SlideShare a Scribd company logo
1
Table of Contents
• Analytical Challenges
• Imperatives
• Road Map
• Functions
• Data Integration and Validation
• Improvement Cycles
Understanding Business Data Analytics
Prepared by Alejandro Jaramillo Copyright © 2013
www.DataMeans.com
2
Prepared by Alejandro Jaramillo Copyright © 2013
www.DataMeans.com
 Vendors
◦ Software BI companies use the term Data Analytics to enhance
the value and outline certain functions and capabilities of their
products.
 Technology
◦ IT organizations relate to Data Analytics through the lens of
enterprise solutions, technology architecture, data
management optimization, business users requirements and
data warehousing.
 Business Analytics
◦ Relate to Data Analytics through data analysis to provide
business insights, value and ongoing support to their business
customers
 Executive Leaders
◦ Relate to Data Analytics through results and insights from data
analysis and reports that helps them gain a competitive edge,
predict, manage and strategize the business
12/15/2016Copyright © 2013 www.DataMeans.com 3
12/15/2016
Prepared by Alejandro Jaramillo Copyright © 2013
www.DataMeans.com 4
Executive Leaders
Business
Analytics
Vendors
Technology
Lack of alignment on Data Analytics philosophy , roles and strategy
leads to duplication, increases cost and organizational grid lock
Don’t get the all the
insights that they need
Don’t have accurate access to data,
resources or collaboration to answer
important business questions
Competing roles with Business
Analytics, lack of time and focus to
peel the onion for answers
Solution is not optimized or not well
spec. Not aligned to support clients
business grow. Happy and unhappy
customers
Small analytics convergence=Small Benefits
Lack of Analytics Vision Convergence has a Detrimental Effect
5
Data silos
Hard to get data
Long turn around
times and high
cost
Unable to meet
business needs
on time
Too many cooks
cooking the data
Efficient
Access to
the data
Quick turn
around on
data analysis
Focus on
Answering
business
questions vs
getting and
fulfilling
requirements
and specs
Advanced
Analytics to
Drive
Business
Grow
Build
Efficiencies
and reduced
waste
Build
partnerships
with IT and
business units
Excellent
Business,
technical and
data analytics
skills
Operationalized
analytical
findings
• Too much emphasis
on company data
platform and
adherence to use of
IT tools, policies and
procedures
• Too much reliance
on specs and
requirements
• If it is not in IT scope
of work it won’t
happen
• Every variation of
work is associated
with additional cost
and approvals
Analytics organizations are structured:
• For quick response to the business
• To get the job done independently of tools
or platform
• To adapt to changing business needs
• To address a problem from a business
perspective ©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
Lack of Analytics Vision Convergence Creates
 Unhealthy competition for resources and attention
 Competing visions about data assets management,
technology imperatives and transfer of knowledge
 Lack of unified vision of key business performance
metrics
 Redundancy
 Sprout of data silos
 Struggle for control of data assets
 Hinders collaboration among teams
12/15/2016Copyright © 2013 www.DataMeans.com 6
Good Management of Data Analytics is Paramount
to:
 Impact the Bottom line and sustain business
grow
 Establish consistent versions of business Key
Performance Indicators KPIs
 Build synergies and efficiencies
 Reduce redundancy and cost
12/15/2016Copyright © 2013 www.DataMeans.com 7
Executive Leaders Business Organizations
Technology Organizations Technology Partners
Analytics Driving
Business
8
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
9
Drive strategic
outcomes,
business insights
and answer
business
questions
Balance analysis
with information
needs to find
opportunities
Develop
sustainable and
transferable
analytical
knowledge
Define
performance
metrics, drive
change &
synergies
Manage change
to increase
efficiencies and
profitability
Manage, recruit &
staff Analytical
organizations.
Develop technical
analytical
capabilities.
Establish a single
representation of
business true
reality.
Integrate data
from multiple
Sources.
