SlideShare a Scribd company logo
MATHS
PRESENTATION
MCQS of Topics: Functions, Limits, differentiation, and
Integration
CHAPTER#1
LIMITS AND FUNCTIONS
1.
π‘₯ β†’0
πΏπ‘–π‘šπ‘–π‘‘ √49+π‘₯βˆ’7
π‘₯
=?
(a)0 (b) 1
14
(c)-6 (d)∞
2. The domain of the function h(x)=√π‘₯2 βˆ’ 4 is:
(a)Real no’s (b)Real no’s-{2}
(c){x/x π›œ R ^-2<x<2} (d)R-(-2,2)
3. πΏπ‘–π‘šπ‘–π‘‘
π‘₯β†’0
𝑒π‘₯
βˆ’1
4
=?
(a)∞ (b)0
(c) -1 (d)1
4. The domain of the inverse of the function f(x)=
2+√π‘₯ βˆ’ 1 is _______:
(a)[1,∞) (b)[2,∞)
(c)(1,∞) (d)(2,∞)
5.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ π‘₯π‘βˆ’π‘’π‘›
π‘₯βˆ’π‘’
(a)0 (b)1
(c)𝑝π‘₯π‘›βˆ’1 (d)π‘π‘’π‘βˆ’1
6.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘
4π‘₯βˆ’8
π‘₯+2
(a)-6 (b)20
(c)-20 (d)4
5
7. Given f(x)=π‘₯2+3 then f(a+b)=?
(a)π‘Ž2
+ 𝑏2
+ 2π‘Žπ‘ + 3 (b) π‘Ž2
+ 𝑏2
βˆ’ 2π‘Žπ‘ βˆ’ 3
(c) π‘Ž2
+ 𝑏2
βˆ’ 3π‘Žπ‘ (d) π‘₯2
+ 3
8.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ 5π‘₯4+3π‘₯3+9
7π‘₯4+5π‘₯2+17
=?
(a) 5
7
(b) 3
5
(c) 9
17
(d) 0
9. Let the Variable Z take in succession the values
6,62
1
, 63
2
, 65
4
, … then zβ†’?
(a)0 (b)7
(c)5 (d)6
10. Give f(x)=4x+5, g(x)=3x+7 then f(g(x))=?
(a)12x+28 (b)12x+33
(c)4x-31 (d)25x+34
11.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ π‘₯5+3π‘₯3+9π‘₯2+7π‘₯+8
2π‘₯6+17π‘₯4+3π‘₯2+5
=?
(a)0 (b)8
5
(c)1
2
(d)∞
12.
𝑧 β†’0
πΏπ‘–π‘šπ‘–π‘‘
sin 𝑝𝑧
π‘šπ‘§
(a)0 (b)∞
(c)1
π‘š
(d)𝑝
π‘š
13. Which one is true?
(𝐼) π‘₯ β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘
𝑒π‘₯
= ∞ (𝐼𝐼) π‘₯ β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘
𝑒π‘₯
= 0 (𝐼𝐼𝐼) π‘₯ β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘
π‘Žπ‘₯
= π‘Ž
(a)𝐼 π‘Žπ‘›π‘‘ 𝐼𝐼 π‘œπ‘›π‘™π‘¦ (b)𝐼𝐼 π‘Žπ‘›π‘‘ 𝐼𝐼𝐼 π‘œπ‘›π‘™π‘¦
(c) 𝐼 π‘œπ‘›π‘™π‘¦ (d)π‘Žπ‘™π‘™
14. Let |π‘₯| denotes the number of elements in X, then
|𝑋 βˆ— π‘Œ| =?
(a)|π‘₯| + |𝑦| (b)|π‘₯| βˆ’ |𝑦|
(c)|π‘₯| βˆ— |𝑦| (d)none of these
15. Let A={3,5,7,-9}, B={0,1,-3} and R={(3,0),(7,-3),(-9,0)}
then domain of R=?
(a){0,1,-3,0} (b){0,1,-3}
(c){3,5,7,-9} (d){3,5} (e) none.
16. π‘₯ β†’0
πΏπ‘–π‘šπ‘–π‘‘ 1βˆ’π‘π‘œπ‘ 2π‘₯
π‘₯2 =?
(a)0 (b)1
(c)-1 (d)2
17. π‘₯ β†’3
πΏπ‘–π‘šπ‘–π‘‘ π‘₯3βˆ’27
π‘₯2βˆ’9
=?
(a)0 (b)∞
(c)1 (d)9
2
18. πœƒβ†’0
πΏπ‘–π‘šπ‘–π‘‘ 1βˆ’π‘π‘œπ‘ π‘πœƒ
1βˆ’π‘π‘œπ‘ π‘žπœƒ
=?
