Projeto:
A História dos Números
Introdução
• Este projeto tem a finalidade de apresentar a
história dos números, como surgiu e a sua
importância para a nossa vida. O Projeto História
dos números é uma excelente ferramenta de
apoio à aprendizagem de matemática, como
forma de utiliza-lo na didática da sala de aula.
Através desse projeto o educador poderá fazer
com que os educandos possam analisar a
matemática com outros olhos, percebendo o
motivo da história dos números, refletir e
interagir.
• Portanto ao longo de toda a existência da humanidade
os conceitos de número e números têm tido uma
enorme influência na nossa cultura e na nossa
linguagem. São milhares as palavras que estão
claramente associadas a números. Alguns exemplos
visíveis são:
• Os números servem para transmitir informações de
maneira mais precisa. Portanto, são úteis para nos
expressarmos e nos comunicarmos. Para facilitar a
interpretação das informações, precisamos conhecer
os números, suas relações e operações, pois são uma
ferramenta indispensável de expressão, representação
e comunicaçãio na sociedade atual.
• As funções principais dos números: contar, medir,
organizar e codificar
• O domínio dos números começa pelo conhecimento da
sequência numérica.
• Por meio do número cardinal conhecemos a quantidade
de objetos que existe em uma coleção.
• O número serve, além de contar, para indicar a posição
que cada objeto ocupa segundo uma ordem
estabelecida, e nesse caso é chamado ordinal.
• Os números também são utilizados como códigos ou
etiquetas para identificar pessoas ou objetos. Exemplos:
número das placas dos automóveis, número dos
telefones, número das contas correntes em um banco,
códigos postais (CEP), medidas de roupas, etc...
•
•
História dos números
• A noção de número e suas extraordinárias
generalizações estão intimamente ligadas à
história da humanidade. E a própria vida está
impregnada de matemática: grande parte das
comparações que o homem formula, assim como
gestos e atitudes cotidianas, aludem
conscientemente ou não a juízos aritméticos e
propriedades geométricas. Sem esquecer que a
ciência, a indústria e o comércio nos colocam em
permanente contato com o amplo mundo da
matemática.
A LINGUAGEM DOS NÚMEROS
• Em todas as épocas da evolução humana,
mesmo nas mais atrasadas, encontra-se no
homem o sentido do número. Esta faculdade
lhe permite reconhecer que algo muda em
uma pequena coleção (por exemplo, seus
filhos, ou suas ovelhas) quando, sem seu
conhecimento direto, um objeto tenha sido
retirado ou acrescentado.
• O sentido do número, em sua significação
primitiva e no seu papel intuitivo, não se
confunde com a capacidade de contar, que exige
um fenômeno mental mais complicado. Se contar
é um atributo exclusivamente humano, algumas
espécies de animais parecem possuir um sentido
rudimentar do número. Assim opinam, pelo
menos, observadores competentes dos costumes
dos animais. Muitos pássaros têm o sentido do
número. Se um ninho contém quatro ovos, pode-
se tirar um sem que nada ocorra, mas o pássaro
provavelmente abandonará o ninho se faltarem
dois ovos. De alguma forma inexplicável, ele pode
distinguir dois de três.
Uma história curiosa:
O corvo assassinado
• Um senhor feudal estava decidido a matar um corvo
que tinha feito ninho na torre de seu castelo.
Repetidas vezes tentou surpreender o pássaro, mas em
vão: quando o homem se aproximava, o corvo voava
de seu ninho, colocava-se vigilante no alto de uma
árvore próxima, e só voltava à torre quando já vazia.
Um dia, o senhor recorreu a um truque: dois homens
entraram na torre, um ficou lá dentro e o outro saiu e
se foi. O pássaro não se deixou enganar e, para voltar,
esperou que o segundo homem tivesse saído. O
estratagema foi repetido nos dias seguintes com dois,
três e quatro homens, sempre sem êxito. Finalmente,
cinco homens entraram na torre e depois saíram
quatro, um atrás do outro, enquanto o quinto
aprontava o trabuco à espera do corvo. Então o
pássaro perdeu a conta e a vida.
• As espécies zoológicas com sentido do número são muito
poucas (nem mesmo incluem os monos e outros
mamíferos). E a percepção de quantidade numérica nos
animais é de tão limitado alcance que se pode desprezá-la.