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
10
Building & Management
Analytics Practice
Promotion Response
Models/Predictive Models
Customer Segmentation/Data
Analysis/ROI
Study Design/Pre and Post
Change Management Analytics
Sales Force Effectiveness/Field
Force Expansion/Call Plan
Custom Turnkey Analytical
Solutions
Multi Channel Marketing
Analytical Support
Data Integration, Data Marts,
Automation & Validation
Reporting Solutions / Reports
Automation & Rationalization
Digital Analytics
©2015 Data Means
11
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
12
TV &
Journal
Ads
Email &
DM
A 360 Degree view of customers is critical for business grow
Sales
Digital
Impressions
Sales Force
Activity
Coupons
&
Vouchers
Costumer
Surveys
Costumer
Master
File
POS
Distributors
Financial
& Cost
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
13
• Customer satisfaction
• Life Time Value
• Segmentation
• Circle of influences
• Demographics
• Attributes
• Email & DM Campaigns
• Engagement Programs
• Digital Impressions
• Coupons & Vouchers
• Loyalty Programs
TheCustomer• Sales Force Effectiveness
• Call Planning
• Incentive Compensation
• Territory Alignment
• Sampling
• Lunch & Learn
Sales $
Explore
Customer
data to
develop
new
insights
Engage
with the
right
message in
the right
channel
Increase Sales
& Efficiencies
Reduce Cost
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
Analyze Target
Track Report
Business
Grow
14
Business
Performance
CRM/Customer
Relationship
Management
Recruitment Auxiliary
Business Analytics Support
• Data Mining
• Predictive Modeling
• Decision Support Analysis & Reporting
©2015 Data Means
15
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
Client has a data
analysis, reporting or
processing critical need
or idea that can not be
met through current
systems or resources
Data
Sources
Efficient
Data
Processing
&
Validation
Process
Final Data
work with client
to come up and
implement the
most efficient and
cost effective
solution for
clients needs
Dynamic &
efficient
process to
conduct data
analysis or
reporting
Analytical Functions
Reporting
16
©2015 Data Means
 Defining change objective
◦ Reduce Cost
◦ Improve Profitability
◦ Increase Efficiencies
 Establish a quantifiable baseline
 Develop a change process
 Implement change
 Measure change Impact
 Recalibrate process
17
Objective
Baseline
Metrics
Implement
Change
Measure
Impact
Recalibrate
Process
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
18
 Segmentation
 Response Models
 Sizing
 Expansion
 KPIs and Dashboard Reporting
 Incentive Compensation
 Geo Alignment
 Effectiveness Measurement
 Call Plan design and execution
 Test & Control Geo tests
©2015 Data Means
0
20
40
60
80
100
120
140
160
1 2 3 4 5 6 7 8 9 10
Avg Sales
Calls Activity
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
1 2 3 4 5 6
Ideas
Information
Data
Understand
the
Problem
Set Goals
Estimate
Opportunity
Build
Consensus
Develop
Program
Get Support
Form Team
Set Work Plan
And
Milestones
Develop
Evaluation
Methodology
Run
Program
Review
Interim
Results
Make
Program
Adjustments
NRx Sales
Productivity
Gains
Adherence
Evaluate
&
Measure
19
Inputs Prepare Execute Output EvaluateDevelop
The Promotional Event Process
Inputs Transformation Output Evaluation
Planning Execution Results
Project Cycle
Analytics Functions Promotion Response
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
20
Population Of Interest
High Value
Targets
No
Targeted
Targeted
Low Value
Targets
Targeted
No
Targeted
Targeted Shift targeting to
Valuable Targets
• Optimized campaigns by
finding the most
valuable customers
• Redesigning targeting
strategy based on data
• Measuring the impact of
campaign using
appropriate statistical
methodology
• Make recommendations
www.DataMeans.com ©2015 Data Means
Repoder
Groups
Score
Range
#
Subscriber
# Cummulative
Subscriber
#
Responders
# Cumulative
Responders
Cumm %
Subscriber
Cumm %
Responders
1 510-806 5,255 5,255 3,000 3000 10% 22%
2 806-870 4,940 10,195 2,500 5,500 19% 41%
3 870-905 4,519 14,715 2,400 7,900 28% 59%
4 905-928 3,731 18,446 2,000 9,900 35% 74%
5 928-945 3,206 21,651 1,000 10,900 41% 82%
6 945-957 2,680 24,332 776 11,676 46% 87%
7 957-966 2,628 26,959 400 12,076 51% 90%
8 966-973 2,522 29,482 300 12,376 56% 93%
9 973-978 2,417 31,899 200 12,576 61% 94%
10 978-981 2,050 33,949 100 12,676 65% 95%
11 981-985 1,944 35,893 80 12,756 68% 96%
12 985-987 1,944 37,837 90 12,846 72% 96%
13 987-988 1,944 39,782 100 12,946 76% 97%
14 988-990 1,944 41,726 90 13,036 79% 98%
15 990-991 1,944 43,671 80 13,116 83% 98%
16 991-992 1,892 45,563 70 13,186 87% 99%
17 992-993 1,839 47,402 60 13,246 90% 99%
18 993-994 1,787 49,189 50 13,296 94% 100%
19 994-995 1,734 50,923 30 13,326 97% 100%
20 995+ 1,629 52,552 22 13,348 100% 100%
Total 52,552 13,348
Score models are used to predict
the likely hood that a customer will
respond to an offering or event.
The score produced by the model is
used to rank customers.
