SlideShare uma empresa Scribd logo
MATEMÁTICA
Ensino Médio, 1º Ano
Função: conceito
Matemática, 1º Ano, Função: conceito
Um pouco da história
O conceito de função, presente nos mais diversos
ramos da ciência, teve sua origem na tentativa de
filósofos e cientistas em compreender a realidade e
encontrar métodos que permitissem estudar e
descrever os fenômenos naturais. Ao longo da
História vários matemáticos contribuíram para que
se chegasse ao conceito atual de função.
Ao matemático alemão Leibniz (1646-1716) atribui-
se a denominação função que usamos hoje.
A representação de uma função pela notação (x)
(lê-se:  de x) foi atribuída ao matemático suíço
Euler (1707-1783), no século XVII.
O Matemático alemão Dirichlet (1805-1859)
escreveu uma primeira definição de função muito
semelhante àquela que usamos atualmente.
Imagem : Christoph Bernhard
Francke / Portrait of Gottfried Leibniz, c.
1700 / Herzog-Anton-Ulrich-Museum,
Braunschweig / Public Domain.
Matemática, 1º Ano, Função: conceito
Aplicação do conceito
O conceito de função é um dos mais importantes
da Matemática e ocupa lugar em destaque em
vários de seus ramos, bem como em outras áreas
do conhecimento. É muito comum e conveniente
expressar fenômenos físicos, biológicos, sociais,
etc. por meio de funções.
Matemática, 1º Ano, Função: conceito
A noção intuitiva de função
Situação 1
João vai escolher um plano de saúde entre duas opções: A e B. Veja as
condições dos planos:
Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por
consulta num certo período.
Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por
consulta num certo período.
Dependendo da necessidade, João fará 5, 6 ou 7 consultas. Qual o plano
mais econômico para ele em cada situação?
Observe que o gasto total de cada plano é dado em função do número
de consultas dentro do período preestabelecido.
Matemática, 1º Ano, Função: conceito
Situação 2
Na cidade do Recife, de acordo com
valores em vigor desde 01/01/2015, um
motorista de táxi cobra R$ 4,32 de
bandeirada (comum) mais R$ 2,10 por
quilômetro rodado (comum). Sabendo que
o preço a pagar é dado em função do
número de quilômetros rodados, calcule o
preço a ser pago por uma corrida em que
se percorreu 22 quilômetros?
Imagem: The Wordsmith / Creative
Commons Attribution-Share Alike 3.0 Unported.
Matemática, 1º Ano, Função: conceito
Situação 3
O diagrama a seguir considera a quantidade de litros de gasolina e os seus
respectivos preços a pagar em um posto de combustível na cidade de Itapetim:
Quantidade
de litros (l)
Preço
a pagar (R$) O preço a pagar é dado em função da
quantidade de litros que se coloca no
tanque, ou seja o preço depende do
número de litros comprados.
1
2
3
.
.
.
50
x
3,27
6,74
10,11
.
.
.
168,50
3,27x
preço a pagar (p) = R$ 3,27 vezes o número de litros (x) comprados
p = 3,27.x (lei da função ou fórmula matemática da função)
Agora, responda:
a) Qual é o preço de 10 litros de
gasolina?
b) Quantos litros de gasolina podem
ser comprados com R$ 43,81?
Matemática, 1º Ano, Função: conceito
Situação 4
A tabela a seguir relaciona a medida do lado de um terreno quadrado (l), em
metros, e o seu perímetro (P), também em metros.
Observe que o perímetro do quadrado é dado em
função da medida do seu lado, isto é, o perímetro
depende da medida do lado. A cada valor dado
para a medida do lado corresponde um único
valor para o perímetro.
perímetro (P) = 4 vezes a medida do lado (l ) ou
P = 4.l
Como o perímetro depende da medida do lado,
ele é a variável dependente, a medida do lado é a
chamada variável independente.
Agora, responda:
a) Qual o perímetro de um terreno quadrado cuja medida do lado é 3,5 m?
b) Qual a medida do lado do terreno quadrado cujo perímetro é de 22 m?
l
l
Matemática, 1º Ano, Função: conceito
Situação 5
Uma maneira útil de interpretar uma função é considerá-la como uma máquina,
onde os números que entram nessa máquina são processados ou calculados. Os
números que saem da máquina são dados em função dos números que entram.
Observe a seguir uma “máquina” de dobrar números.
Representando o número de saída n e o número de entrada x, temos:
n = 2.x (fórmula matemática da função)
Agora, invente uma “máquina de triplicar e somar 1”, baseada no exemplo
acima, e escreva a fórmula matemática dessa função.
- 3 4,3 x
2
1
2 - 6
4 8,6 2x
Máquina
de dobrar
Matemática, 1º Ano, Função: conceito
Ainda sobre “máquina de função”...
Acesse o link http://odeb.hol.es/maquina_funcao.swf e encontre
um “máquina de função” (em formato flash) onde você coloca a
função, o número de entrada e descobre o número de saída.
Já no link http://odeb.hol.es/relacao.swf você encontrará um
“máquina de função” (em formato flash) onde você coloca
número de entrada, observa o número de saída e descobre a
fórmula da “máquina”.
Matemática, 1º Ano, Função: conceito
A noção de função por meio de conjuntos
1) Observe os conjuntos A e B relacionados da seguinte forma: em A estão os
números inteiros e em B, outros.
Devemos associar cada elemento de A ao seu triplo em B
Note que:
- todos os elementos de A têm correspondente em B;
- a cada elemento de A corresponde um único elemento de B.
Nesse caso, temos uma função de A em B, expressa pela fórmula y = 3x.