Contudo, também no homem isso é verdade. Na prática,
quando o homem civilizado precisa distinguir um número
ao qual não está habituado, usa conscientemente ou não -
para ajudar seu sentido do número - artifícios tais como a
comparação, o agrupamento ou a ação de contar. Essa
última, especialmente, se tornou parte tão integrante de
nossa estrutura mental que os testes sobre nossa
percepção numérica direta resultaram decepcionantes.
Essas provas concluem que o sentido visual direto do
número possuído pelo homem civilizado raras vezes
ultrapassa o número quatro, e que o sentido tátil é ainda
mais limitado.
Limitações vêm de longe
• Os estudos sobre os povos primitivos fornecem
uma notável comprovação desses resultados. Os
selvagens que não alcançaram ainda o grau de
evolução suficiente para contar com os dedos
estão quase completamente desprovidos de toda
noção de número. Os habitantes da selva da
África do Sul não possuem outras palavras
numéricas além de um, dois e muitos, e ainda
essas palavras estão desvinculadas que se pode
duvidar que os indígenas lhes atribuam um
sentido bem claro.
• Realmente não há razões para crer que nossos
remotos antepassados estivessem mais bem
equipados, já que todas as linguagens européias
apresentam traços destas antigas limitações: a palavra
inglesa thrice, do mesmo modo que a palavra latina
ter, possui dois sentidos: "três vezes" e "muito". Há
evidente conexão entre as palavras latinas tres (três) e
trans (mais além). O mesmo acontece no francês: trois
(três) e très (muito).
• Como nasceu o conceito de número? Da experiência?
Ou, ao contrário, a experiência serviu simplesmente
para tornar explícito o que já existia em estado latente
na mente do homem primitivo? Eis aqui um tema
apaixonante para discussão filosófica.
O número sem contagem
• Apesar disso, ainda que pareça estranho, é possível chegar a
uma idéia clara e lógica de número sem recorrer a contagem.
Entrando numa sala de cinema, temos diante de nós dois
conjuntos: o das poltronas da sala e o dos espectadores. Sem
contar, podemos assegurar se esses dois conjuntos têm ou
não igual número de elementos e, se não têm, qual é o de
menor número. Com efeito, se cada assento está ocupado e
ninguém está de pé, sabemos sem contar que os dois
conjuntos têm igual número. Se todas as cadeiras estão
ocupadas e há gente de pé na sala, sabemos sem contar que
há mais pessoas que poltronas.
• Esse conhecimento é possível graças a um procedimento que
domina toda a matemática, e que recebeu o nome de
correspondência biunívoca. Esta consiste em atribuir a cada
objeto de um conjunto um objeto de outro, e continuar
assim até que um ou ambos os conjuntos se esgotem.
A idéia de correspondência
A idéia de correspondência
• A correspondência biunívoca resume-se numa
operação de "fazer corresponder". Pode-se dizer que a
contagem se realiza fazendo corresponder a cada
objeto da coleção (conjunto), um número que
pertence à sucessão natural: 1,2,3...
• A gente aponta para um objeto e diz: um; aponta para
outro e diz: dois; e assim sucessivamente até esgotar
os objetos da coleção; se o último número
pronunciado for oito, dizemos que a coleção tem oito
objetos e é um conjunto finito. Mas o homem de hoje,
mesmo com conhecimento precário de matemática,
começaria a sucessão numérica não pelo um mas por
zero, e escreveria 0,1,2,3,4...
• A criação de um símbolo para representar o
"nada" constitui um dos atos mais audaciosos da
história do pensamento. Essa criação é
relativamente recente (talvez pelos primeiros
séculos da era cristã) e foi devida às exigências da
numeração escrita. O zero não só permite
escrever mais simplesmente os números, como
também efetuar as operações. Imagine o leitor -
fazer uma divisão ou multiplicação em números
romanos! E no entanto, antes ainda dos romanos,
tinha florescido a civilização grega, onde viveram
alguns dos maiores matemáticos de todos os
tempos; e nossa numeração é muito posterior a
todos eles.
Do relativo ao absoluto
• Pareceria à primeira vista que o processo de
correspondência biunívoca só pode fornecer um meio
de relacionar, por comparação, dois conjuntos
distintos (como o das ovelhas do rebanho e o das
pedras empilhadas), sendo incapaz de criar o número
no sentido absoluto da palavra. Contudo, a transição
do relativo ao absoluto não é difícil.
