SlideShare uma empresa Scribd logo
Probabilidade

Distribuição Normal
Distribuição Normal

 Uma variável aleatória contínua tem uma

 distribuição normal se sua distribuição é:

   simétrica

   apresenta (num gráfico) forma de um sino
Função Densidade da
Distribuição Normal




                                 1 ⎛ x −μ ⎞ 2
                                − ⎜       ⎟
                                 2⎝ σ ⎠
                                e
                      f (x) =
                                σ 2π
Distribuição Normal

 Quando uma distribuição é contínua, o gráfico
 de distribuição é uma linha contínua
 Não se visualiza as barras de um histograma,
 mas freqüências de ocorrências de cada valor
 de x em intervalos infinitesimais
 Forma uma Curva de Densidade de
 Probabilidade (função pdf – Probability Density
 Function)
Função Densidade da
     Distribuição Normal
A função densidade da normal (e de qualquer outra
variável aleatória contínua) pode ser compreendida
como uma extensão natural de um histograma

                                    A probabilidade é a
+∞
                                    área sob a curva de
 ∫ P( x)dx = 1
−∞
                                    densidade. Portanto,
                                    para qualquer P(x):
 0 ≤ P (x) ≤ 1                            P ( x) ≥ 0
Distribuição Normal

Note que a distribuição normal é especificada por dois
parâmetros:
μ representa a média populacional, e
σ representa o desvio-padrão populacional

                                   1 ⎛ x−μ   ⎞2
                                  − ⎜        ⎟
                                   2⎝ σ      ⎠
                              e
                   f ( x) =
                              σ 2π
Distribuição normal
Distribuição normal
Distribuição Normal Padronizada

 Cada par de parâmetros (μ, σ) define uma distribuição
 normal distinta!
 A figura mostra as curvas de densidade para alturas de
 mulheres e homens adultos nos EUA
Distribuição Normal Padronizada

        A distribuição normal padronizada tem
        média e desvio padrão iguais a:

               μ =0              σ =1
A distribuição normal padronizada facilita os cálculos de
probabilidade, evitando o uso da fórmula e projetando
qualquer análise mediante utilização de ESCORES (Z)
                               x −μ
                        z =
                                  σ
Distribuição Normal Padronizada
Se x é uma observação de uma distribuição que tem
média μ e desvio-padrão σ, o valor padronizado de x
é

                      x −μ
                z =
                         σ
Note que o valor padronizado representa o número de
desvios-padrão pelo qual um valor x dista da média
(para mais ou para menos)
Distribuição Normal Padronizada

Ou seja, como a distribuição normal padronizada é
aquela que tem média 0 e desvio-padrão 1, ou seja N(0,
1)

Se uma variável aleatória x tem distribuição normal
qualquer N(μ, σ), então a variável padronizada
                                x −μ
                          z =
                                 σ
tem distribuição normal
Distribuição normal
Exemplo

 Um professor de cálculo aplica dois testes
 diferentes a duas turmas do seu curso. Os
 resultados foram:
    Turma 1:   média = 75   desvio = 14
    Turma 2:   média = 40   desvio = 8


 Que nota é relativamente melhor: 82 na turma
 1, ou 46 na turma 2?
Distribuição Normal Padronizada

A estimativa de probabilidades associadas a variáveis
aleatórias contínuas envolve o cálculo de áreas sob a
curva da densidade.

O uso da distribuição normal padronizada nos permite
calcular áreas sob a curva de uma distribuição normal
qualquer, pois as áreas associadas com a normal
padronizadas são tabeladas.

A Tabela A-2 será usada para os cálculos de
probabilidade envolvendo distribuições normais.
Exemplo

Uma empresa fabrica termômetros que devem acusar a leitura de 0 °C
no ponto de congelamento da água. Testes feitos em uma grande
amostra desses termômetros revelaram que alguns acusavam valores
inferiores a 0 °C e alguns acusavam valores superiores.

Supondo que a leitura média seja 0°C e que o desvio-padrão das
leituras seja 1,00 °C, qual a probabilidade de que, no ponto de
congelamento, um termômetro escolhido aleatoriamente marque entre
0 e 1,58 °C ?