(a) 𝑝2
π‘ž2
(b) π‘ž2
𝑝2
(c)0 (d)∞
19. π‘₯ β†’π‘Ž
πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘₯)βˆ’π‘“(π‘Ž)
π‘₯βˆ’π‘Ž
=?
(a) β„Ž β†’0
πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘Ž+𝐻)+𝑓(π‘Ž)
𝐻
(b) β„Ž β†’0
πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘Ž+𝐻)βˆ’π‘“(π‘Ž)
𝐻
(c)π‘™π‘›π‘Ž (d)𝑒
20. Inverse function of y= π‘₯
π‘₯+5
is
(a) π‘₯
π‘₯+5
(b) π‘₯
π‘₯βˆ’5
(c) 1π‘₯
1βˆ’π‘₯
(d) 15π‘₯
1βˆ’π‘₯
21. β„Ž β†’0
πΏπ‘–π‘šπ‘–π‘‘
π‘π‘œπ‘ π‘’π‘(πœ‹ + 𝕙) =?
(a)0 (b)1
(c)-1 (d)∞
22. The graph of function y-logx has an asymptote
at______.
(a)𝑦 = 0 (b)π‘₯ = 0
(c)π‘₯ = 10 (d)𝑦 = 10
23.
π‘₯ β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘
(
π‘₯
1+π‘₯
) π‘₯
=?
(a)𝑒 (b)𝑒1
(c)𝑒2 (d) 1
𝑒2
24. The graph of the parametric equations π‘₯ = π‘Ÿ2
and 𝑦 = 𝑑
(a)circle (b)parabola
(c)ellipse (d)straight line
25. If A={1,2,……..n}, how many distinct relations
can be defined on A?
(a)𝑛2 (b)2𝑛
(c)2𝑛2
(d)0
26.
π‘₯ β†’0
πΏπ‘–π‘šπ‘–π‘‘ 𝑒
βˆ’1
π‘₯2
1+𝑒
βˆ’1
π‘₯2
(a)0 (b)1
(c)-1 (d)∞
27.
π‘₯ β†’0
πΏπ‘–π‘šπ‘–π‘‘(1 βˆ’ 4π‘₯)
1
π‘₯ =?
(a)𝑒4 (b) 1
𝑒4
(c)𝑒 (d)π‘’βˆ’4π‘₯
28.
π‘₯ β†’
πœ‹
2
πΏπ‘–π‘šπ‘–π‘‘
tan (
πœƒ
2
) =?
(a)1 (b)0
(c)∞ (d)-1
29. The values of b and c for which f(x+1)-f(x)=8x+3
hold true, where f(x)=bπ‘₯2
+ 𝑐π‘₯ + 𝑑 are
(a)b=2, c=-1 (b)b=4,c=-1
(c)b=-1, c=4 (d)none
30. If f(x)=π‘₯2
βˆ’
1
π‘₯2 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) =?
(a)βˆ’π‘“(
1
π‘₯
) (b)𝑓(
1
π‘₯
)
(c)𝑓(π‘₯) (d)𝑓(π‘₯2
)
31. The range of a function f(x)=[x] is
(a)N (b)Z
(c)R (d)none
32.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ (1βˆ’π‘π‘œπ‘ 2π‘₯)𝑠𝑖𝑛5π‘₯
π‘₯2𝑠𝑖𝑛3π‘₯
(a)10
3
(b) 3
10
(c)6
5
(d)5
6
33.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ π‘₯2βˆ’3π‘₯+2
2π‘₯2+π‘₯βˆ’3
(a)2 (b)1
2
(c)0 (d)does not exist
34.
π‘₯β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘ 𝑠𝑖𝑛π‘₯
π‘₯
(a)0 (b)undefined
(c)1 (d)∞
35.
π‘₯β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘
(
π‘₯
π‘₯+2
) 𝑦
(a)𝑒 (b)π‘’βˆ’1
(c) 1
𝑒2
(d)𝑒5
36. 𝑒π‘₯+π‘’βˆ’π‘₯
𝑒π‘₯βˆ’π‘’βˆ’π‘₯
(a)tanhx (b)cothx
(c)π‘π‘œπ‘‘β„Žβˆ’1
π‘₯ (d)cosechx
37. πΆπ‘œπ‘ β„Žβˆ’1
π‘₯ = _____?