-2∙
-1∙
0 ∙
1 ∙
2 ∙
∙ -8
∙ -6
∙ -4
∙ -3
∙ 0
∙ 3
∙ 6
A B
Matemática, 1º Ano, Função: conceito
2) Dados A = {0, 4} e B = {2, 3, 5}, relacionamos A e B da seguinte forma: cada
elemento de A é menor do que um elemento de B:
Nesse caso, não temos uma função de A em B, pois ao elemento 0 de A
correspondem três elementos de B, e não apenas um único elemento de B.
0 ∙
4 ∙
∙ 2
∙ 3
∙ 5
A B
Matemática, 1º Ano, Função: conceito
3) Dados A = {- 4, - 2, 0, 2, 4} e B = {0, 2, 4, 6, 8}, associamos os elementos de A
aos elementos de igual valor em B.
Observe que há elementos em A que não têm correspondente em B. Nesse
caso, não temos uma função de A em B.
-4∙
-2∙
0 ∙
2 ∙
4 ∙
∙ 0
∙ 2
∙ 4
∙ 6
∙ 8
A B
Matemática, 1º Ano, Função: conceito
Definição e notação
Dados dois conjuntos não vazios, A e B, uma função de A em B é uma relação
que indica como associar cada elemento x do conjunto A a um único elemento
y do conjunto B.
Usamos a seguinte notação:
“A cada x de A corresponde um único (x) de B, levado pela função .”
A B

: A → B
x f(x)
Matemática, 1º Ano, Função: conceito
Uma pausa para um vídeo...
No link https://www.youtube.com/watch?v=HCr6Ys0zvr8 vamos assistir um
vídeo do Programa M3 Matemática Multimídia da Universidade Estadual de
Campinas (Unicamp).
Vídeo: Descobrindo o algoritmo de Guido
Série Matemática na Escola
Objetivos
1. Apresentar as definições e exemplos de relação e de função.
2. Mostrar uma conexão histórica entre a música Gregoriana e a Matemática.
Sinopse
Um jovem aprende o segredo do monge Guido para compor músicas
devocionais, no estilo Gregoriano. O segredo envolve relações entre um
conjunto de notas musicais e um conjunto de letras do alfabeto.
Matemática, 1º Ano, Função: conceito
Domínio, contradomínio e conjunto imagem
O diagrama de flechas a seguir representa uma função f de A em B.
Vamos determinar:
a) D(f) b) CD(f)
D(f) = 2, 3, 5 ou D(f) = A CD(f) = 0, 2, 4, 6, 8, 10 ou CD(f) = B
c) Im (f) d) f(3)
Im(f) = 4, 6, 10 f(3) = 6
e) f(5) f) x para f(x) = 4
f(5) = 10 x = 2
2∙
3 ∙
5 ∙
∙ 0
∙ 2
∙ 4
∙ 6
∙ 8
∙ 10
A B
Matemática, 1º Ano, Função: conceito
Uma pausa para um vídeo...
No link https://www.youtube.com/watch?v=UhIbDZaObfQ vamos assistir um
vídeo do Programa M3 Matemática Multimídia da Universidade Estadual de
Campinas (Unicamp).
Vídeo: Carro Flex
Série Matemática na Escola
Objetivos
1. Recordar conceitos básicos relacionados a funções;
2. Exemplificar o uso de funções no cotidiano.
Sinopse
Frentista ajuda cliente a descobrir quais são as proporções de álcool e gasolina
que devem ser abastecidas em seu carro flex para que o custo tenha um valor
preestabelecido.
Matemática, 1º Ano, Função: conceito
Função e gráfico
Coordenadas cartesianas
A forma de localizar pontos no plano foi imaginada por René
Descartes (1596-1650), no século XVII. O sistema cartesiano é
formado por duas retas perpendiculares entre si e que se cruzam
no ponto zero. Esse ponto é denominado origem do sistema
cartesiano e é frequentemente denotado por O. Cada reta
representa um eixo e são nomeados Ox e Oy. Sobrepondo um
sistema cartesiano e um plano, obtém-se o um plano
cartesiano, cuja principal vantagem é associar a cada
ponto do plano um par de números reais. Assim, um ponto
A do plano corresponde a um par ordenado (m, n) com m
e n reais.
O eixo horizontal Ox é chamado de eixo das abscissas e o
eixo vertical Oy, de eixo das ordenadas. Esses eixos
dividem o plano em quatro regiões chamadas quadrantes.
Imagem: Frans Hals / Portrait of
René Descartes, c. 1649-1700 /
Louvre Museum, Richelieu, 2nd
floord, room 27 Paris / Public
Domain.
y
x
1º Q
0
Eixo das ordenadas
Eixo das
abscissas
2º Q
3º Q 4º Q
m
n A (m,n)
Matemática, 1º Ano, Função: conceito
Gráfico de função
O gráfico de uma função é o conjunto de pares ordenados (x, y) que tenham x
pertencente ao domínio da função  e y = f(x).
Reconhecimento do gráfico de uma função
Para saber se um gráfico representa uma função é preciso verificar se cada
elemento do domínio existe apenas um único correspondente no
contradomínio. Geometricamente significa que qualquer reta perpendicular ao
eixo Ox deve interceptar o gráfico em um único ponto.
y
x
y
x
y
x
Qualquer reta perpendicular ao eixo Ox
intercepta o gráfico em um único ponto;
portanto, o gráfico representa uma
função de x em y.
Existem retas perpendiculares ao eixo Ox
que interceptam o gráfico em mais de
um ponto; portanto, o gráfico não
representa uma função de x em y.
Existem retas perpendiculares ao eixo Ox
que interceptam o gráfico em mais de
um ponto; portanto, o gráfico não
representa uma função de x em y.
Matemática, 1º Ano, Função: conceito
Domínio e imagem a partir do gráfico
x
y
a b
f(b)
f(a)
Domínio: a  x  b ou [a, b]
Imagem: f(a)  x  f(b) ou [f(a), f(b)]
Matemática, 1º Ano, Função: conceito
Todos os dias nos deparamos com notícias do tipo:
•Número de católicos no Brasil diminuem, enquanto
o número de evangélicos aumentam;
•Dólar fecha em queda após quatro altas seguidas;
•Mercado prevê mais inflação, queda maior do PIB e
nova alta dos juros;
•Com mercado de carros novos em queda, cresce a
venda de veículos novos;
•Previsão de inflação para 2015 continua subindo;
•Agência aprova novas taxas, e conta de luz vai subir
em todo o país.
Função crescente e decrescente
Matemática, 1º Ano, Função: conceito
Pensando no ENEM...
(ENEM) O dono de uma farmácia resolveu colocar a vista do público o gráfico mostrado
a seguir, que apresenta a evolução do total de vendas (em Reais) de certo medicamento
ao longo do ano de 2011. De acordo com o gráfico, os meses
em que ocorreram, respectivamente,
a maior e a menor venda absoluta
em 2011 foram
a) março e abril.
b) março e agosto.
c) agosto e setembro.
d) junho e setembro.
e) junho e agosto.
De acordo com o gráfico, os meses em que ocorreram, respectivamente, a maior e a
menor venda absolutas em 2011 foram junho e agosto. Portanto item E.
Agora analise os intervalos onde aconteceram crescimento (aumento) ou decrescimento
(queda) das vendas do medicamento em questão.
Imagem: INEP-MEC
Matemática, 1º Ano, Função: conceito
Função crescente Função decrescente
quando o valor de y
aumentar conforme o de x
aumentar, temos uma
função crescente.
quando o valor de y
diminuir conforme o de x
aumentar, temos uma
função decrescente.
Matemática, 1º Ano, Função: conceito
Imagem: SEE-PE
Matemática, 1º Ano, Função: conceito
Imagem: SEE-PE
Matemática, 1º Ano, Função: conceito
Imagem: SEE-PE
Matemática, 1º Ano, Função: conceito
Aplicação de função na Biologia...
(ENEM) Um cientista trabalha com as espécies I e II de bactérias em um ambiente de
cultura. Inicialmente, existem 350 bactérias da espécie I e 1 250 bactérias da espécie II.
O gráfico representa as quantidades de bactérias de cada espécie, em função do dia,
durante uma semana. Em que dia dessa semana a
quantidade total de bactérias nesse
ambiente de cultura foi máxima?
a) Terça-feira.
b) Quarta-feira.
c) Quinta-feira.
d) Sexta-feira.
e) Domingo.
A quantidade total de bactérias nesse ambiente de cultura foi máxima na terça feira,
num total de 800 + 1100 = 1900, pois nos demais dias, temos: Segunda: 350 + 1250 =
1600; Quarta: 300 + 1450 = 1750; Quinta = 850 + 650 = 1500; Sexta: 300 + 1400 = 1700;
Sábado: 290 + 100 = 1290 e Domingo: 0 + 1350 = 1350. Portanto a resposta é o item A.
Matemática, 1º Ano, Função: conceito
Aplicação de função na Física...
Um rapaz desafia seu pai para uma corrida de 100 m. O pai permite que o filho comece
30 m à sua frente. Um gráfico bastante simplificado dessa corrida é dado a seguir:
a) Pelo gráfico, como é possível dizer
quem ganhou a corrida e qual foi a
diferença de tempo?
O pai ganhou a corrida, pois ele
chegou aos 100 m em 14 s e o filho,
em 17 s; a diferença de tempo foi de
3 s.
b) A que distância do início o pai
alcançou seu filho?
Cerca de 70 m.
5 10 15
20
40
60
80
100
Distância (m)
Tempo (s)
0
c) Em que momento depois do início da corrida ocorreu a ultrapassagem?
Cerca de 10 s.
Matemática, 1º Ano, Função: conceito
Extras: confecções de jogos envolvendo funções
Jogo de damas – Borba (2008)
Objetivos:
- reconhecer o sistema de coordenadas cartesianas;
- desenvolver o conceito de função.
Regras do Jogo:
Neste Jogo de Damas, cada casa pode ser identificada por um par ordenado de
números e letras, onde as letras indicam as colunas e os números representam
as linhas. Em duplas, os alunos deverão realizar as jogadas, mas sempre
anotando a “casa” de saída e a “casa” de chegada. Vencerá o jogo que “comer”
todas as peças do adversário, e tenha escrito corretamente todos os pontos
encontrados.
Matemática, 1º Ano, Função: conceito
Máquina de função (descubra a saída) – Borba (2008)
Objetivos:
- desenvolver o conceito de Função através de representações numéricas;
- descobrir as saídas presentes em cada situação.
Regras do Jogo:
Neste jogo são apresentadas diferentes situações onde em cada uma está
representada uma entrada, que contém números, e uma função. Questiona-se
qual será a saída para cada situação. Os educandos deverão debater no grupo
quais serão as saídas referentes a cada situação apresentada.
Observação: Neste jogo não há vencedores nem perdedores, pois visamos o
debate em grupo e a construção de conhecimentos.
Matemática, 1º Ano, Função: conceito
Máquina de função (descubra a função) – (Borba 2008)
Objetivos:
- desenvolver o conceito de Função através de representações numéricas;
- descobrir as funções presentes em cada situação.
Regras do Jogo:
Neste jogo estão representadas diferentes situações, onde aparecem números
na entrada e na saída. Os estudantes deverão analisar cada situação e descobrir
qual a função presente em cada uma.