• Criando conjuntos modelos, tomados do mundo que
nos rodeia, e fazendo cada um deles caracterizar um
agrupamento possível, a avaliação de um dado
conjunto fica reduzida à seleçào, entre os conjuntos
modelos, daquele que possa ser posto em
correspondência biunívoca com o conjunto dado.
• Começou assim: as asas de um pássaro podiam simbolizar o
número dois, as folhas de um trevo o número três, as patas
do cavalo o número quatro, os dedos da mão o número
cinco. Evidências de que essa poderia ser a origem dos
números se encontram em vários idiomas primitivos.
• É claro que uma vez criado e adotado, o número se desliga
do objeto que o representava originalmente, a conexão
entre os dois é esquecida e o número passa por sua vez a ser
um modelo ou um símbolo. À medida que o homem foi
aprendendo a servir-se cada vez mais da linguagem, o som
das palavras que exprimiam os primeiros números foi
substituindo as imagens para as quais foi criado. Assim os
modelos concretos iniciais tomaram a forma abstrata dos
nomes dos números. É impossível saber a idade dessa
linguagem numérica falada, mas sem dúvida ela precedeu de
vários milhões de anos a aparição da escrita.
• Todos os vestígios da significação inicial das
palavras que designam os números foram
perdidos, com a possível excessão de cinco
(que em várias línguas queria dizer mão, ou
mão estendida). A explicação para isso é que,
enquanto os nomes dos números se
mantiveram invariáveis desde os dias de sua
criação, revelando notável estabilidade e
semelhança em todos os grupos linguísticos,
os nomes dos objetos concretos que lhes
deram nascimento sofreram uma
metamorfose completa.
Conclusão
• Com esse projeto em prática, poderá os
alunos e professores ter o conhecimento de
como surgiu os números, a sua importância
no nosso cotidiano, a curiosidade da história
da matemática e o porque dos números.
Desse modo o projeto procurou garantir aos
alunos um despertar para a matemática de
forma diferente e interesseira, onde se
envolve o aluno em sua realidade.

Mais conteúdo relacionado

PPT
A história dos Números
DOC
Historia Da Matematica
PPT
História dos números
PPT
História dos números
PPT
História Dos Números Apresentacao1233
PPS
A História dos Números
PPT
HistóRia Dos NúMeros Apresentacao
PPTX
3º encontro pnaic 2014 vânia ok Unidade 02 Matemática
A história dos Números
Historia Da Matematica
História dos números
História dos números
História Dos Números Apresentacao1233
A História dos Números
HistóRia Dos NúMeros Apresentacao
3º encontro pnaic 2014 vânia ok Unidade 02 Matemática

Semelhante a projeto-110828132648-phpapp02 (1).pdf (20)

PPT
PNAIC - Matemática - Caderno 2 Início
PDF
Sistemas de numeração
DOC
A história dos números
PDF
Aulas 8 e 9 - Sistemas de Numeração
PDF
MATEMATICARLOS - INTRODUÇÃO À MATEMÁTICA
PPTX
Matemática contagem.
DOC
Atividades mat 01 agr (aulas 1,2,3)
PPTX
PNAIC CADERNO 2 QUANTIFICAÇÃO, REGISTRO E AGRUPAMENTO U2 1º VERSÃO
PPSX
A história da matemática materiais simbólicos
PPT
PNAIC Matemática 2014 Caderno 3 Construção do sistema de Numeração Decimal
PPT
numero-signo numérico o estudo da matemática
PDF
CONTEXTO HISTÓRICO, POLÍTICO E SOCIAL DO ENSINO DE MATEMÁTICA. - UNIDADE I.pdf
PDF
CONTEXTO HISTÓRICO, POLÍTICO E SOCIAL DO ENSINO DE MATEMÁTICA. - UNIDADE I.pdf
PPTX
História dos números e mudança de base
PPTX
Caderno2 140520215042-phpapp02
PPT
Sistema decimal
PDF
História dos números - 6° ano do fundamental
PPTX
História
PPSX
Fundamentos e metodolodia de matemática
PPSX
Fundamentos e metodolodia de matemática atps
PNAIC - Matemática - Caderno 2 Início
Sistemas de numeração
A história dos números
Aulas 8 e 9 - Sistemas de Numeração
MATEMATICARLOS - INTRODUÇÃO À MATEMÁTICA
Matemática contagem.