The lower the score the higher the
likelihood to respond
10%
19%
28%
35%
41%
46%
51%
56%
61%
65%
68%
72%
76%
79%
83%
87%
90%
94%
97%
100%
22%
41%
59%
74%
82%
87% 90% 93% 94% 95% 96% 96% 97% 98% 98% 99% 99% 100%100%100%
0%
20%
40%
60%
80%
100%
120%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Score Targeting strategy
Cumm % Subscriber Cumm % Responders
By targeting 35% of the
subscribers we capture
75% of the responders
With scoring model client
will be reaching about a
more profitable groups of
customers at a lower cost
21
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
22
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
23
Business
Intelligence
+
Data
Warehousing
+
Inventory
Management
+
Data
Mining
+
Marketing
Optimization
+
Forecast
+
Marketing
Automation
+
Predictive
Modeling
+
Analytical Evolution
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
Data Integration & Validation
Analytics &
Reporting
Rx
Data
Calls &
Samples
Alignment
Demographic
Promo &
Third Party
Call
Plan
Automated Data Process
Data Standardization
DataMart
Targeting
Promotion
Response
Samples
Optimization
Segmentation
Customer Life
Time Value
Ad Hoc
Brand
Reviews
Marketin
g
Executiv
e
Manage
ment
Field
Force
Support
Call Plan
The Data
The Data
The Processes
The AnalyticsThe Reports
24www.DataMeans.com ©2015 Data Means
Current
Database
New
Database
Both files
Current and new
matched
It is only in
the current
database
It is only in
the new database
Data Migration Making
Sure that your Data is Right
run freqs on matching variables
List and compare a few raw records form bad files to get an idea of the source of mismatches
For large data warehouses migration validating the data is a daunting process
25
Data Integration & Validation
www.DataMeans.com ©2015 Data Means
Data Validation Process
Develop process, for
series of files, in
anticipation of file
delivery.
A batch of
files to be
compared
is
delivered
Run QC
Programs on
the batch
files
Assemble
report on
batch files
(concurrent
w/ run)
QC Programming
Review/ annotate
FAIL
Investigate /
fix action
items
If files are close
user runs reports
with new file and
compares results
Pass
log as
file done
26
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
27
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
12/15/2016Copyright © 2013 www.DataMeans.com 28
Excellence on Data analytics is not about
• Getting state of the art technology to harness the value of big
data (Hadoop, Phyton, SAS, R…etc…)
• Data warehousing with the best breed data base platform
• Data mining to uncover unknown relationships hidden in the data
• Contracting with the smartest software vendors, experts or
analytics companies
Excellence on Data Analytics is about
• Building the foundation to gain business insights using the
available data in an accurate and timely fashion
• Applying business knowledge and sound data analysis
expertise to answer specific business question
• Having the rigor and knowledge to systematically manage
data assets and transform insights into actionable results
• Continuous development of collaborative relationships with
the business, IT, Vendors and other partners
2912/15/2016Copyright © 2013 www.DataMeans.com
Data Analytics Evolution and Maturity
Cycle
30
Analytical Engagement
www.DataMeans.com ©2015 Data Means
31
The Big
Picture
Goals &
Resources
How &
When
Improve
Improve
•Integration
•New Products Launch
•Field Force Restructuring
•Hiring Freeze
•Reorganization
•Recruitment
•Documented
•Validated
•Efficient
•On Time
•Within Budget
•Flexible
Improve
•Find
•Screen
•Recruit
•Present
•Engaged
Resources
Needs
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
12/15/2016Copyright © 2013 www.DataMeans.com 32
Important Elements of a Data Analytics Organization
• Adequate # of Staff
• Analytical Skills (Stats, critical and outside the box
thinking)
• Technical skills (data management, programming skills,
problem solver)
• Availability of appropriate technology tools
• Business knowledge and Excellent communications Skills
• Efficient access to data
• Collaboration
• Clear vision of the future and ability to rally others around
the vision
12/15/2016 33
Analytical Skills Data Accessibility
YES
NO
YES NO NO YES
NO
YES
Collaboration Technical Skills
Adequate # of
Staff
Cross
Functionality
Processes &
Standardization
in Placed
Business
Knowledge
Copyright © 2013 www.DataMeans.com
#1
•Data silos/Managed differently. Some not managed but stored
•Different business rules /Poor documentation
•Data is not normalized
•Manual creation of reports
•Kept in different formats(Excel, Access, SQL server, Oracle, DB2,
Cobol, txt, SAS….etc)
•No efficient data access
•No systematic data QC
#1
•Able to use properly statistical methods to answer a
business question
•Able to create business story from data results
•Draws business implications from data analysis and
reports
•Generates the urgency to react and act based on data
results
#2
•Sound process to standardized,
normalized, aggregate, combined,
validate and QC data at different
levels
•Creation of periodic reports must
be automated
•Centralized analytical data mart
#3
•Understands the business and
market trends
•Knowledge about products and
competitive landscape
•Understand sales and marketing
channel and sale force customer
interactions
#3
•No collaboration with IT partners
•No transfer of knowledge
•No sharing of best practice, tools and lessons
learned
•No responsive to the business partners and
continuous changes of requirements and questions
#4
•Appropriate data analysis and reporting technology platform
•Strong data management and analysis programming skills
•Likes to learn new things and welcomes challenges
•Excellent communications skills
•Team player
•Good management skills
#2
•Lack of
technical,
analytical or
managerial
staff.
