1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
“Ab-Initio Solution of the Many-Electron Schrödinger
Equation with Deep Neural Networks”
Kensuke Wakasugi, Panasonic Corporation.
タイトル:
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
著者:
David Pfau, James S. Spencer, and Alexander G. de G. Matthews(DeepMind)
その他:
19/09/05にarXivに投稿.
選書理由:
計算科学の分野におけるDNNを使った研究分野で,今後期待できそうな論文なため.
※特に断りがない限り,図・表・式は上記論文より引用したものです.
書誌情報
Wakasugi, Panasonic Corp.
2
背景
Wakasugi, Panasonic Corp.
3
Many-Electron Schrödinger Equationの求解は計算困難
 Schrödinger Equationとは,物質中の原子核,電子に要請される関係性を
表す方程式
 原子核と電子の配置から電気的・力学的・化学的特性が計算可能なため,
材料開発に有効
 しかし,一般にこの方程式を解くことは困難
 窒素(N₂)の場合,電子14個に関する微分方程式となり
14個の電子分布を表すパラメータについて数値求解が必要
 そこで,実行可能な計算量になるように,近似を行うが,
近似の程度と計算精度がトレードオフ
ψ:波動関数
H:ハミルトニアン
E:エネルギー
r:電子座標(負電荷)
R:原子核座標(正電荷)
Z:電荷
r_i
r_j
R_J
R_I
ハミルトニアンの第1項は,運動エネルギーに対応.
第2~4項は,原子核・電子の全組み合わせについての
静電ポテンシャルエネルギーに対応(多体問題となっている)
物理法則からの要請を満たし,効率的に計算可能な
波動関数ψの表現方法が求められる
関連研究
Wakasugi, Panasonic Corp.
4
計算したエネルギーを教師データとして学習
 ポテンシャルを入力画像とし,一電子エネルギーを予測
 波動関数ψを直接扱っていない
引用:Mills, K., Spanner, M., & Tamblyn, I. (2017). Deep learning and the Schrödinger equation. Physical Review A, 96(4), 042113.
計算科学の従来法
Wakasugi, Panasonic Corp.
5
反対称性を満たす波動関数としてスレーター行列式を利用
イメージ図
電子が2個の系
φ1(x)
φ2 (x)
反対称性
x2
x1
ψ(x1, x2) = φ1(x1)φ2(x2) – φ2(x1)φ1(x2)
= det[Φk] ただし, k={1,2}
φ3 (x)
φ4 (x)
スレーター行列式による波動関数
ψ(x1, x2) = -ψ(x2,x1)
重み付き線形和に拡張(Coupled Cluster法)
ψ(x1, x2) = Σk ωkdet[Φk]
電子軌道φの様々な組み合わせについて考慮
電子座標を交換すると,波動関数の符号が反転する
提案手法
Wakasugi, Panasonic Corp.
6
物理法則からの要請を組み込んだNNを構築
① 電子 → 電子のベクトル(とノルム),電子 → 原子核
のベクトル(とノルム)を入力に取る
⇒ハミルトニアンの構成要素を反映
② 電子-電子の特徴量を,電子-原子核の特徴量にconcat
⇒2電子の特徴量を1電子の特徴量に付加し,
層を重ねることで,多体問題を扱う
③ 1電子波動関数から行列式を構成し,
Coupled Cluster法に倣った波動関数を出力
※Coupled Cluster法は,現在,計算科学分野で最も高精度な手法.
ただし,計算コストは高い
①
②
③
提案手法
Wakasugi, Panasonic Corp.
7
物理法則からの要請を組み込んだNNを構築
④
学習パラメータ
前層の出力(と重みとバイアス)
④ 原子核から無限遠方で0になる.減衰には異方性を含む
物理的な制約を直接NNに組み込んでいる
波動関数の最適化
Wakasugi, Panasonic Corp.
8
エネルギーの期待値を最小化する波動関数パラメータを求める