Atividades mat 01 agr (aulas 1,2,3)
PNAIC CADERNO 2 QUANTIFICAÇÃO, REGISTRO E AGRUPAMENTO U2 1º VERSÃO
A história da matemática materiais simbólicos
PNAIC Matemática 2014 Caderno 3 Construção do sistema de Numeração Decimal
numero-signo numérico o estudo da matemática
CONTEXTO HISTÓRICO, POLÍTICO E SOCIAL DO ENSINO DE MATEMÁTICA. - UNIDADE I.pdf
CONTEXTO HISTÓRICO, POLÍTICO E SOCIAL DO ENSINO DE MATEMÁTICA. - UNIDADE I.pdf
História dos números e mudança de base
Caderno2 140520215042-phpapp02
Sistema decimal
História dos números - 6° ano do fundamental
História
Fundamentos e metodolodia de matemática
Fundamentos e metodolodia de matemática atps
Anúncio

Último (10)

PPTX
AULA 5_JOGOS-PRÉ DESPORTIVOS_260822.pptx
PPTX
IRPF2025Coletivadeimprensaimposto de renda 2.pptx
PDF
Economia e Macroenomia, Economia Monetária
PPTX
Elaboração de um anteprojeto de investimentos
PPTX
Gestão da controladoriadeneg-190321185028.pptx
PDF
Aulas 1 e 2_ Economia de Recursos Energéticos.pdf
PPTX
Estrutura de Capital das Empresas na Óptica Financeira
PPTX
ESCRITURACAO CONTABIL em contabilidade basica
PDF
EC II - AT02. MACROECONOMIA.Pdf important
PDF
DOC-20250806-WA0031._20250806_135655_0000.pdf
AULA 5_JOGOS-PRÉ DESPORTIVOS_260822.pptx
IRPF2025Coletivadeimprensaimposto de renda 2.pptx
Economia e Macroenomia, Economia Monetária
Elaboração de um anteprojeto de investimentos
Gestão da controladoriadeneg-190321185028.pptx
Aulas 1 e 2_ Economia de Recursos Energéticos.pdf
Estrutura de Capital das Empresas na Óptica Financeira
ESCRITURACAO CONTABIL em contabilidade basica
EC II - AT02. MACROECONOMIA.Pdf important
DOC-20250806-WA0031._20250806_135655_0000.pdf
Anúncio

projeto-110828132648-phpapp02 (1).pdf

  • 2. Introdução • Este projeto tem a finalidade de apresentar a história dos números, como surgiu e a sua importância para a nossa vida. O Projeto História dos números é uma excelente ferramenta de apoio à aprendizagem de matemática, como forma de utiliza-lo na didática da sala de aula. Através desse projeto o educador poderá fazer com que os educandos possam analisar a matemática com outros olhos, percebendo o motivo da história dos números, refletir e interagir.
  • 3. • Portanto ao longo de toda a existência da humanidade os conceitos de número e números têm tido uma enorme influência na nossa cultura e na nossa linguagem. São milhares as palavras que estão claramente associadas a números. Alguns exemplos visíveis são: • Os números servem para transmitir informações de maneira mais precisa. Portanto, são úteis para nos expressarmos e nos comunicarmos. Para facilitar a interpretação das informações, precisamos conhecer os números, suas relações e operações, pois são uma ferramenta indispensável de expressão, representação e comunicaçãio na sociedade atual.
  • 4. • As funções principais dos números: contar, medir, organizar e codificar • O domínio dos números começa pelo conhecimento da sequência numérica. • Por meio do número cardinal conhecemos a quantidade de objetos que existe em uma coleção. • O número serve, além de contar, para indicar a posição que cada objeto ocupa segundo uma ordem estabelecida, e nesse caso é chamado ordinal. • Os números também são utilizados como códigos ou etiquetas para identificar pessoas ou objetos. Exemplos: número das placas dos automóveis, número dos telefones, número das contas correntes em um banco, códigos postais (CEP), medidas de roupas, etc... • •
  • 5. História dos números • A noção de número e suas extraordinárias generalizações estão intimamente ligadas à história da humanidade. E a própria vida está impregnada de matemática: grande parte das comparações que o homem formula, assim como gestos e atitudes cotidianas, aludem conscientemente ou não a juízos aritméticos e propriedades geométricas. Sem esquecer que a ciência, a indústria e o comércio nos colocam em permanente contato com o amplo mundo da matemática.