•Projects under
staff
•Unable to
maintain
ongoing and
take on new
projects at the
same time
The 3 ChallengesThe 4 Achievements
12/15/2016Copyright © 2013 www.DataMeans.com 34
Optimum
Capabilities
Extremely
Valuable for the
Business
Stagnation/
Knowledge,
Technology and
Process
Dissemination
Middle
Capabilities
Adds Significant
Value to the
Business
Getting loss in
the corporate
organization
shuffle/Opportun
ities to Optimize
Analytics
No
Capabilities
Provides Some
Value to the
Business
Becoming
Irrelevant/Signific
ant Opportunities
to Become a
Shining Star
Value
Risks
Opportunities
12/15/2016Copyright © 2013 www.DataMeans.com 35
Developing and maintaining talent is critical
for an analytics organization
• Have a pipeline for new talent
• Career path and career development for
existing talent
• Encourage Innovation and out of the box
thinking
• Build internal and external partnerships for
talent acquisition and development
Senior
MiddleJunior
Diverse
experience
levels are
important for
success
36
Know
+What…
+When….
Understand
+How….
Optimize Process
+Do it better
+Grow the
market
+Increase sales
Organization’s Analytical Evolution
If organization
knows and
understands, there
is no limit to
improve in making
better business
decisions
©2015 Data Means
Prepared by Alejandro Jaramillo Copyright
© 2013 www.DataMeans.com
Alejandro Jaramillo
732-371-9512
Alexj@datameans.com
37

More Related Content

PPTX
Top Three Reasons Every CEO Needs Managed Services
PPT
Information systems, organizations, management and strategy
PPTX
Proven Strategies to Leverage Your Customer Community to Grow Your Business
PPTX
How to Make Your Renewals Frictionless
PDF
Customer Insight Powerpoint Presentation Slides
PPTX
Competing in the Next SaaS Wave
PPTX
Metrics that Wow! How Coremetrics Became the Customer Service Model of Success
PPTX
Information systems
Top Three Reasons Every CEO Needs Managed Services
Information systems, organizations, management and strategy
Proven Strategies to Leverage Your Customer Community to Grow Your Business
How to Make Your Renewals Frictionless
Customer Insight Powerpoint Presentation Slides
Competing in the Next SaaS Wave
Metrics that Wow! How Coremetrics Became the Customer Service Model of Success
Information systems

What's hot (20)

PDF
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and How
PPTX
Datastax - The Architect's guide to customer experience (CX)
PDF
Find New Revenue with Existing Customers
PDF
CX Analytics for Cloud Services
PDF
Customer analytics. Turn big data into big value
PPTX
Targeted Analytics: Using Core Measures to Jump-Start Enterprise Analytics
PPTX
Business Drivers Behind Data Governance
PDF
Data Governance and Stewardship Roundtable
PDF
DAMA Australia: How to Choose a Data Management Tool
PDF
Bill Stankeiwicz Copy Scope 2010 Bristlecone Co. Strategy
PPTX
The Concept of Email Marketing Explained
PPTX
Unleash Your Data While Ensuring Governance and Security: Reporting, Prism, a...
PDF
Salesforce1 data gov lunch anaheim deck
PDF
Unlocking Success in the 3 Stages of Master Data Management
PPTX
DC Salesforce1 Tour Data Governance Lunch Best Practices deck
PPTX
3 Reasons Why You Need a Chief Renewal Officer
PPTX
DM 101 - Integral - Database and Analytics
PPTX
How to reach your true (email) potential
PDF
Data Driven Strategy Analytics Technology Approach Corporate
PPTX
Data governance and stewardship roundtable 2015
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and How
Datastax - The Architect's guide to customer experience (CX)
Find New Revenue with Existing Customers
CX Analytics for Cloud Services
Customer analytics. Turn big data into big value
Targeted Analytics: Using Core Measures to Jump-Start Enterprise Analytics
Business Drivers Behind Data Governance
Data Governance and Stewardship Roundtable
DAMA Australia: How to Choose a Data Management Tool
Bill Stankeiwicz Copy Scope 2010 Bristlecone Co. Strategy
The Concept of Email Marketing Explained
Unleash Your Data While Ensuring Governance and Security: Reporting, Prism, a...
