sites.google.com/site/historiadelaestadisticaacti/home Glenday, Craig; Fall, Stephen, eds. (2013). «Introducción. Hasta el límite.». Guinness World Records 2013 (Alberto Delgado; Olga Marín; Daniel Montsech; Nioelia Palacios y Roser Soms, trads.). España. p. 2b. ISBN 9788408008651. Mero Vélez, Alexandra (2014). «Acción del trabajador social y su impacto en los adultos mayores en condición de abandono en el Hospital Rafael Rodríguez Zambrano de Manta en el periodo 2013-2014.». Tesis. Consultado el 5 de junio de 2020. Lau, Norma. (1999). Significado y Práctica del Autocuidado Integral y Holístico en Personas Adultas Mayores de Barva de Heredia. Costa Rica: Maestría de Gerontología-Universidad de Costa Rica Mesa Anoceto,Magda (2001) Asesoría Estadística con enfoque procesual en la Investigación Científica aplicada al Deporte. Tesis de grado (Doctor en Ciencias de la Cultura Física) La Habana,ISCF “Manuel Fajardo”. http://ceidis.uds.edu.ve/blogRedDocente/raquelrodriguez/?p=110#:~:text=La%20cont ribuci%C3%B3n%20de%20la%20Estad%C3%ADstica,una%20informaci%C3%B3n %20objetiva%20de%20la https://es.scribd.com/document/282916871/Aplicaciones-de-La-Estadistica-en-La- Economia Galli, L. Los grados en una tabla de frecuencia. recuperado de https://brainly.lat/tarea/6628501#:~:text=Los%20grados%20en%20una%20tabla%20
  • 18. de%20frecuencias%3A%20son%20iguales%20al,al%20tama%C3%B1o%20de%20la %20muestra. BLOGS Melissa Fory- https://haciendojsjkaj.blogspot.com/p/3-periodo.html Isabella Viafara- https://isabellaviafara73.blogspot.com/ Brianna Parra- https://tecnologialibrepos.blogspot.com/ Juan Buitrago-https://blogdetecnologia0411.blogspot.com/p/2-periodo.html Daniel Plaza- https://daniel059.blogspot.com/ Laura Soto- https://lcamilasoto22.blogspot.com/