  • 6. A LINGUAGEM DOS NÚMEROS • Em todas as épocas da evolução humana, mesmo nas mais atrasadas, encontra-se no homem o sentido do número. Esta faculdade lhe permite reconhecer que algo muda em uma pequena coleção (por exemplo, seus filhos, ou suas ovelhas) quando, sem seu conhecimento direto, um objeto tenha sido retirado ou acrescentado.
  • 7. • O sentido do número, em sua significação primitiva e no seu papel intuitivo, não se confunde com a capacidade de contar, que exige um fenômeno mental mais complicado. Se contar é um atributo exclusivamente humano, algumas espécies de animais parecem possuir um sentido rudimentar do número. Assim opinam, pelo menos, observadores competentes dos costumes dos animais. Muitos pássaros têm o sentido do número. Se um ninho contém quatro ovos, pode- se tirar um sem que nada ocorra, mas o pássaro provavelmente abandonará o ninho se faltarem dois ovos. De alguma forma inexplicável, ele pode distinguir dois de três.
  • 8. Uma história curiosa: O corvo assassinado
  • 9. • Um senhor feudal estava decidido a matar um corvo que tinha feito ninho na torre de seu castelo. Repetidas vezes tentou surpreender o pássaro, mas em vão: quando o homem se aproximava, o corvo voava de seu ninho, colocava-se vigilante no alto de uma árvore próxima, e só voltava à torre quando já vazia. Um dia, o senhor recorreu a um truque: dois homens entraram na torre, um ficou lá dentro e o outro saiu e se foi. O pássaro não se deixou enganar e, para voltar, esperou que o segundo homem tivesse saído. O estratagema foi repetido nos dias seguintes com dois, três e quatro homens, sempre sem êxito. Finalmente, cinco homens entraram na torre e depois saíram quatro, um atrás do outro, enquanto o quinto aprontava o trabuco à espera do corvo. Então o pássaro perdeu a conta e a vida.
  • 10. • As espécies zoológicas com sentido do número são muito poucas (nem mesmo incluem os monos e outros mamíferos). E a percepção de quantidade numérica nos animais é de tão limitado alcance que se pode desprezá-la. Contudo, também no homem isso é verdade. Na prática, quando o homem civilizado precisa distinguir um número ao qual não está habituado, usa conscientemente ou não - para ajudar seu sentido do número - artifícios tais como a comparação, o agrupamento ou a ação de contar. Essa última, especialmente, se tornou parte tão integrante de nossa estrutura mental que os testes sobre nossa percepção numérica direta resultaram decepcionantes. Essas provas concluem que o sentido visual direto do número possuído pelo homem civilizado raras vezes ultrapassa o número quatro, e que o sentido tátil é ainda mais limitado.
  • 11. Limitações vêm de longe • Os estudos sobre os povos primitivos fornecem uma notável comprovação desses resultados. Os selvagens que não alcançaram ainda o grau de evolução suficiente para contar com os dedos estão quase completamente desprovidos de toda noção de número. Os habitantes da selva da África do Sul não possuem outras palavras numéricas além de um, dois e muitos, e ainda essas palavras estão desvinculadas que se pode duvidar que os indígenas lhes atribuam um sentido bem claro.
  • 12. • Realmente não há razões para crer que nossos remotos antepassados estivessem mais bem equipados, já que todas as linguagens européias apresentam traços destas antigas limitações: a palavra inglesa thrice, do mesmo modo que a palavra latina ter, possui dois sentidos: "três vezes" e "muito". Há evidente conexão entre as palavras latinas tres (três) e trans (mais além). O mesmo acontece no francês: trois (três) e très (muito). • Como nasceu o conceito de número? Da experiência? Ou, ao contrário, a experiência serviu simplesmente para tornar explícito o que já existia em estado latente na mente do homem primitivo? Eis aqui um tema apaixonante para discussão filosófica.