Salesforce1 data gov lunch anaheim deck
Unlocking Success in the 3 Stages of Master Data Management
DC Salesforce1 Tour Data Governance Lunch Best Practices deck
3 Reasons Why You Need a Chief Renewal Officer
DM 101 - Integral - Database and Analytics
How to reach your true (email) potential
Data Driven Strategy Analytics Technology Approach Corporate
Data governance and stewardship roundtable 2015
Ad

Viewers also liked (19)

PDF
Agile and Minimum Viable Products
PDF
Data Analysis by Multimedia University
PPTX
The Evolution of Data and New Opportunities for Analytics
PPTX
Squirrel – Enabling Accessible Analytics for All
PPTX
Analytics tool comparison
PPTX
Big Data & Business Analytics: Understanding the Marketspace
PDF
Data Analytics for Real-World Business Problems
PPTX
Writing clean code in C# and .NET
PPTX
Writing High Quality Code in C#
PDF
The Future of Business Intelligence
PPSX
C#, OOP introduction and examples
PDF
Align Business Data & Analytics for Digital Transformation
PDF
Data Science-Data Analytics
PDF
Big-data analytics: challenges and opportunities
PDF
Big Data: Issues and Challenges
PPTX
C# Tutorial
PPTX
Business intelligence
PDF
Business Intelligence Presentation (1/2)
PPTX
Business intelligence ppt
Agile and Minimum Viable Products
Data Analysis by Multimedia University
The Evolution of Data and New Opportunities for Analytics
Squirrel – Enabling Accessible Analytics for All
Analytics tool comparison
Big Data & Business Analytics: Understanding the Marketspace
Data Analytics for Real-World Business Problems
Writing clean code in C# and .NET
Writing High Quality Code in C#
The Future of Business Intelligence
C#, OOP introduction and examples
Align Business Data & Analytics for Digital Transformation
Data Science-Data Analytics
Big-data analytics: challenges and opportunities
Big Data: Issues and Challenges
C# Tutorial
Business intelligence
Business Intelligence Presentation (1/2)
Business intelligence ppt
Ad

Similar to Understanding Business Data Analytics (20)

PDF
Eliminate Workload Automation Guess Work with Machine Learning
PDF
How to Create a Data Analytics Roadmap
 
PDF
Erfolgreicher agieren mit Analytics_Markus Barmettler_IBM Symposium 2013
PPTX
Remote but Still Resilient: Zynga and XactShare their Stories on People Analy...
PDF
2013 ALPFA Leadership Submit, Data Analytics in Practice
PDF
MDM - The Key to Successful Customer Experience Managment
PDF
Self-service Analytic for Business Users-19july2017-final
PPTX
Anaplan SPM Webinar series, part 3: Creating a comprehensive approach to sale...
PDF
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and How
PDF
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
PDF
Using Analytics to Grow the Small Business Portfolio
PPTX
PrADS Introduction & offerings 2017
PDF
Technology Strategy for Impact
PPTX
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and...
PDF
Making Money Out of Data
PDF
Transforming Business with Smarter Analytics
PPTX
How to Use Net Promoter Score to Transform the Customer Journey
DOCX
The rising importance of data analytics in 2025 and beyond
PDF
Agile Data Strategy and Lean Execution
PDF
Trillium Software CRMUG Webinar August 6, 2013
Eliminate Workload Automation Guess Work with Machine Learning
How to Create a Data Analytics Roadmap
 
Erfolgreicher agieren mit Analytics_Markus Barmettler_IBM Symposium 2013
Remote but Still Resilient: Zynga and XactShare their Stories on People Analy...
2013 ALPFA Leadership Submit, Data Analytics in Practice
MDM - The Key to Successful Customer Experience Managment
Self-service Analytic for Business Users-19july2017-final
Anaplan SPM Webinar series, part 3: Creating a comprehensive approach to sale...
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and How
Data Architecture Strategies: Building an Enterprise Data Strategy – Where to...
Using Analytics to Grow the Small Business Portfolio
PrADS Introduction & offerings 2017
Technology Strategy for Impact
Total Customer Experience Management Overview #TCE #CEM -- The Why, What and...
Making Money Out of Data
Transforming Business with Smarter Analytics
How to Use Net Promoter Score to Transform the Customer Journey
The rising importance of data analytics in 2025 and beyond
Agile Data Strategy and Lean Execution
Trillium Software CRMUG Webinar August 6, 2013

Recently uploaded (20)

PPTX
Leprosy and NLEP programme community medicine
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
.pdf is not working space design for the following data for the following dat...
PDF
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
annual-report-2024-2025 original latest.
PDF
Introduction to the R Programming Language
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Introduction to Data Science and Data Analysis
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPT
Predictive modeling basics in data cleaning process
Leprosy and NLEP programme community medicine
Clinical guidelines as a resource for EBP(1).pdf
.pdf is not working space design for the following data for the following dat...
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Introduction-to-Cloud-ComputingFinal.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
STERILIZATION AND DISINFECTION-1.ppthhhbx
Reliability_Chapter_ presentation 1221.5784
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
annual-report-2024-2025 original latest.
Introduction to the R Programming Language
Supervised vs unsupervised machine learning algorithms
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Introduction to Data Science and Data Analysis
Miokarditis (Inflamasi pada Otot Jantung)
Predictive modeling basics in data cleaning process

Understanding Business Data Analytics

  • 1. 1 Table of Contents • Analytical Challenges • Imperatives • Road Map • Functions • Data Integration and Validation • Improvement Cycles Understanding Business Data Analytics Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 2. 2 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 3.  Vendors ◦ Software BI companies use the term Data Analytics to enhance the value and outline certain functions and capabilities of their products.  Technology ◦ IT organizations relate to Data Analytics through the lens of enterprise solutions, technology architecture, data management optimization, business users requirements and data warehousing.  Business Analytics ◦ Relate to Data Analytics through data analysis to provide business insights, value and ongoing support to their business customers  Executive Leaders ◦ Relate to Data Analytics through results and insights from data analysis and reports that helps them gain a competitive edge, predict, manage and strategize the business 12/15/2016Copyright © 2013 www.DataMeans.com 3
  • 4. 12/15/2016 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com 4 Executive Leaders Business Analytics Vendors Technology Lack of alignment on Data Analytics philosophy , roles and strategy leads to duplication, increases cost and organizational grid lock Don’t get the all the insights that they need Don’t have accurate access to data, resources or collaboration to answer important business questions Competing roles with Business Analytics, lack of time and focus to peel the onion for answers Solution is not optimized or not well spec. Not aligned to support clients business grow. Happy and unhappy customers Small analytics convergence=Small Benefits Lack of Analytics Vision Convergence has a Detrimental Effect
  • 5. 5 Data silos Hard to get data Long turn around times and high cost Unable to meet business needs on time Too many cooks cooking the data Efficient Access to the data Quick turn around on data analysis Focus on Answering business questions vs getting and fulfilling requirements and specs Advanced Analytics to Drive Business Grow Build Efficiencies and reduced waste Build partnerships with IT and business units Excellent Business, technical and data analytics skills Operationalized analytical findings • Too much emphasis on company data platform and adherence to use of IT tools, policies and procedures • Too much reliance on specs and requirements • If it is not in IT scope of work it won’t happen • Every variation of work is associated with additional cost and approvals Analytics organizations are structured: • For quick response to the business • To get the job done independently of tools or platform • To adapt to changing business needs • To address a problem from a business perspective ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 6. Lack of Analytics Vision Convergence Creates  Unhealthy competition for resources and attention  Competing visions about data assets management, technology imperatives and transfer of knowledge  Lack of unified vision of key business performance metrics  Redundancy  Sprout of data silos  Struggle for control of data assets  Hinders collaboration among teams 12/15/2016Copyright © 2013 www.DataMeans.com 6
  • 7. Good Management of Data Analytics is Paramount to:  Impact the Bottom line and sustain business grow  Establish consistent versions of business Key Performance Indicators KPIs  Build synergies and efficiencies  Reduce redundancy and cost 12/15/2016Copyright © 2013 www.DataMeans.com 7 Executive Leaders Business Organizations Technology Organizations Technology Partners Analytics Driving Business
  • 8. 8 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 9. 9 Drive strategic outcomes, business insights and answer business questions Balance analysis with information needs to find opportunities Develop sustainable and transferable analytical knowledge Define performance metrics, drive change & synergies Manage change to increase efficiencies and profitability Manage, recruit & staff Analytical organizations. Develop technical analytical capabilities. Establish a single representation of business true reality. Integrate data from multiple Sources. Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 10. 10 Building & Management Analytics Practice Promotion Response Models/Predictive Models Customer Segmentation/Data Analysis/ROI Study Design/Pre and Post Change Management Analytics Sales Force Effectiveness/Field Force Expansion/Call Plan Custom Turnkey Analytical Solutions Multi Channel Marketing Analytical Support Data Integration, Data Marts, Automation & Validation Reporting Solutions / Reports Automation & Rationalization Digital Analytics ©2015 Data Means
  • 11. 11 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 12. 12 TV & Journal Ads Email & DM A 360 Degree view of customers is critical for business grow Sales Digital Impressions Sales Force Activity Coupons & Vouchers Costumer Surveys Costumer Master File POS Distributors Financial & Cost ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 13. 13 • Customer satisfaction • Life Time Value • Segmentation • Circle of influences • Demographics • Attributes • Email & DM Campaigns • Engagement Programs • Digital Impressions • Coupons & Vouchers • Loyalty Programs TheCustomer• Sales Force Effectiveness • Call Planning • Incentive Compensation • Territory Alignment • Sampling • Lunch & Learn Sales $ Explore Customer data to develop new insights Engage with the right message in the right channel Increase Sales & Efficiencies Reduce Cost ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 14. Analyze Target Track Report Business Grow 14 Business Performance CRM/Customer Relationship Management Recruitment Auxiliary Business Analytics Support • Data Mining • Predictive Modeling • Decision Support Analysis & Reporting ©2015 Data Means
  • 15. 15 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 16. Client has a data analysis, reporting or processing critical need or idea that can not be met through current systems or resources Data Sources Efficient Data Processing & Validation Process Final Data work with client to come up and implement the most efficient and cost effective solution for clients needs Dynamic & efficient process to conduct data analysis or reporting Analytical Functions Reporting 16 ©2015 Data Means
  • 17.  Defining change objective ◦ Reduce Cost ◦ Improve Profitability ◦ Increase Efficiencies  Establish a quantifiable baseline  Develop a change process  Implement change  Measure change Impact  Recalibrate process 17 Objective Baseline Metrics Implement Change Measure Impact Recalibrate Process ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 18. 18  Segmentation  Response Models  Sizing  Expansion  KPIs and Dashboard Reporting  Incentive Compensation  Geo Alignment  Effectiveness Measurement  Call Plan design and execution  Test & Control Geo tests ©2015 Data Means 0 20 40 60 80 100 120 140 160 1 2 3 4 5 6 7 8 9 10 Avg Sales Calls Activity Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 19. 1 2 3 4 5 6 Ideas Information Data Understand the Problem Set Goals Estimate Opportunity Build Consensus Develop Program Get Support Form Team Set Work Plan And Milestones Develop Evaluation Methodology Run Program Review Interim Results Make Program Adjustments NRx Sales Productivity Gains Adherence Evaluate & Measure 19 Inputs Prepare Execute Output EvaluateDevelop The Promotional Event Process Inputs Transformation Output Evaluation Planning Execution Results Project Cycle Analytics Functions Promotion Response ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 20. 20 Population Of Interest High Value Targets No Targeted Targeted Low Value Targets Targeted No Targeted Targeted Shift targeting to Valuable Targets • Optimized campaigns by finding the most valuable customers • Redesigning targeting strategy based on data • Measuring the impact of campaign using appropriate statistical methodology • Make recommendations www.DataMeans.com ©2015 Data Means
  • 21. Repoder Groups Score Range # Subscriber # Cummulative Subscriber # Responders # Cumulative Responders Cumm % Subscriber Cumm % Responders 1 510-806 5,255 5,255 3,000 3000 10% 22% 2 806-870 4,940 10,195 2,500 5,500 19% 41% 3 870-905 4,519 14,715 2,400 7,900 28% 59% 4 905-928 3,731 18,446 2,000 9,900 35% 74% 5 928-945 3,206 21,651 1,000 10,900 41% 82% 6 945-957 2,680 24,332 776 11,676 46% 87% 7 957-966 2,628 26,959 400 12,076 51% 90% 8 966-973 2,522 29,482 300 12,376 56% 93% 9 973-978 2,417 31,899 200 12,576 61% 94% 10 978-981 2,050 33,949 100 12,676 65% 95% 11 981-985 1,944 35,893 80 12,756 68% 96% 12 985-987 1,944 37,837 90 12,846 72% 96% 13 987-988 1,944 39,782 100 12,946 76% 97% 14 988-990 1,944 41,726 90 13,036 79% 98% 15 990-991 1,944 43,671 80 13,116 83% 98% 16 991-992 1,892 45,563 70 13,186 87% 99% 17 992-993 1,839 47,402 60 13,246 90% 99% 18 993-994 1,787 49,189 50 13,296 94% 100% 19 994-995 1,734 50,923 30 13,326 97% 100% 20 995+ 1,629 52,552 22 13,348 100% 100% Total 52,552 13,348 Score models are used to predict the likely hood that a customer will respond to an offering or event. The score produced by the model is used to rank customers. The lower the score the higher the likelihood to respond 10% 19% 28% 35% 41% 46% 51% 56% 61% 65% 68% 72% 76% 79% 83% 87% 90% 94% 97% 100% 22% 41% 59% 74% 82% 87% 90% 93% 94% 95% 96% 96% 97% 98% 98% 99% 99% 100%100%100% 0% 20% 40% 60% 80% 100% 120% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Score Targeting strategy Cumm % Subscriber Cumm % Responders By targeting 35% of the subscribers we capture 75% of the responders With scoring model client will be reaching about a more profitable groups of customers at a lower cost 21 ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 22. 22 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 24. Data Integration & Validation Analytics & Reporting Rx Data Calls & Samples Alignment Demographic Promo & Third Party Call Plan Automated Data Process Data Standardization DataMart Targeting Promotion Response Samples Optimization Segmentation Customer Life Time Value Ad Hoc Brand Reviews Marketin g Executiv e Manage ment Field Force Support Call Plan The Data The Data The Processes The AnalyticsThe Reports 24www.DataMeans.com ©2015 Data Means
  • 25. Current Database New Database Both files Current and new matched It is only in the current database It is only in the new database Data Migration Making Sure that your Data is Right run freqs on matching variables List and compare a few raw records form bad files to get an idea of the source of mismatches For large data warehouses migration validating the data is a daunting process 25 Data Integration & Validation www.DataMeans.com ©2015 Data Means