Observação: Neste jogo não há vencedores nem perdedores, pois visamos o
debate em grupo e a construção de conhecimentos.
Matemática, 1º Ano, Função: conceito
Referências
DANTE, Luiz Roberto Dante. Matemática: contexto & aplicações / Luiz Roberto
Dante. – 2. ed. – São Paulo: Ática, 2013. Obra em 3 v.
BIANCHINI, Edwaldo. Matemática, volume 1: versão beta / Edwaldo Bianchini,
Herval Paccola. 2. ed. Ver. E ampl. – São Paulo: Moderna 1995.
BUCCHI, Paulo. Curso prático de matemática / Paulo Bucchi – São Paulo:
Moderna, 1998.
STOCCO SMOLE, Kátia. Matemática: ensino médio 1 / Kátia Stocco Smole,
Maria Ignez Diniz. - 8. ed. São Paulo: Saraiva 2013.
LIMA, Elon Lages. A Matemática do ensino médio – volume 1 / Elon Lages
Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto César Morgado. –
10. ed. – Rio de Janeiro: SBM, 2012.
BORBA, Fabiana Machado de. Jogos matemáticos para o ensino de função /
Fabiana Machado de Borba. – Canoas, 2008.
Matemática, 1º Ano, Função: conceito
Slide Autoria / Licença Link da Fonte Data do
Acesso
3 Christoph Bernhard Francke / Portrait of
Gottfried Leibniz, c. 1700 / Herzog-Anton-Ulrich-
Museum, Braunschweig / Public Domain.
http://commons.wikimedia.org/wiki/File:Gottfri
ed_Wilhelm_von_Leibniz.jpg
16/06/2015
5 The Wordsmith / Creative
Commons Attribution-Share Alike 3.0 Unported.
http://commons.wikimedia.org/wiki/File:NYC_Ta
xi_in_motion.jpg
16/06/2012
15 Frans Hals / Portrait of René Descartes, c. 1649-
1700 / Louvre Museum, Richelieu, 2nd floord,
room 27 Paris / Public Domain.
http://commons.wikimedia.org/wiki/File:Frans_
Hals_-_Portret_van_Ren%C3%A9_Descartes.jpg
16/06/2015
21 INEP - MEC Acervo INEP - MEC 17/06/2012
23 SEE-PE Acervo SEE-PE 17/06/2012
24 INEP - MEC Acervo INEP - MEC 17/06/2012
Tabelas de imagens

Mais conteúdo relacionado

PPT
Funçao do 1 grau - Estudo do sinal da função
PPT
Graficos de funcoes
PPT
Função Afim e Linear.ppt
PDF
Função de 1º Grau.
PPT
1 ano função afim
PPT
Produto cartesiano - Relação - Função
PPTX
Domínio, contradomínio e imagem de uma função
Funçao do 1 grau - Estudo do sinal da função
Graficos de funcoes
Função Afim e Linear.ppt
Função de 1º Grau.
1 ano função afim
Produto cartesiano - Relação - Função
Domínio, contradomínio e imagem de uma função

Mais procurados (20)

PDF
Lista de exercícios – sistema de equações do 1° grau
PPTX
Equação do 2º grau
PPTX
Sistemas de equações do 1⁰ grau revisão
PPT
Porcentagem
PPTX
Aula de LOGARITMOS
PPTX
Plano cartesiano animado
PDF
Produto cartesiano e função 1º ano do ensino medio
PDF
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
PPSX
Dízimas periódicas (fração geratriz)
PDF
Lista de Exercícios – Equação do 1° grau
PPT
15 aula operacoes com conjuntos
PPT
Porcentagem.ppt
PPTX
Teorema de Tales
PPTX
Plano cartesiano ppt
PDF
Exercícios função de 2° grau 2p
PDF
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
PPT
Expressoes algebricas
PPT
Equacoes do 1 grau
PDF
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
PDF
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios – sistema de equações do 1° grau
Equação do 2º grau
Sistemas de equações do 1⁰ grau revisão
Porcentagem
Aula de LOGARITMOS
Plano cartesiano animado
Produto cartesiano e função 1º ano do ensino medio
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Dízimas periódicas (fração geratriz)
Lista de Exercícios – Equação do 1° grau
15 aula operacoes com conjuntos
Porcentagem.ppt
Teorema de Tales
Plano cartesiano ppt
Exercícios função de 2° grau 2p
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
Expressoes algebricas
Equacoes do 1 grau
2ª lista de exerc(monomios e polinômios) 8º ano ilton bruno
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
Anúncio

Semelhante a Introdução a função.ppt (20)

PPT
Funções - Conceito.ppt
PPT
Funções - Conceito.ppt
PPTX
Funções - Conceito.pptx
PPT
1ºAno_matemática_Aula_sobre função e suas situações
PPTX
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
PPTX
03 - Definição de Função suas propriedas.pptx
PPTX
003444444---DEFINICAO-DE-FUNCAO (1).pptx
PDF
MAT 1ª Série 3º Bimestre Professor.pdf
PPTX
Funções - Na Matemática, função corresponde a uma associação dos elementos de...
PPT
Relações e funções
PPT
Relações e funções
PDF
E. MÉDIO 1 MANHÃ MATEMÁTICA 31 03 2023 FUNÇÃO P1.pdf
PPT
Funçoes2
PPTX
introdução ao estudo das funçõesa fi.pptx
PDF
MAT 1ª Série 3º BimestreEstudante.pdf
PDF
Slides sobre Função afim _ Matemática _EM
PPTX
Função polinomial do 1º grau.
PPTX
Função polinomial do 1º grau.