Admita que a freqüência de erros se assemelhe a uma distribuição
normal.
Exemplo

 A distribuição de probabilidade das leituras é uma
 normal padronizada porque as leituras têm μ = 0 e
 σ = 1.
 A área da região sombreada, delimitada pela média 0 e
 pelo número positivo z, pode ser lida na Tabela A-2
Distribuição Normal
    Padronizada
                    EXEMPLO
Portanto, a probabilidade de se escolher aleatoriamente um
termômetro com erro entre 0 e 1,58 °C é 44,29 %


Outra maneira de interpretar este resultado é concluir que
44,29% dos termômetros terão erros entre 0 e 1,58 °C
Distribuição Normal
Padronizada
               EXEMPLO

 Com os termômetros do exemplo anterior,
 determine a probabilidade de se selecionar
 aleatoriamente um termômetro que acuse (no
 ponto de congelamento da água), uma leitura
 entre -2,43 °C e 0 °C?
Distribuição Normal
Padronizada
 Estamos interessados na região sombreada da Figura
 (a), mas a Tabela A-2 se aplica apenas a regiões à
 direita da média (0), como a da Figura (b)
 Podemos ver que ambas as áreas são idênticas porque
 a curva de densidade é simétrica !
Distribuição Normal
  Padronizada
                 EXEMPLO
Portanto, a probabilidade de se escolher
aleatoriamente um termômetro com erro entre -
2,43°C e 0°C é 49,25 %


Em outras palavras, 49,25% dos termômetros terão
erros entre -2,43 °C e 0 °C
Distribuição Normal
Padronizada
                   EXEMPLO

 Mais uma vez, faremos uma escolha aleatória da
 mesma amostra de termômetros.

 Qual a probabilidade de que o termômetro escolhido
 acuse (no ponto de congelamento da água), uma leitura
 superior a +1,27 °C ?
Distribuição Normal
Padronizada
 A probabilidade de escolher um termômetro que acuse
 leitura superior a 1,27 °C corresponde à área
 sombreada da figura
 Se a área total sob a curva da densidade é igual a 1, a
 área à direita de zero vale metade, isto é, 0,5. Assim,
 podemos calcular facilmente a área sombreada !
Distribuição Normal
   Padronizada
                 EXEMPLO
Podemos concluir que há uma probabilidade de
10,20% de escolher aleatoriamente um termômetro
com leitura superior a +1,27 °C.

Podemos dizer, ainda, que, em um grande lote de
termômetros escolhidos aleatoriamente e testados,
10,20% deles acusarão leitura superior a +1,27 °C
Distribuição Normal
Padronizada
                   EXEMPLO

 De novo, faremos uma escolha aleatória da mesma
 amostra de termômetros.

 Qual a probabilidade de que o termômetro escolhido
 acuse (no ponto de congelamento da água), uma leitura
 entre 1,20 e 2,30 °C ?
Distribuição Normal
Padronizada
 A probabilidade de escolher um termômetro que acuse leitura
 entre 1,20 e 2,30 °C corresponde à área ombreada da figura
 É fácil perceber que podemos calcular esta área, subtraindo-
 se a área de 0 até o maior valor (2,30), da área de 0 até o
 menor valor (1,20), que são lidas na Tabela A-2 !
Distribuição Normal
   Padronizada
Dos exemplos anteriores, podemos expressar as probabilidades
calculadas com a notação seguinte:

P (a < z < b)     denota a probabilidade de o valor
                  de z estar entre a e b


P (z > a)         denota a probabilidade de o valor
                  de z ser maior do que a


P (z < a)         denota a probabilidade de o valor
                  de z ser menor do que a
As figuras abaixo ajudam na interpretação das expressões mais
comuns no cálculo de probabilidades:
Distribuição Normal Não
  Padronizada
Os exemplos feitos com o termômetro não são muito
realistas porque a maioria das populações distribuídas
normalmente têm média diferente de 0, desvio diferente
de 1, ou ambos.
Como proceder, então, para calcular probabilidades
de distribuições normais não-padronizadas ?
Distribuição Normal Não
     Padronizada
A idéia é utilizar a fórmula dos valores padronizados e
TRANSFORMAR qualquer distribuição normal dada na
normal padronizada, como mostrado abaixo.
Distribuição Normal Não
      Padronizada
                        EXEMPLO
As alturas das mulheres americanas segue uma distribuição
normal com média de 63,6” e desvio-padrão de 2,5”.