  • 26. Data Validation Process Develop process, for series of files, in anticipation of file delivery. A batch of files to be compared is delivered Run QC Programs on the batch files Assemble report on batch files (concurrent w/ run) QC Programming Review/ annotate FAIL Investigate / fix action items If files are close user runs reports with new file and compares results Pass log as file done 26 ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 27. 27 Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 28. 12/15/2016Copyright © 2013 www.DataMeans.com 28 Excellence on Data analytics is not about • Getting state of the art technology to harness the value of big data (Hadoop, Phyton, SAS, R…etc…) • Data warehousing with the best breed data base platform • Data mining to uncover unknown relationships hidden in the data • Contracting with the smartest software vendors, experts or analytics companies Excellence on Data Analytics is about • Building the foundation to gain business insights using the available data in an accurate and timely fashion • Applying business knowledge and sound data analysis expertise to answer specific business question • Having the rigor and knowledge to systematically manage data assets and transform insights into actionable results • Continuous development of collaborative relationships with the business, IT, Vendors and other partners
  • 29. 2912/15/2016Copyright © 2013 www.DataMeans.com Data Analytics Evolution and Maturity Cycle
  • 31. 31 The Big Picture Goals & Resources How & When Improve Improve •Integration •New Products Launch •Field Force Restructuring •Hiring Freeze •Reorganization •Recruitment •Documented •Validated •Efficient •On Time •Within Budget •Flexible Improve •Find •Screen •Recruit •Present •Engaged Resources Needs ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com
  • 32. 12/15/2016Copyright © 2013 www.DataMeans.com 32 Important Elements of a Data Analytics Organization • Adequate # of Staff • Analytical Skills (Stats, critical and outside the box thinking) • Technical skills (data management, programming skills, problem solver) • Availability of appropriate technology tools • Business knowledge and Excellent communications Skills • Efficient access to data • Collaboration • Clear vision of the future and ability to rally others around the vision
  • 33. 12/15/2016 33 Analytical Skills Data Accessibility YES NO YES NO NO YES NO YES Collaboration Technical Skills Adequate # of Staff Cross Functionality Processes & Standardization in Placed Business Knowledge Copyright © 2013 www.DataMeans.com #1 •Data silos/Managed differently. Some not managed but stored •Different business rules /Poor documentation •Data is not normalized •Manual creation of reports •Kept in different formats(Excel, Access, SQL server, Oracle, DB2, Cobol, txt, SAS….etc) •No efficient data access •No systematic data QC #1 •Able to use properly statistical methods to answer a business question •Able to create business story from data results •Draws business implications from data analysis and reports •Generates the urgency to react and act based on data results #2 •Sound process to standardized, normalized, aggregate, combined, validate and QC data at different levels •Creation of periodic reports must be automated •Centralized analytical data mart #3 •Understands the business and market trends •Knowledge about products and competitive landscape •Understand sales and marketing channel and sale force customer interactions #3 •No collaboration with IT partners •No transfer of knowledge •No sharing of best practice, tools and lessons learned •No responsive to the business partners and continuous changes of requirements and questions #4 •Appropriate data analysis and reporting technology platform •Strong data management and analysis programming skills •Likes to learn new things and welcomes challenges •Excellent communications skills •Team player •Good management skills #2 •Lack of technical, analytical or managerial staff. •Projects under staff •Unable to maintain ongoing and take on new projects at the same time The 3 ChallengesThe 4 Achievements
  • 34. 12/15/2016Copyright © 2013 www.DataMeans.com 34 Optimum Capabilities Extremely Valuable for the Business Stagnation/ Knowledge, Technology and Process Dissemination Middle Capabilities Adds Significant Value to the Business Getting loss in the corporate organization shuffle/Opportun ities to Optimize Analytics No Capabilities Provides Some Value to the Business Becoming Irrelevant/Signific ant Opportunities to Become a Shining Star Value Risks Opportunities
  • 35. 12/15/2016Copyright © 2013 www.DataMeans.com 35 Developing and maintaining talent is critical for an analytics organization • Have a pipeline for new talent • Career path and career development for existing talent • Encourage Innovation and out of the box thinking • Build internal and external partnerships for talent acquisition and development Senior MiddleJunior Diverse experience levels are important for success
  • 36. 36 Know +What… +When…. Understand +How…. Optimize Process +Do it better +Grow the market +Increase sales Organization’s Analytical Evolution If organization knows and understands, there is no limit to improve in making better business decisions ©2015 Data Means Prepared by Alejandro Jaramillo Copyright © 2013 www.DataMeans.com