PPS
ApresentaçãO FunçãO
PPTX
Noções de Funções
Funções - Conceito.ppt
Funções - Conceito.ppt
Funções - Conceito.pptx
1ºAno_matemática_Aula_sobre função e suas situações
01 - Funções - Conceito AULA QUARENTENA 14-04-2020.pptx
03 - Definição de Função suas propriedas.pptx
003444444---DEFINICAO-DE-FUNCAO (1).pptx
MAT 1ª Série 3º Bimestre Professor.pdf
Funções - Na Matemática, função corresponde a uma associação dos elementos de...
Relações e funções
Relações e funções
E. MÉDIO 1 MANHÃ MATEMÁTICA 31 03 2023 FUNÇÃO P1.pdf
Funçoes2
introdução ao estudo das funçõesa fi.pptx
MAT 1ª Série 3º BimestreEstudante.pdf
Slides sobre Função afim _ Matemática _EM
Função polinomial do 1º grau.
Função polinomial do 1º grau.
ApresentaçãO FunçãO
Noções de Funções
Anúncio

Último (20)

PDF
EXPRESSÕES IDIOMÁTICAS - LÍNGUA PORTUGUESA
PPT
Caderno de Boas Práticas dos Professores Alfabetizadores.ppt
PPTX
1. A Cultura do Palco - muitos palcos, um espetáculo.pptx
PDF
Fiqh da adoração (islamismo)
PDF
Pecados desdenhados por muita gente (islamismo)
PPTX
4. A cultura do cinema e as vanguardas.pptx
PDF
Formação politica brasil_2017.pptx.pdf
PDF
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
DOC
PPP 2024 (2) (2) feito EM REELABORAÇÃO MORENA ( ABRIL 2024).doc
PPTX
Educação Especial na perspectiva Inclusiva 02.pptx
PPT
YY2015MM3DD6HH12MM42SS3-Organiza__o do Estado ILP.ppt
PPSX
4. A Cultura da Catedral - HistóriaCArtes .ppsx
PPT
br-a-1692841480-passeio-pela-historia-da-arte-apresentacao-em-powerpoint_ver_...
PDF
Combate a Incêndio - Iluminação de Emergência e Sinalização de Segurança por ...
PDF
metabolismo energtico das clulas-131017092002-phpapp02.pdf
PPTX
norma regulamentadora numero vinte nr 20
PPTX
Ocupação e transformação dos territórios.pptx
PPTX
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
PPTX
2. A Cultura do Salão - o fim das trevas.pptx
PPT
1ª Telefonia Fixa Padrao Novo Jailton 2012_22.ppt
EXPRESSÕES IDIOMÁTICAS - LÍNGUA PORTUGUESA
Caderno de Boas Práticas dos Professores Alfabetizadores.ppt
1. A Cultura do Palco - muitos palcos, um espetáculo.pptx
Fiqh da adoração (islamismo)
Pecados desdenhados por muita gente (islamismo)
4. A cultura do cinema e as vanguardas.pptx
Formação politica brasil_2017.pptx.pdf
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
PPP 2024 (2) (2) feito EM REELABORAÇÃO MORENA ( ABRIL 2024).doc
Educação Especial na perspectiva Inclusiva 02.pptx
YY2015MM3DD6HH12MM42SS3-Organiza__o do Estado ILP.ppt
4. A Cultura da Catedral - HistóriaCArtes .ppsx
br-a-1692841480-passeio-pela-historia-da-arte-apresentacao-em-powerpoint_ver_...
Combate a Incêndio - Iluminação de Emergência e Sinalização de Segurança por ...
metabolismo energtico das clulas-131017092002-phpapp02.pdf
norma regulamentadora numero vinte nr 20
Ocupação e transformação dos territórios.pptx
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
2. A Cultura do Salão - o fim das trevas.pptx
1ª Telefonia Fixa Padrao Novo Jailton 2012_22.ppt

Introdução a função.ppt

  • 1. MATEMÁTICA Ensino Médio, 1º Ano Função: conceito
  • 2. Matemática, 1º Ano, Função: conceito Um pouco da história O conceito de função, presente nos mais diversos ramos da ciência, teve sua origem na tentativa de filósofos e cientistas em compreender a realidade e encontrar métodos que permitissem estudar e descrever os fenômenos naturais. Ao longo da História vários matemáticos contribuíram para que se chegasse ao conceito atual de função. Ao matemático alemão Leibniz (1646-1716) atribui- se a denominação função que usamos hoje. A representação de uma função pela notação (x) (lê-se:  de x) foi atribuída ao matemático suíço Euler (1707-1783), no século XVII. O Matemático alemão Dirichlet (1805-1859) escreveu uma primeira definição de função muito semelhante àquela que usamos atualmente. Imagem : Christoph Bernhard Francke / Portrait of Gottfried Leibniz, c. 1700 / Herzog-Anton-Ulrich-Museum, Braunschweig / Public Domain.
  • 3. Matemática, 1º Ano, Função: conceito Aplicação do conceito O conceito de função é um dos mais importantes da Matemática e ocupa lugar em destaque em vários de seus ramos, bem como em outras áreas do conhecimento. É muito comum e conveniente expressar fenômenos físicos, biológicos, sociais, etc. por meio de funções.
  • 4. Matemática, 1º Ano, Função: conceito A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B. Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por consulta num certo período. Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por consulta num certo período. Dependendo da necessidade, João fará 5, 6 ou 7 consultas. Qual o plano mais econômico para ele em cada situação? Observe que o gasto total de cada plano é dado em função do número de consultas dentro do período preestabelecido.