  • 13. O número sem contagem • Apesar disso, ainda que pareça estranho, é possível chegar a uma idéia clara e lógica de número sem recorrer a contagem. Entrando numa sala de cinema, temos diante de nós dois conjuntos: o das poltronas da sala e o dos espectadores. Sem contar, podemos assegurar se esses dois conjuntos têm ou não igual número de elementos e, se não têm, qual é o de menor número. Com efeito, se cada assento está ocupado e ninguém está de pé, sabemos sem contar que os dois conjuntos têm igual número. Se todas as cadeiras estão ocupadas e há gente de pé na sala, sabemos sem contar que há mais pessoas que poltronas. • Esse conhecimento é possível graças a um procedimento que domina toda a matemática, e que recebeu o nome de correspondência biunívoca. Esta consiste em atribuir a cada objeto de um conjunto um objeto de outro, e continuar assim até que um ou ambos os conjuntos se esgotem.
  • 14. A idéia de correspondência A idéia de correspondência • A correspondência biunívoca resume-se numa operação de "fazer corresponder". Pode-se dizer que a contagem se realiza fazendo corresponder a cada objeto da coleção (conjunto), um número que pertence à sucessão natural: 1,2,3... • A gente aponta para um objeto e diz: um; aponta para outro e diz: dois; e assim sucessivamente até esgotar os objetos da coleção; se o último número pronunciado for oito, dizemos que a coleção tem oito objetos e é um conjunto finito. Mas o homem de hoje, mesmo com conhecimento precário de matemática, começaria a sucessão numérica não pelo um mas por zero, e escreveria 0,1,2,3,4...
  • 15. • A criação de um símbolo para representar o "nada" constitui um dos atos mais audaciosos da história do pensamento. Essa criação é relativamente recente (talvez pelos primeiros séculos da era cristã) e foi devida às exigências da numeração escrita. O zero não só permite escrever mais simplesmente os números, como também efetuar as operações. Imagine o leitor - fazer uma divisão ou multiplicação em números romanos! E no entanto, antes ainda dos romanos, tinha florescido a civilização grega, onde viveram alguns dos maiores matemáticos de todos os tempos; e nossa numeração é muito posterior a todos eles.
  • 16. Do relativo ao absoluto • Pareceria à primeira vista que o processo de correspondência biunívoca só pode fornecer um meio de relacionar, por comparação, dois conjuntos distintos (como o das ovelhas do rebanho e o das pedras empilhadas), sendo incapaz de criar o número no sentido absoluto da palavra. Contudo, a transição do relativo ao absoluto não é difícil. • Criando conjuntos modelos, tomados do mundo que nos rodeia, e fazendo cada um deles caracterizar um agrupamento possível, a avaliação de um dado conjunto fica reduzida à seleçào, entre os conjuntos modelos, daquele que possa ser posto em correspondência biunívoca com o conjunto dado.
  • 17. • Começou assim: as asas de um pássaro podiam simbolizar o número dois, as folhas de um trevo o número três, as patas do cavalo o número quatro, os dedos da mão o número cinco. Evidências de que essa poderia ser a origem dos números se encontram em vários idiomas primitivos. • É claro que uma vez criado e adotado, o número se desliga do objeto que o representava originalmente, a conexão entre os dois é esquecida e o número passa por sua vez a ser um modelo ou um símbolo. À medida que o homem foi aprendendo a servir-se cada vez mais da linguagem, o som das palavras que exprimiam os primeiros números foi substituindo as imagens para as quais foi criado. Assim os modelos concretos iniciais tomaram a forma abstrata dos nomes dos números. É impossível saber a idade dessa linguagem numérica falada, mas sem dúvida ela precedeu de vários milhões de anos a aparição da escrita.
  • 18. • Todos os vestígios da significação inicial das palavras que designam os números foram perdidos, com a possível excessão de cinco (que em várias línguas queria dizer mão, ou mão estendida). A explicação para isso é que, enquanto os nomes dos números se mantiveram invariáveis desde os dias de sua criação, revelando notável estabilidade e semelhança em todos os grupos linguísticos, os nomes dos objetos concretos que lhes deram nascimento sofreram uma metamorfose completa.
  • 19. Conclusão • Com esse projeto em prática, poderá os alunos e professores ter o conhecimento de como surgiu os números, a sua importância no nosso cotidiano, a curiosidade da história da matemática e o porque dos números. Desse modo o projeto procurou garantir aos alunos um despertar para a matemática de forma diferente e interesseira, onde se envolve o aluno em sua realidade.