 量子力学に特有の期待値計算の式だが,基本的には統計学と同様.
ψが確率分布,Hが期待値の計算対象になっている
 n個の電子座標Xに関する期待値となっており,計算困難なポイント
近似計算は、従来の計算科学の手法を踏襲
=
∫ 𝑑𝐗𝜓∗ 𝐗
𝜓 𝐗
𝜓 𝐗
𝐻𝜓 𝐗
∫ 𝑑𝐗𝜓∗ 𝐗 𝜓 𝐗
=
∫ 𝑑𝐗 𝜓 𝐗 2 𝜓−1 𝐗 𝐻𝜓 𝐗
∫ 𝑑𝐗 𝜓 𝐗 2
=
∫ 𝑑𝐗 𝜓 𝐗 2 𝐸𝐿(𝐗)
∫ 𝑑𝐗 𝜓 𝐗 2
∵ 𝐸𝐿(𝐗) = 𝜓−1 𝐗 𝐻𝜓 𝐗
= 𝑬 𝑝 𝑿 𝐸𝐿 𝐗 ∵ 𝑝 𝑿 = 𝜓 𝐗 2
波動関数の最適化
Wakasugi, Panasonic Corp.
9
サンプリング,自然勾配法,クロネッカー積により,微分を近似計算
微分を計算するために,
サンプリングによる積分計算と,
Fisher情報行列を使った自然勾配法,
クロネッカー積による情報行列の近似計算,
を行う.
Pre-training
Wakasugi, Panasonic Corp.
10
計算効率および収束安定化のため,HF法に基づき事前学習
Hartree-Fock(HF)法
ψ(X) = det[Φ]
スレーター行列式1つを使い,基底状態の電子について考慮.
電子相関は考慮しない
 NNによる波動関数と,HF法による波動関数の誤差を目的関数とする
 ただし,期待値計算のサンプリングには両者を混合した分布を採用
計算対象
Wakasugi, Panasonic Corp.
11
可視化にはVESTAを使用.
K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr., 44, 1272-1276 (2011).
NH3
CH4 C4H6
C2H4
 論文中に座標表記されているものを可視化.
 この他にも,単原子やCOなども計算している.
比較手法
Wakasugi, Panasonic Corp.
12
手法 説明
Hartree-Fock
1つのスレーター行列式を
使う基本的な解法
事前学習に利用
Fermi Net 物理制約を組み込んだNN 提案手法
Slater-Jastrow Net
Slater-Jastrowの補正項の係数を
NNで出力
比較手法
VMC/DMC
with Slater-Jastrow
HF法に電子相関補正項を
追加したもの
比較手法
CCSD(T):
coupled cluster
複数のスレーター行列式を使う解法 比較手法
FCI:
full configuration interaction
複数のスレーター行列式を使う解法 正解値扱い
エネルギーの値に関して,CCSD法を基準に比較
※最も正確な計算モデルは
計算対象によって異なる
結果
Wakasugi, Panasonic Corp.
13
Slater-Jastrow(Net)と比較し高精度を達成
 a:行列式を1つに限定して,従来法と比較
 b:行列式の個数と性能の推移
結果
Wakasugi, Panasonic Corp.
14
実験値との比較において,CCSD法を上回る精度を達成
 Exact(一番正確な計算)に近いものを太字で表示
 Fermi Netが全体としては最も誤差が少ない
結果
Wakasugi, Panasonic Corp.
15
低分子についてもCCSD法と同等の性能を達成
結果
Wakasugi, Panasonic Corp.
16
CCSD法では計算を誤る系においても,正確な計算が可能
この論文の良い点
従来法では,計算対象の系に応じてモデルを選択する必要があったが,
Fermi Netは同じNNを用いて,それぞれの系の最適な既存モデルに匹敵す
る性能を達成した
Wakasugi, Panasonic Corp.
17
汎用的な計算科学のモデルとして期待される
まとめ
• 波動関数の表現方法として,物理法則の制約を組み込んだFermi Netを提案
• 計算対象の系ごとの既存最適モデルに匹敵する精度を達成した
Wakasugi, Panasonic Corp.
18
雑感
• NNの構造レベルで,物理法則の制約を満たすような作り方が面白い
• 従来の波動関数に関する知見を直接組み込んでおり,
物理・化学の研究者にも受け入れやすいのではないか.
(従来法の段階で,任意設計できる箇所があり,そこをNN重みで学習させている)
• 計算コストに関してはCCSD法などと同等と述べており,計算効率化につい
ては今後に期待される.
Wakasugi, Panasonic Corp.
19