Selecionada uma mulher americana ao acaso, qual                   a
probabilidade da sua altura estar entre 63,6 e 68,6 polegadas ?
Distribuição Normal Não
  Padronizada
Devemos proceder da maneira descrita a
seguir:
  Trace uma curva normal, assinale a média e outros valores de
  interesse, e sombreie a região que representa a probabilidade desejada
  Para cada valor x da fronteira da região sombreada, aplique a fórmula
  para achar o valor padronizado z
  Utilize a Tabela A-2 para
  achar a área da região sombreada
Distribuição Normal Não
Padronizada
               EXEMPLO
 Há, portanto, uma probabilidade de 0,4772 de
 escolher uma mulher com altura entre 63,6 pol.
 e 68,6 pol. Usando a notação, teríamos:
   P (63,6 < x < 68,6) = P (0 < z < 2,00) =
   47,72%
 Outra forma de interpretar este resultado
 consiste em concluir que 47,72% das mulheres
 americanas têm altura entre 63,6 pol. e 68,6
 pol.
Regra 68-95-99,7
   Numa distribuição normal N(μ, σ) ou N(x, s)
Distribuição normal
Distribuição normal
Distribuição normal

Mais conteúdo relacionado

PPTX
Testes parametricos e nao parametricos
PDF
Conceitos Básicos de Estatística I
PDF
Formulario estatistica descritiva univariada e bivariava 2013
PDF
Medidas de tendencia central
PDF
Distribuição Normal
Testes parametricos e nao parametricos
Conceitos Básicos de Estatística I
Formulario estatistica descritiva univariada e bivariava 2013
Medidas de tendencia central
Distribuição Normal

Mais procurados (20)

PPTX
Distribuição de frequencia
PDF
Aula 13 teste de hipóteses
PPTX
Curvas de nível
PPT
Coordenadas cartesianas
ODP
Aula 01: Conceitos básicos de Estatística
DOC
Análise de correlação
PPT
PDF
12 correlação e regressão
PPTX
Estatística e Probabilidade 7 - Medidas de Variabilidade
PDF
amostragem
PDF
Exercícios Resolvidos: Equação da reta tangente
PDF
Estatistica aplicada exercicios resolvidos manual tecnico formando
PPT
Moda, Média e Mediana
PPTX
Teste de hipóteses - paramétricos
PDF
Resolução comentada matemática 002
PDF
Probabilidade e estatística - Variáveis Aleatórias
PPT
Bioestatística
PDF
Sucessões: Exercícios Resolvidos
Distribuição de frequencia
Aula 13 teste de hipóteses
Curvas de nível
Coordenadas cartesianas
Aula 01: Conceitos básicos de Estatística
Análise de correlação
12 correlação e regressão
Estatística e Probabilidade 7 - Medidas de Variabilidade
amostragem
Exercícios Resolvidos: Equação da reta tangente
Estatistica aplicada exercicios resolvidos manual tecnico formando
Moda, Média e Mediana
Teste de hipóteses - paramétricos
Resolução comentada matemática 002
Probabilidade e estatística - Variáveis Aleatórias
Bioestatística
Sucessões: Exercícios Resolvidos
Anúncio

Semelhante a Distribuição normal (20)

PDF
Distribuição normal
PDF
Distribuiçâo de probabilidade Normal.pdf
PPT
Doc estatistica _687118434
PDF
Estatística distribuição normal (aula 2)
DOCX
A distribuição normal
PPT
Distribuições Contínuas de Probabilidade
PDF
Distribuicao de probabilidades
PPT
Resumo/ exer sobre a Distribuição normal
PDF
Distribuicao continua
PPT
Cap4 - Parte 7 - Distribuição Normal
PDF
CCE1429_aula09.pdf
PDF
Aula02pdf
PDF
dist_norm_slides.pdf
PDF
Distribuicao continua
PDF
Estastítica Inferencial
PPTX
Aula - distribuições contínuas e discretas de probabilidade.pptx
PPTX
Estatística - Aula 21 - Distribuição Normal.pptx
Distribuição normal
Distribuiçâo de probabilidade Normal.pdf
Doc estatistica _687118434
Estatística distribuição normal (aula 2)
A distribuição normal
Distribuições Contínuas de Probabilidade
Distribuicao de probabilidades
Resumo/ exer sobre a Distribuição normal
Distribuicao continua
Cap4 - Parte 7 - Distribuição Normal
CCE1429_aula09.pdf
Aula02pdf
dist_norm_slides.pdf
Distribuicao continua
Estastítica Inferencial
Aula - distribuições contínuas e discretas de probabilidade.pptx
Estatística - Aula 21 - Distribuição Normal.pptx
Anúncio

Último (20)

PPT
História e Evolução dos Computadores domésticos
PPTX
TREINAMENTO DE INSPETOR DE ANDAIMES.pptx
PPT
aula de envelecimento.ppt saúde do idoso
PDF
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...
PPTX
biossegurança e segurança no trabalho (6).pptx
PPTX
norma regulamentadora numero vinte nr 20
PDF
FLUXOGRAMA CLASSE lll - Acesso estritamente proximal.pdf
PPTX
GUERRAFRIA.pptdddddddddddddddddddddddddx
PPTX
16. MODERNISMO - PRIMEIRA GERAÇÃO - EDIÇÃO 2021 (1).pptx
PPTX
Noções de Saúde e Segurança do Trabalho.pptx
PDF
Organizador Curricular da Educação em Tempo Integral.pdf
PDF
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
PDF
A Revolução Francesa de 1789 slides história
PPTX
brasilcolnia2-101027184359-phpapp02.pptx
PDF
manual-orientacao-asb_5a8d6d8d87160aa636f63a5d0.pdf
PPTX
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.
PPT
sistema reprodutor para turmas do oitavo ano
PDF
O retorno a origem (islã Islamismo)
PPTX
Realismo e Naturalismo: Aluísio Azevedo.
PDF
Células Introdução para as aulas de EJA.
História e Evolução dos Computadores domésticos
TREINAMENTO DE INSPETOR DE ANDAIMES.pptx
aula de envelecimento.ppt saúde do idoso
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...
biossegurança e segurança no trabalho (6).pptx
norma regulamentadora numero vinte nr 20
FLUXOGRAMA CLASSE lll - Acesso estritamente proximal.pdf
GUERRAFRIA.pptdddddddddddddddddddddddddx
16. MODERNISMO - PRIMEIRA GERAÇÃO - EDIÇÃO 2021 (1).pptx
Noções de Saúde e Segurança do Trabalho.pptx
Organizador Curricular da Educação em Tempo Integral.pdf
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
A Revolução Francesa de 1789 slides história
brasilcolnia2-101027184359-phpapp02.pptx
manual-orientacao-asb_5a8d6d8d87160aa636f63a5d0.pdf
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.
sistema reprodutor para turmas do oitavo ano
O retorno a origem (islã Islamismo)
Realismo e Naturalismo: Aluísio Azevedo.
Células Introdução para as aulas de EJA.

Distribuição normal

  • 2. Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino
  • 3. Função Densidade da Distribuição Normal 1 ⎛ x −μ ⎞ 2 − ⎜ ⎟ 2⎝ σ ⎠ e f (x) = σ 2π
  • 4. Distribuição Normal Quando uma distribuição é contínua, o gráfico de distribuição é uma linha contínua Não se visualiza as barras de um histograma, mas freqüências de ocorrências de cada valor de x em intervalos infinitesimais Forma uma Curva de Densidade de Probabilidade (função pdf – Probability Density Function)
  • 5. Função Densidade da Distribuição Normal A função densidade da normal (e de qualquer outra variável aleatória contínua) pode ser compreendida como uma extensão natural de um histograma A probabilidade é a +∞ área sob a curva de ∫ P( x)dx = 1 −∞ densidade. Portanto, para qualquer P(x): 0 ≤ P (x) ≤ 1 P ( x) ≥ 0
  • 6. Distribuição Normal Note que a distribuição normal é especificada por dois parâmetros: μ representa a média populacional, e σ representa o desvio-padrão populacional 1 ⎛ x−μ ⎞2 − ⎜ ⎟ 2⎝ σ ⎠ e f ( x) = σ 2π
  • 9. Distribuição Normal Padronizada Cada par de parâmetros (μ, σ) define uma distribuição normal distinta! A figura mostra as curvas de densidade para alturas de mulheres e homens adultos nos EUA
  • 10. Distribuição Normal Padronizada A distribuição normal padronizada tem média e desvio padrão iguais a: μ =0 σ =1 A distribuição normal padronizada facilita os cálculos de probabilidade, evitando o uso da fórmula e projetando qualquer análise mediante utilização de ESCORES (Z) x −μ z = σ
  • 11. Distribuição Normal Padronizada Se x é uma observação de uma distribuição que tem média μ e desvio-padrão σ, o valor padronizado de x é x −μ z = σ Note que o valor padronizado representa o número de desvios-padrão pelo qual um valor x dista da média (para mais ou para menos)
  • 12. Distribuição Normal Padronizada Ou seja, como a distribuição normal padronizada é aquela que tem média 0 e desvio-padrão 1, ou seja N(0, 1) Se uma variável aleatória x tem distribuição normal qualquer N(μ, σ), então a variável padronizada x −μ z = σ tem distribuição normal
  • 14. Exemplo Um professor de cálculo aplica dois testes diferentes a duas turmas do seu curso. Os resultados foram: Turma 1: média = 75 desvio = 14 Turma 2: média = 40 desvio = 8 Que nota é relativamente melhor: 82 na turma 1, ou 46 na turma 2?
  • 15. Distribuição Normal Padronizada A estimativa de probabilidades associadas a variáveis aleatórias contínuas envolve o cálculo de áreas sob a curva da densidade. O uso da distribuição normal padronizada nos permite calcular áreas sob a curva de uma distribuição normal qualquer, pois as áreas associadas com a normal padronizadas são tabeladas. A Tabela A-2 será usada para os cálculos de probabilidade envolvendo distribuições normais.
  • 16. Exemplo Uma empresa fabrica termômetros que devem acusar a leitura de 0 °C no ponto de congelamento da água. Testes feitos em uma grande amostra desses termômetros revelaram que alguns acusavam valores inferiores a 0 °C e alguns acusavam valores superiores. Supondo que a leitura média seja 0°C e que o desvio-padrão das leituras seja 1,00 °C, qual a probabilidade de que, no ponto de congelamento, um termômetro escolhido aleatoriamente marque entre 0 e 1,58 °C ? Admita que a freqüência de erros se assemelhe a uma distribuição normal.
  • 17. Exemplo A distribuição de probabilidade das leituras é uma normal padronizada porque as leituras têm μ = 0 e σ = 1. A área da região sombreada, delimitada pela média 0 e pelo número positivo z, pode ser lida na Tabela A-2
  • 18. Distribuição Normal Padronizada EXEMPLO Portanto, a probabilidade de se escolher aleatoriamente um termômetro com erro entre 0 e 1,58 °C é 44,29 % Outra maneira de interpretar este resultado é concluir que 44,29% dos termômetros terão erros entre 0 e 1,58 °C
  • 19. Distribuição Normal Padronizada EXEMPLO Com os termômetros do exemplo anterior, determine a probabilidade de se selecionar aleatoriamente um termômetro que acuse (no ponto de congelamento da água), uma leitura entre -2,43 °C e 0 °C?