  • 5. Matemática, 1º Ano, Função: conceito Situação 2 Na cidade do Recife, de acordo com valores em vigor desde 01/01/2015, um motorista de táxi cobra R$ 4,32 de bandeirada (comum) mais R$ 2,10 por quilômetro rodado (comum). Sabendo que o preço a pagar é dado em função do número de quilômetros rodados, calcule o preço a ser pago por uma corrida em que se percorreu 22 quilômetros? Imagem: The Wordsmith / Creative Commons Attribution-Share Alike 3.0 Unported.
  • 6. Matemática, 1º Ano, Função: conceito Situação 3 O diagrama a seguir considera a quantidade de litros de gasolina e os seus respectivos preços a pagar em um posto de combustível na cidade de Itapetim: Quantidade de litros (l) Preço a pagar (R$) O preço a pagar é dado em função da quantidade de litros que se coloca no tanque, ou seja o preço depende do número de litros comprados. 1 2 3 . . . 50 x 3,27 6,74 10,11 . . . 168,50 3,27x preço a pagar (p) = R$ 3,27 vezes o número de litros (x) comprados p = 3,27.x (lei da função ou fórmula matemática da função) Agora, responda: a) Qual é o preço de 10 litros de gasolina? b) Quantos litros de gasolina podem ser comprados com R$ 43,81?
  • 7. Matemática, 1º Ano, Função: conceito Situação 4 A tabela a seguir relaciona a medida do lado de um terreno quadrado (l), em metros, e o seu perímetro (P), também em metros. Observe que o perímetro do quadrado é dado em função da medida do seu lado, isto é, o perímetro depende da medida do lado. A cada valor dado para a medida do lado corresponde um único valor para o perímetro. perímetro (P) = 4 vezes a medida do lado (l ) ou P = 4.l Como o perímetro depende da medida do lado, ele é a variável dependente, a medida do lado é a chamada variável independente. Agora, responda: a) Qual o perímetro de um terreno quadrado cuja medida do lado é 3,5 m? b) Qual a medida do lado do terreno quadrado cujo perímetro é de 22 m? l l
  • 8. Matemática, 1º Ano, Função: conceito Situação 5 Uma maneira útil de interpretar uma função é considerá-la como uma máquina, onde os números que entram nessa máquina são processados ou calculados. Os números que saem da máquina são dados em função dos números que entram. Observe a seguir uma “máquina” de dobrar números. Representando o número de saída n e o número de entrada x, temos: n = 2.x (fórmula matemática da função) Agora, invente uma “máquina de triplicar e somar 1”, baseada no exemplo acima, e escreva a fórmula matemática dessa função. - 3 4,3 x 2 1 2 - 6 4 8,6 2x Máquina de dobrar
  • 9. Matemática, 1º Ano, Função: conceito Ainda sobre “máquina de função”... Acesse o link http://odeb.hol.es/maquina_funcao.swf e encontre um “máquina de função” (em formato flash) onde você coloca a função, o número de entrada e descobre o número de saída. Já no link http://odeb.hol.es/relacao.swf você encontrará um “máquina de função” (em formato flash) onde você coloca número de entrada, observa o número de saída e descobre a fórmula da “máquina”.
  • 10. Matemática, 1º Ano, Função: conceito A noção de função por meio de conjuntos 1) Observe os conjuntos A e B relacionados da seguinte forma: em A estão os números inteiros e em B, outros. Devemos associar cada elemento de A ao seu triplo em B Note que: - todos os elementos de A têm correspondente em B; - a cada elemento de A corresponde um único elemento de B. Nesse caso, temos uma função de A em B, expressa pela fórmula y = 3x. -2∙ -1∙ 0 ∙ 1 ∙ 2 ∙ ∙ -8 ∙ -6 ∙ -4 ∙ -3 ∙ 0 ∙ 3 ∙ 6 A B
  • 11. Matemática, 1º Ano, Função: conceito 2) Dados A = {0, 4} e B = {2, 3, 5}, relacionamos A e B da seguinte forma: cada elemento de A é menor do que um elemento de B: Nesse caso, não temos uma função de A em B, pois ao elemento 0 de A correspondem três elementos de B, e não apenas um único elemento de B. 0 ∙ 4 ∙ ∙ 2 ∙ 3 ∙ 5 A B
  • 12. Matemática, 1º Ano, Função: conceito 3) Dados A = {- 4, - 2, 0, 2, 4} e B = {0, 2, 4, 6, 8}, associamos os elementos de A aos elementos de igual valor em B. Observe que há elementos em A que não têm correspondente em B. Nesse caso, não temos uma função de A em B. -4∙ -2∙ 0 ∙ 2 ∙ 4 ∙ ∙ 0 ∙ 2 ∙ 4 ∙ 6 ∙ 8 A B
  • 13. Matemática, 1º Ano, Função: conceito Definição e notação Dados dois conjuntos não vazios, A e B, uma função de A em B é uma relação que indica como associar cada elemento x do conjunto A a um único elemento y do conjunto B. Usamos a seguinte notação: “A cada x de A corresponde um único (x) de B, levado pela função .” A B  : A → B x f(x)
  • 14. Matemática, 1º Ano, Função: conceito Uma pausa para um vídeo... No link https://www.youtube.com/watch?v=HCr6Ys0zvr8 vamos assistir um vídeo do Programa M3 Matemática Multimídia da Universidade Estadual de Campinas (Unicamp). Vídeo: Descobrindo o algoritmo de Guido Série Matemática na Escola Objetivos 1. Apresentar as definições e exemplos de relação e de função. 2. Mostrar uma conexão histórica entre a música Gregoriana e a Matemática. Sinopse Um jovem aprende o segredo do monge Guido para compor músicas devocionais, no estilo Gregoriano. O segredo envolve relações entre um conjunto de notas musicais e um conjunto de letras do alfabeto.