More Related Content

PDF
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
PPTX
もうすぐ来る新しい DirectQuery の自動更新をいま可能なモノで模倣してみた!~ 誕生日のパラドックスを使って体験するのだ ~
PPTX
量子コンピュータの量子化学計算への応用の現状と展望
PDF
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
PPTX
Nmapの真実(続)
PDF
20180619 AWS Black Belt Online Seminar データレイク入門: AWSで様々な規模のデータレイクを分析する効率的な方法
PDF
20200826 AWS Black Belt Online Seminar AWS CloudFormation
PDF
(今ちゃんと振り返る) ゴール指向要求分析 入門
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
もうすぐ来る新しい DirectQuery の自動更新をいま可能なモノで模倣してみた!~ 誕生日のパラドックスを使って体験するのだ ~
量子コンピュータの量子化学計算への応用の現状と展望
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
Nmapの真実(続)
20180619 AWS Black Belt Online Seminar データレイク入門: AWSで様々な規模のデータレイクを分析する効率的な方法
20200826 AWS Black Belt Online Seminar AWS CloudFormation
(今ちゃんと振り返る) ゴール指向要求分析 入門

What's hot (20)

PDF
Azure App Service Overview
PDF
C#×LLVM=アセンブラ!? 〜詳説・Burstコンパイラー〜
PDF
できる!並列・並行プログラミング
PDF
乗っ取れコンテナ!!開発者から見たコンテナセキュリティの考え方(CloudNative Days Tokyo 2021 発表資料)
PPTX
OSSライセンス入門
PDF
"Kong Summit, Japan 2022" パートナーセッション:Kong on AWS で実現するスケーラブルな API 基盤の構築
PPTX
情報検索の基礎
PDF
Openfermionを使った分子の計算 part I
PPTX
Webアプリケーション負荷試験実践入門
PDF
Infrastructure as Code (IaC) 談義 2022
PDF
PFNのML/DL基盤を支えるKubernetesにおける自動化 / DevOpsDays Tokyo 2021
PDF
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
PDF
リレーショナルな正しいデータベース設計
PDF
20180918_ops on azure-main
PPTX
初心者向けMongoDBのキホン!
PDF
実環境にTerraform導入したら驚いた
PPTX
冬のLock free祭り safe
PPTX
Reserved Instance 及び Savings Plan を感覚的に理解する
PPTX
NTTデータ流Infrastructure as Code~ 大規模プロジェクトを通して考え抜いた基盤自動化の新たな姿~(NTTデータ テクノロジーカンフ...
PDF
MaxScaleを触ってみた
Azure App Service Overview
C#×LLVM=アセンブラ!? 〜詳説・Burstコンパイラー〜
できる!並列・並行プログラミング
乗っ取れコンテナ!!開発者から見たコンテナセキュリティの考え方(CloudNative Days Tokyo 2021 発表資料)
OSSライセンス入門
"Kong Summit, Japan 2022" パートナーセッション:Kong on AWS で実現するスケーラブルな API 基盤の構築
情報検索の基礎
Openfermionを使った分子の計算 part I
Webアプリケーション負荷試験実践入門
Infrastructure as Code (IaC) 談義 2022
PFNのML/DL基盤を支えるKubernetesにおける自動化 / DevOpsDays Tokyo 2021
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
リレーショナルな正しいデータベース設計
20180918_ops on azure-main
初心者向けMongoDBのキホン!
実環境にTerraform導入したら驚いた
冬のLock free祭り safe
Reserved Instance 及び Savings Plan を感覚的に理解する
NTTデータ流Infrastructure as Code~ 大規模プロジェクトを通して考え抜いた基盤自動化の新たな姿~(NTTデータ テクノロジーカンフ...
MaxScaleを触ってみた
Ad

More from Deep Learning JP (20)

PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
PPTX
【DL輪読会】事前学習用データセットについて
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
PPTX
【DL輪読会】マルチモーダル LLM
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
PPTX
【DL輪読会】Hopfield network 関連研究について
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
PDF
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】事前学習用データセットについて
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】マルチモーダル LLM
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Ad

[DL輪読会]Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks