SlideShare a Scribd company logo
VECTOR-VALUED FUNCTION
rahimahj@ump.edu.my
Prepared by :MISS RAHIMAH JUSOH @
AWANG
ectorposition v
aasexpressedbecanD-3inequationcurveorlineA
kjir zyx 
:equationparametricin the
)(tfx  )(tgy 
)(thz 
kjir )()()((t) thtgtf 
)(),(),((t) thtgtfr
DOMAIN
Example 1
   
Determine the domain of the fo11owing function
cos ,1n 4 , 1
So1ution:
The first component is defined for a11 's.
The second component is on1y defined for 4.
The third component is on1y defined for
t t t t
t
t
  

r
 
1.
Putting a11 of these together gives the fo11owing domain.
1,4
This is the 1argest possib1e interva1 for which a11 three
components are defined.
t  

rahimahj@ump.edu.my
kjir )4(3)(ofgraphSketch the(b)
line.the
sketchThen(2,3,-1)?and(1,2,2)pointsthepasses
thatlinestraightaofequationlinetheisWhat(a)
2
ttt 
Example 2
kjir )23()2()1()(
232)21(
22)23(
11)12(Hence,
Then.(2,3,-1))z,(,1whenand
)2,2,1(),(,0nthat wheSuppose(a)
111
0,00






tttt
ttz
tty
ttx
,yxt
zyxt
rahimahj@ump.edu.my
Solution :
001 )( PtPPP 
rahimahj@ump.edu.my
Thus, the line:
rahimahj@ump.edu.my
3plane
on the4parabolatheisgraphtheis,chwhi
4z,3
thatfindweThus,
4,3,
arecurvetheofequationsParametric(b)
2
2
2




y
xz
xy
tzytx
Solution :
rahimahj@ump.edu.my
rahimahj@ump.edu.my
functionfollowingtheofeachofgraphSketch the
1,)( tt r(a) (b) ttt sin3,cos6)( r
Solution :
The first thing that we need to do is plug in a few values
of t and get some position vectors. Here are a few,
(a)
Example 3
rahimahj@ump.edu.my
The sketch of the curve is given as follows (red line).
rahimahj@ump.edu.my
Solution :
(b)
As in Question (a), we plug in some values of t.
rahimahj@ump.edu.my
The sketch of the curve is given as follows (red line).
functionfollowingtheofeachofgraphSketch the
kjir cttatat  sincos)(
Example 4
CIRCULAR HELIX
Chapter2vectorvaluedfunction 150105020944-conversion-gate02
functionsscalaraisResult)()())((
functionsvectorareResults
)()())((
)()())((
)()())((
)()())((
Then
.offunctionscalaraisandoffucntionsareGandFSuppose
theorem.followingthehaveweThus
vectors.ofpropertiesloperationaeinherit thfunctionsVector
ttt
ttt
ttt
ttt
ttt
tt
GFGF
GFGF
FF
GFGF
GFGF














rahimahj@ump.edu.my
THEOREM 2.1
kji
kjikji
GFGF
GFGF
FGF
kjiG
kjiFGF
)sin5()
1
()(
5
1
)sin(
)()())(((i)
))(((iv)))(((iii)
))(((ii)))(((i)
find,5
1
)(and
sin)(bydefinedandfunctionsvectorFor the
2
2
2
t
t
ttt
t
tttt
ttt
tt
tet
t
tt
tttt
t







rahimahj@ump.edu.my
Example 4
Solution :
)()sin5()
sin
5(
5
1
sin
)5
1
()sin(
)()())(((iii)
)sin()()(
)())(()ii(
22
2
2
2
kji
kji
kjikji
GFGF
kji
FF
ttttt
t
t
t
t
t
ttt
t
tttt
ttt
teteet
tete
ttt
tt






rahimahj@ump.edu.my
Solution :
rahimahj@ump.edu.my
Solution :
tt
t
tttt
ttt
sin51
)5
1
()sin(
)()())(((iv)
3
2



kjikji
GFGF
rahimahj@ump.edu.my
Example 5
246)(
1226)(
4)52(4)(3)(
if),(and),(Find
2
32
kiF
kjiF
kjiF
FF
tt
ttt
tt-tt
tt




Solution :
G
FG
FGF
G
FG
FGF
GF
GF
F
F
GF




dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
cc
dt
d
)()(iv
)(iii)(
)()ii(
)((i)
then,scalaraisc
andfunctionvectorabledifferentiareandIf:4.3Theorem
rahimahj@ump.edu.my
THEOREM 2.2
tttt
tttt
ttttt
dt
d
dt
d
dt
d
sin11cos)1(5
)cossin()310(
)sin(cos)5(
)()i(
2
2
32




jikji
jikji
G
FG
FGF
rahimahj@ump.edu.my
Example 6
)((iii)),((ii)),((i)
find,cossin)(,5)(If 32
FFGFGF
jiGkjiF


dt
d
dt
d
dt
d
ttttttt
Solution :
53
2
2323
232
62100
2)()iii(
)cos11sinsin(5
t)sin3cos(-t)cos3sin(
0cossin
3110
0sincos
5
)()ii(
ttt
dt
d
dt
d
ttttt
tttttt
tt
tt
tt
ttt
dt
d
dt
d
dt
d






F
FFF
k
ji
kjikji
G
FG
FGF
rahimahj@ump.edu.my
Solution :
rahimahj@ump.edu.my
INTEGRATION OF VECTOR
FUNCTIONS
))(())(())(()(
thenb],[a,onofand,,
functionsintegrablesomefrom)()()()(If
ise.componentwdonealsoisfunctionsvectorofnIntegratio
b
a
kjiF
kjiF
  

b
a
b
a
b
a
dtthdttgdttfdtt
thgf
thtgtft
rahimahj@ump.edu.my
Example 7
Solution :
kji
kji
kjiF
kjiF
F
802-42
])5()2[(
4)52()43()(
4t)52()43()(
if)(Find
3
1
4223
3
1
3
3
1
3
1
3
1
2
32
3
1




























 

ttttt
dttdttdtttdtt
tttt
dtt
rahimahj@ump.edu.my
 












b
a
dt
dy
dt
dx
L
22
 


















b
a
dt
dz
dt
dy
dt
dx
L
222
In 2-space
In 3-space
In general,
 
b
a
b
a
tL
dt
d
L )('or r
r
Notes: Smooth Curve
The graph of the vector function defined by
r(t) is smooth on any interval of t where is
continuous and .
The graph is piecewise smooth on an interval
that can be subdivided into a finite number of
subintervals on which r is smooth.
r
  0t r
rahimahj@ump.edu.my
Find the arc length of the parametric curve
4
3
0;2,sin,cos)( 33 
 tztytxa
10;2,,)(  
ttzeyexb tt
Find the arc length of the graph of r(t)
42;6
2
1
)()( 23
 ttttta kjir
20;2sin3cos3)()(  tttttb kjir
4
3
: LAns
1
: 
 eeLAns
58: LAns
132: LAns
Example 8
Example 9
Chapter2vectorvaluedfunction 150105020944-conversion-gate02
If r(t) is a vector function that defines a smooth graph,
then at each point a unit tangent vector is
 
 
 
t
t
t



r
T
r
UNIT TANGENT VECTOR
   3
a) Find the derivative of 1 sin 2
b) Find the unit tangent vector at the point where 0.
t
t t te t
t

   

r i j k
Example 10
curve.thetont vectorunit tangetheiswhere
asbydenoted),(curvethevector to
normalunitprinciplethedefinewe,0If
T
Nr
T
t
dtd 
rahimahj@ump.edu.my
)('
)('
T
T
t
t
dtd
dtd
T
T
N 
UNIT NORMAL VECTOR
).(curvethetoly,respectivevector
unitprincipaltheandnt vectorunit tangetheareandwhere
asdefinediscurveaofvectorbinormalThe
tr
NT
B
rahimahj@ump.edu.my
BINORMAL VECTOR
NTB 
 
Find the unit normal and binormal
vectors for the circular helix
cos sint t t t  r i j k
Example 11
curve.thetont vectorunit tangetheiswhere
asdefinedis)(curvesmoothaofcurvatureThe
T
r t
rahimahj@ump.edu.my
)('
)('
t
t
dtd
dtd
r
T
r
T

CURVATURE
3

 


r r
r
Curvature is the measure of how “sharply” a curve r(t) in
2-space or 3-space “bends”.
Find the curvature of the helix traced out by
  2sin ,2cos ,4t t t tr
Example 12
Radius of Curvature
asdefinediscurvatureofradiusitsthen
),(curvesmooththeofcurvaturetheisIf

 tr


1

thentime,iswhere),r(ectorposition v
bygivencurvethealongmovesparticleaIf
tt
rahimahj@ump.edu.my
dt
d
t
r
v  )(velocity
2
2
)(onaccelerati
dt
d
dt
d
t
rv
a 
dt
ds
t  )(speed v
rahimahj@ump.edu.my
Example 13
.2when
particletheofonacceleratiandspeedvelocity,theFind
sincos)(
bygivenisafter timeparticleaofectorposition vThe
3


t
tttt
t
jir
Solution :
kji
kjiv
kji
r
v
1242.09.0
)2(3)2(cos)2(sin
2when
)3()(cos)(sin
velocityobtain thewe,w.r.tatingDifferenti
2
2




t
ttt
dt
d
t
kji
kjia
kji
v
a
a
v
129.00.42
)2(6)2sin()2cos(,2when
6)sin()cos(
bygivenisonacceleratiThe
04.12)2(91,2when
91)3()(cos)sin(
bygivenisany timeforspeedThe
4
42222






t
ttt
dt
d
t
tttt-
t



rahimahj@ump.edu.my
rahimahj@ump.edu.my
Example 14
kjir
r
kjiv
v


2)0(particle
theof)(ectorposition vtheFind
2cos)(
bygivenismotioninparticleaofVelocity
2
t
ttet t
rahimahj@ump.edu.my
     
C
Ce
cc
C
t
te
c
t
ctce
tdtdttdtet
dtd
t
t
t








i
kjir
kji
kji
kji
kjir
rv
2
)0(2sin
)0(
3
1
)0(
cCwhere
2
2sin
3
1
)
2
2sin
()
3
1
()(
2cos)(
havewe,Since
30
321
3
32
3
1
2
Solution :
kji
kjikjir
kji
kjii
r
)1
2
2sin
()1
3
1
()1(
)
2
2sin
(
3
1
)(
obtainweHence
C
2
obtainwe),0(ofegiven valutheusingBy
3
3




t
te
t
tet
C
t
t
rahimahj@ump.edu.my
Find the position vector R(t), given the
velocity V(t) and the initial position R(0) for
   2 2
; 0 4t
t t e t     V i j k R i j k
Example 15
rahimahj@ump.edu.my
rahimahj@ump.edu.my
“All our dreams can come true, if we have the
courage to pursue them”

More Related Content

PDF
Lesson 7: Vector-valued functions
PPTX
Signals and Systems Assignment Help
PPT
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
DOC
Time and space complexity
PPTX
Fourier transform
PDF
mixing_time_poster
PPTX
Asymptotic Notations
Lesson 7: Vector-valued functions
Signals and Systems Assignment Help
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Time and space complexity
Fourier transform
mixing_time_poster
Asymptotic Notations

What's hot (20)

PPTX
Asymptotic notations(Big O, Omega, Theta )
PDF
Fourier-transform analysis of a unilateral fin line and its derivatives
PPTX
Isomorphism
PDF
Chapter 2 fourier transform
PDF
Introduction to Fourier transform and signal analysis
PPT
Asymptotic notation
PPTX
Signals Processing Assignment Help
PPT
Algorithm.ppt
PPTX
Properties of fourier transform
DOC
Sns pre sem
PPTX
REVISION- UNIT 2 -ANALYSIS OF CONTINUOUS TIME SIGNALS
PDF
Asymptotic Notation
PPT
Asymptotic Notation and Complexity
PPT
Fourier series
PPT
periodic functions and Fourier series
PPTX
Seismic data processing lecture 4
PPT
Asymptotic notations
Asymptotic notations(Big O, Omega, Theta )
Fourier-transform analysis of a unilateral fin line and its derivatives
Isomorphism
Chapter 2 fourier transform
Introduction to Fourier transform and signal analysis
Asymptotic notation
Signals Processing Assignment Help
Algorithm.ppt
Properties of fourier transform
Sns pre sem
REVISION- UNIT 2 -ANALYSIS OF CONTINUOUS TIME SIGNALS
Asymptotic Notation
Asymptotic Notation and Complexity
Fourier series
periodic functions and Fourier series
Seismic data processing lecture 4
Asymptotic notations
Ad

Similar to Chapter2vectorvaluedfunction 150105020944-conversion-gate02 (20)

PDF
Applied III Chapter 4(1).pdf
PPTX
Curves in space
PPTX
Presentation on calculus
PDF
1st and 2and Semester Physics Straem (2014-June) Question Papers
PPTX
Lec 1.0.pptx
PDF
UNIT III Geometric curves unit 3 geometric modeling
PPTX
2018 specialist lecture st josephs geelong
PPTX
Class8 calculus ii
PPT
Pre cal drill
PPT
1627 simultaneous equations and intersections
PDF
Continuity and differentiation
PDF
Section 10.2
PDF
math-10
PDF
CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf
PDF
Complex analysis book by iit
PPTX
TRACING OF CURVE (CARTESIAN AND POLAR)
PDF
torsionbinormalnotes
DOCX
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
PDF
Section 10.1
PDF
Solutions of AHSEC Mathematics Paper 2015
Applied III Chapter 4(1).pdf
Curves in space
Presentation on calculus
1st and 2and Semester Physics Straem (2014-June) Question Papers
Lec 1.0.pptx
UNIT III Geometric curves unit 3 geometric modeling
2018 specialist lecture st josephs geelong
Class8 calculus ii
Pre cal drill
1627 simultaneous equations and intersections
Continuity and differentiation
Section 10.2
math-10
CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf
Complex analysis book by iit
TRACING OF CURVE (CARTESIAN AND POLAR)
torsionbinormalnotes
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
Section 10.1
Solutions of AHSEC Mathematics Paper 2015
Ad

More from Cleophas Rwemera (20)

PPT
Chapter003 150907175411-lva1-app6891
PPT
Chapter002 150831173907-lva1-app6892
PPT
Chapter001 150823230128-lva1-app6892
PPT
Chapter25 cancer-140105085413-phpapp01
PPT
Chapter24 immunology-140105101108-phpapp02
PPT
Chapter23 nervecells-140105100942-phpapp02
PPT
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
PPT
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
PPT
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
PPT
Chapter19 integratingcellsintotissues-140105095535-phpapp02
PPT
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
PPT
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
PPT
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
PPT
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
PPT
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
PPT
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
PPT
Chapter12 cellularenergetics-140105093734-phpapp01
PPT
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
PPT
Chapter10 biomembranestructure-140105093829-phpapp02
PPT
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter003 150907175411-lva1-app6891
Chapter002 150831173907-lva1-app6892
Chapter001 150823230128-lva1-app6892
Chapter25 cancer-140105085413-phpapp01
Chapter24 immunology-140105101108-phpapp02
Chapter23 nervecells-140105100942-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01

Recently uploaded (20)

PDF
A systematic review of self-coping strategies used by university students to ...
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
1_English_Language_Set_2.pdf probationary
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Hazard Identification & Risk Assessment .pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
IGGE1 Understanding the Self1234567891011
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
Trump Administration's workforce development strategy
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
A systematic review of self-coping strategies used by university students to ...
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Final Presentation General Medicine 03-08-2024.pptx
1_English_Language_Set_2.pdf probationary
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Hazard Identification & Risk Assessment .pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
UNIT III MENTAL HEALTH NURSING ASSESSMENT
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
Unit 4 Skeletal System.ppt.pptxopresentatiom
Digestion and Absorption of Carbohydrates, Proteina and Fats
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Chinmaya Tiranga quiz Grand Finale.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Practical Manual AGRO-233 Principles and Practices of Natural Farming
IGGE1 Understanding the Self1234567891011
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Trump Administration's workforce development strategy
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE

Chapter2vectorvaluedfunction 150105020944-conversion-gate02