  • 15. Matemática, 1º Ano, Função: conceito Domínio, contradomínio e conjunto imagem O diagrama de flechas a seguir representa uma função f de A em B. Vamos determinar: a) D(f) b) CD(f) D(f) = 2, 3, 5 ou D(f) = A CD(f) = 0, 2, 4, 6, 8, 10 ou CD(f) = B c) Im (f) d) f(3) Im(f) = 4, 6, 10 f(3) = 6 e) f(5) f) x para f(x) = 4 f(5) = 10 x = 2 2∙ 3 ∙ 5 ∙ ∙ 0 ∙ 2 ∙ 4 ∙ 6 ∙ 8 ∙ 10 A B
  • 16. Matemática, 1º Ano, Função: conceito Uma pausa para um vídeo... No link https://www.youtube.com/watch?v=UhIbDZaObfQ vamos assistir um vídeo do Programa M3 Matemática Multimídia da Universidade Estadual de Campinas (Unicamp). Vídeo: Carro Flex Série Matemática na Escola Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano. Sinopse Frentista ajuda cliente a descobrir quais são as proporções de álcool e gasolina que devem ser abastecidas em seu carro flex para que o custo tenha um valor preestabelecido.
  • 17. Matemática, 1º Ano, Função: conceito Função e gráfico Coordenadas cartesianas A forma de localizar pontos no plano foi imaginada por René Descartes (1596-1650), no século XVII. O sistema cartesiano é formado por duas retas perpendiculares entre si e que se cruzam no ponto zero. Esse ponto é denominado origem do sistema cartesiano e é frequentemente denotado por O. Cada reta representa um eixo e são nomeados Ox e Oy. Sobrepondo um sistema cartesiano e um plano, obtém-se o um plano cartesiano, cuja principal vantagem é associar a cada ponto do plano um par de números reais. Assim, um ponto A do plano corresponde a um par ordenado (m, n) com m e n reais. O eixo horizontal Ox é chamado de eixo das abscissas e o eixo vertical Oy, de eixo das ordenadas. Esses eixos dividem o plano em quatro regiões chamadas quadrantes. Imagem: Frans Hals / Portrait of René Descartes, c. 1649-1700 / Louvre Museum, Richelieu, 2nd floord, room 27 Paris / Public Domain. y x 1º Q 0 Eixo das ordenadas Eixo das abscissas 2º Q 3º Q 4º Q m n A (m,n)
  • 18. Matemática, 1º Ano, Função: conceito Gráfico de função O gráfico de uma função é o conjunto de pares ordenados (x, y) que tenham x pertencente ao domínio da função  e y = f(x). Reconhecimento do gráfico de uma função Para saber se um gráfico representa uma função é preciso verificar se cada elemento do domínio existe apenas um único correspondente no contradomínio. Geometricamente significa que qualquer reta perpendicular ao eixo Ox deve interceptar o gráfico em um único ponto. y x y x y x Qualquer reta perpendicular ao eixo Ox intercepta o gráfico em um único ponto; portanto, o gráfico representa uma função de x em y. Existem retas perpendiculares ao eixo Ox que interceptam o gráfico em mais de um ponto; portanto, o gráfico não representa uma função de x em y. Existem retas perpendiculares ao eixo Ox que interceptam o gráfico em mais de um ponto; portanto, o gráfico não representa uma função de x em y.
  • 19. Matemática, 1º Ano, Função: conceito Domínio e imagem a partir do gráfico x y a b f(b) f(a) Domínio: a  x  b ou [a, b] Imagem: f(a)  x  f(b) ou [f(a), f(b)]
  • 20. Matemática, 1º Ano, Função: conceito Todos os dias nos deparamos com notícias do tipo: •Número de católicos no Brasil diminuem, enquanto o número de evangélicos aumentam; •Dólar fecha em queda após quatro altas seguidas; •Mercado prevê mais inflação, queda maior do PIB e nova alta dos juros; •Com mercado de carros novos em queda, cresce a venda de veículos novos; •Previsão de inflação para 2015 continua subindo; •Agência aprova novas taxas, e conta de luz vai subir em todo o país. Função crescente e decrescente
  • 21. Matemática, 1º Ano, Função: conceito Pensando no ENEM... (ENEM) O dono de uma farmácia resolveu colocar a vista do público o gráfico mostrado a seguir, que apresenta a evolução do total de vendas (em Reais) de certo medicamento ao longo do ano de 2011. De acordo com o gráfico, os meses em que ocorreram, respectivamente, a maior e a menor venda absoluta em 2011 foram a) março e abril. b) março e agosto. c) agosto e setembro. d) junho e setembro. e) junho e agosto. De acordo com o gráfico, os meses em que ocorreram, respectivamente, a maior e a menor venda absolutas em 2011 foram junho e agosto. Portanto item E. Agora analise os intervalos onde aconteceram crescimento (aumento) ou decrescimento (queda) das vendas do medicamento em questão. Imagem: INEP-MEC
  • 22. Matemática, 1º Ano, Função: conceito Função crescente Função decrescente quando o valor de y aumentar conforme o de x aumentar, temos uma função crescente. quando o valor de y diminuir conforme o de x aumentar, temos uma função decrescente.
  • 23. Matemática, 1º Ano, Função: conceito Imagem: SEE-PE
  • 24. Matemática, 1º Ano, Função: conceito Imagem: SEE-PE
  • 25. Matemática, 1º Ano, Função: conceito Imagem: SEE-PE
  • 26. Matemática, 1º Ano, Função: conceito Aplicação de função na Biologia... (ENEM) Um cientista trabalha com as espécies I e II de bactérias em um ambiente de cultura. Inicialmente, existem 350 bactérias da espécie I e 1 250 bactérias da espécie II. O gráfico representa as quantidades de bactérias de cada espécie, em função do dia, durante uma semana. Em que dia dessa semana a quantidade total de bactérias nesse ambiente de cultura foi máxima? a) Terça-feira. b) Quarta-feira. c) Quinta-feira. d) Sexta-feira. e) Domingo. A quantidade total de bactérias nesse ambiente de cultura foi máxima na terça feira, num total de 800 + 1100 = 1900, pois nos demais dias, temos: Segunda: 350 + 1250 = 1600; Quarta: 300 + 1450 = 1750; Quinta = 850 + 650 = 1500; Sexta: 300 + 1400 = 1700; Sábado: 290 + 100 = 1290 e Domingo: 0 + 1350 = 1350. Portanto a resposta é o item A.
  • 27. Matemática, 1º Ano, Função: conceito Aplicação de função na Física... Um rapaz desafia seu pai para uma corrida de 100 m. O pai permite que o filho comece 30 m à sua frente. Um gráfico bastante simplificado dessa corrida é dado a seguir: a) Pelo gráfico, como é possível dizer quem ganhou a corrida e qual foi a diferença de tempo? O pai ganhou a corrida, pois ele chegou aos 100 m em 14 s e o filho, em 17 s; a diferença de tempo foi de 3 s. b) A que distância do início o pai alcançou seu filho? Cerca de 70 m. 5 10 15 20 40 60 80 100 Distância (m) Tempo (s) 0 c) Em que momento depois do início da corrida ocorreu a ultrapassagem? Cerca de 10 s.
  • 28. Matemática, 1º Ano, Função: conceito Extras: confecções de jogos envolvendo funções Jogo de damas – Borba (2008) Objetivos: - reconhecer o sistema de coordenadas cartesianas; - desenvolver o conceito de função. Regras do Jogo: Neste Jogo de Damas, cada casa pode ser identificada por um par ordenado de números e letras, onde as letras indicam as colunas e os números representam as linhas. Em duplas, os alunos deverão realizar as jogadas, mas sempre anotando a “casa” de saída e a “casa” de chegada. Vencerá o jogo que “comer” todas as peças do adversário, e tenha escrito corretamente todos os pontos encontrados.
  • 29. Matemática, 1º Ano, Função: conceito Máquina de função (descubra a saída) – Borba (2008) Objetivos: - desenvolver o conceito de Função através de representações numéricas; - descobrir as saídas presentes em cada situação. Regras do Jogo: Neste jogo são apresentadas diferentes situações onde em cada uma está representada uma entrada, que contém números, e uma função. Questiona-se qual será a saída para cada situação. Os educandos deverão debater no grupo quais serão as saídas referentes a cada situação apresentada. Observação: Neste jogo não há vencedores nem perdedores, pois visamos o debate em grupo e a construção de conhecimentos.
  • 30. Matemática, 1º Ano, Função: conceito Máquina de função (descubra a função) – (Borba 2008) Objetivos: - desenvolver o conceito de Função através de representações numéricas; - descobrir as funções presentes em cada situação. Regras do Jogo: Neste jogo estão representadas diferentes situações, onde aparecem números na entrada e na saída. Os estudantes deverão analisar cada situação e descobrir qual a função presente em cada uma. Observação: Neste jogo não há vencedores nem perdedores, pois visamos o debate em grupo e a construção de conhecimentos.
  • 31. Matemática, 1º Ano, Função: conceito Referências DANTE, Luiz Roberto Dante. Matemática: contexto & aplicações / Luiz Roberto Dante. – 2. ed. – São Paulo: Ática, 2013. Obra em 3 v. BIANCHINI, Edwaldo. Matemática, volume 1: versão beta / Edwaldo Bianchini, Herval Paccola. 2. ed. Ver. E ampl. – São Paulo: Moderna 1995. BUCCHI, Paulo. Curso prático de matemática / Paulo Bucchi – São Paulo: Moderna, 1998. STOCCO SMOLE, Kátia. Matemática: ensino médio 1 / Kátia Stocco Smole, Maria Ignez Diniz. - 8. ed. São Paulo: Saraiva 2013. LIMA, Elon Lages. A Matemática do ensino médio – volume 1 / Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto César Morgado. – 10. ed. – Rio de Janeiro: SBM, 2012. BORBA, Fabiana Machado de. Jogos matemáticos para o ensino de função / Fabiana Machado de Borba. – Canoas, 2008.
  • 32. Matemática, 1º Ano, Função: conceito Slide Autoria / Licença Link da Fonte Data do Acesso 3 Christoph Bernhard Francke / Portrait of Gottfried Leibniz, c. 1700 / Herzog-Anton-Ulrich- Museum, Braunschweig / Public Domain. http://commons.wikimedia.org/wiki/File:Gottfri ed_Wilhelm_von_Leibniz.jpg 16/06/2015 5 The Wordsmith / Creative Commons Attribution-Share Alike 3.0 Unported. http://commons.wikimedia.org/wiki/File:NYC_Ta xi_in_motion.jpg 16/06/2012 15 Frans Hals / Portrait of René Descartes, c. 1649- 1700 / Louvre Museum, Richelieu, 2nd floord, room 27 Paris / Public Domain. http://commons.wikimedia.org/wiki/File:Frans_ Hals_-_Portret_van_Ren%C3%A9_Descartes.jpg 16/06/2015 21 INEP - MEC Acervo INEP - MEC 17/06/2012 23 SEE-PE Acervo SEE-PE 17/06/2012 24 INEP - MEC Acervo INEP - MEC 17/06/2012 Tabelas de imagens