  • 20. Distribuição Normal Padronizada Estamos interessados na região sombreada da Figura (a), mas a Tabela A-2 se aplica apenas a regiões à direita da média (0), como a da Figura (b) Podemos ver que ambas as áreas são idênticas porque a curva de densidade é simétrica !
  • 21. Distribuição Normal Padronizada EXEMPLO Portanto, a probabilidade de se escolher aleatoriamente um termômetro com erro entre - 2,43°C e 0°C é 49,25 % Em outras palavras, 49,25% dos termômetros terão erros entre -2,43 °C e 0 °C
  • 22. Distribuição Normal Padronizada EXEMPLO Mais uma vez, faremos uma escolha aleatória da mesma amostra de termômetros. Qual a probabilidade de que o termômetro escolhido acuse (no ponto de congelamento da água), uma leitura superior a +1,27 °C ?
  • 23. Distribuição Normal Padronizada A probabilidade de escolher um termômetro que acuse leitura superior a 1,27 °C corresponde à área sombreada da figura Se a área total sob a curva da densidade é igual a 1, a área à direita de zero vale metade, isto é, 0,5. Assim, podemos calcular facilmente a área sombreada !
  • 24. Distribuição Normal Padronizada EXEMPLO Podemos concluir que há uma probabilidade de 10,20% de escolher aleatoriamente um termômetro com leitura superior a +1,27 °C. Podemos dizer, ainda, que, em um grande lote de termômetros escolhidos aleatoriamente e testados, 10,20% deles acusarão leitura superior a +1,27 °C
  • 25. Distribuição Normal Padronizada EXEMPLO De novo, faremos uma escolha aleatória da mesma amostra de termômetros. Qual a probabilidade de que o termômetro escolhido acuse (no ponto de congelamento da água), uma leitura entre 1,20 e 2,30 °C ?
  • 26. Distribuição Normal Padronizada A probabilidade de escolher um termômetro que acuse leitura entre 1,20 e 2,30 °C corresponde à área ombreada da figura É fácil perceber que podemos calcular esta área, subtraindo- se a área de 0 até o maior valor (2,30), da área de 0 até o menor valor (1,20), que são lidas na Tabela A-2 !
  • 27. Distribuição Normal Padronizada Dos exemplos anteriores, podemos expressar as probabilidades calculadas com a notação seguinte: P (a < z < b) denota a probabilidade de o valor de z estar entre a e b P (z > a) denota a probabilidade de o valor de z ser maior do que a P (z < a) denota a probabilidade de o valor de z ser menor do que a
  • 28. As figuras abaixo ajudam na interpretação das expressões mais comuns no cálculo de probabilidades:
  • 29. Distribuição Normal Não Padronizada Os exemplos feitos com o termômetro não são muito realistas porque a maioria das populações distribuídas normalmente têm média diferente de 0, desvio diferente de 1, ou ambos. Como proceder, então, para calcular probabilidades de distribuições normais não-padronizadas ?
  • 30. Distribuição Normal Não Padronizada A idéia é utilizar a fórmula dos valores padronizados e TRANSFORMAR qualquer distribuição normal dada na normal padronizada, como mostrado abaixo.
  • 31. Distribuição Normal Não Padronizada EXEMPLO As alturas das mulheres americanas segue uma distribuição normal com média de 63,6” e desvio-padrão de 2,5”. Selecionada uma mulher americana ao acaso, qual a probabilidade da sua altura estar entre 63,6 e 68,6 polegadas ?
  • 32. Distribuição Normal Não Padronizada Devemos proceder da maneira descrita a seguir: Trace uma curva normal, assinale a média e outros valores de interesse, e sombreie a região que representa a probabilidade desejada Para cada valor x da fronteira da região sombreada, aplique a fórmula para achar o valor padronizado z Utilize a Tabela A-2 para achar a área da região sombreada
  • 33. Distribuição Normal Não Padronizada EXEMPLO Há, portanto, uma probabilidade de 0,4772 de escolher uma mulher com altura entre 63,6 pol. e 68,6 pol. Usando a notação, teríamos: P (63,6 < x < 68,6) = P (0 < z < 2,00) = 47,72% Outra forma de interpretar este resultado consiste em concluir que 47,72% das mulheres americanas têm altura entre 63,6 pol. e 68,6 pol.
  • 34. Regra 68-95-99,7 Numa distribuição normal N(μ, σ) ou N(x, s)