(a)1
2
ln(1 + π‘₯) (b)1
2
ln(1 βˆ’ π‘₯)
(c)1
2
ln(π‘₯ + π‘₯√π‘₯2 βˆ’ 1) (d) ln(π‘₯ + π‘₯√π‘₯2 βˆ’ 1)
38. Which of the following is an implicit function?
(a)y=x-1 (b)y-1=π‘₯2
(c)π‘₯2
+ 𝑦 + 2 = 0 (d) π‘₯2
+ π‘₯𝑦 + 𝑦2
= 9
39. If 𝑓(π‘₯) = 4π‘₯2
+ π‘₯𝑦 + 𝑦2
βˆ’ 7 then f(x) is
(an)_____function
(a)Even (b)Odd
(c)Both even and odd (d)Neither even nor odd
40. 𝑓(π‘₯) =
3π‘₯+1
2π‘₯βˆ’1
π‘‘β„Žπ‘’π‘› 𝑓(π‘“βˆ’1(2)) =?
(a)x (b)1
2
⁄
(c)2 (d)7
41. 𝐿𝑒𝑑 𝑝 𝑏𝑒 π‘Ž + 𝑣𝑒 π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ 𝑖𝑓 π‘₯𝑝
𝑖𝑠
𝑑𝑒𝑓𝑖𝑛𝑒𝑑 π‘‘β„Žπ‘’π‘›: π‘₯β†’βˆž
πΏπ‘–π‘šπ‘–π‘‘ π‘Ž
π‘₯𝑝 =?
(a)1 (b)p
(c)0 (d)x
42. If 𝑓(π‘₯) βˆ’
<
𝑔(π‘₯) βˆ’
<
β„Ž(π‘₯)π‘Žπ‘›π‘‘ π‘₯→𝑐
πΏπ‘–π‘šπ‘–π‘‘
𝑓(π‘₯) = π‘₯→𝑐
πΏπ‘–π‘šπ‘–π‘‘
β„Ž(π‘₯) =
2, π‘‘β„Žπ‘’π‘› π‘₯→𝑐
πΏπ‘–π‘šπ‘–π‘‘
𝑔(π‘₯) =?
(a)<2 (b)>2
(c)=2 (d)nothing can be said
43. For a function if the right hand limit = left hand
limit then which of the following must be true;
(a)Function is continous (b)Function has same domain and range
(c)Function is defined (d)its limit exist
44. Which of the following cannot be the graph of a
function?
(a)(b)
(c)(d)
45. If h(x)=3x+2 and h(f(x))=x, then f(2)=?
(a)0 (b)2
(c)-2 (d)1
46. The domain of the function 𝑓(π‘₯) =
|π‘₯+2|
π‘₯+2
is;
(a)R-{2} (b)R
(c)R-{ βˆ’
+
2} (d)R-{-2}
47. π‘™π‘œπ‘”2[π‘™π‘œπ‘”3[π‘™π‘œπ‘”2π‘₯]] = 1 π‘‘β„Žπ‘’π‘› π‘₯ =?
(a)43 (b)34
(c)29 (d)22
48. The domain of the function g(x)=π‘’βˆšπ‘₯2βˆ’1
. ln(π‘₯ βˆ’ 1)
is;
(a)(1,∞) (b)[1,∞)
(c)R-{1} (d)[1,∞]
49. The graph of π‘₯2
+ 𝑦2
= 9 is symmetrical about
(a)x-axis (b)y-axis
(c)origin (d)All of these
50. The domain of y=βˆšβˆ’π‘₯ is;
(a)(0,∞) (b)
(c)(-∞,0) (d)(βˆ’βˆž, 0]
51. The range of the function f={(1,x),(2,y),(3,z)} is
(a){1,x,z} (b){1,y,z}
(c){1,2,3} (d){x,y,z}
52. The domain of definition of function
y= 1
√16βˆ’π‘₯2
is______:
(a)(-4,4) (b)[-4,4]
(c)R-(-4,4) (d)(4, ∞)
53. If 𝑓(π‘₯) =
π‘₯βˆ’1
π‘₯+1
, π‘₯ β‰  βˆ’1 π‘‘β„Žπ‘’π‘› π‘“βˆ’1(π‘₯) =?
(a)1+π‘₯
π‘₯βˆ’1
(b) 1+π‘₯
1βˆ’π‘₯
(c) 2
1+π‘₯
(d) 1
π‘₯βˆ’1
54. If f(x)=4π‘₯ βˆ’ π‘₯2, then f(a+1)-f(a-1) is equal to
(a)4(2-a) (b)2(4-a)
(c)4(2+1) (d)2(4+a)
55. The range of the function 𝑓(π‘₯) =
1+π‘₯2
π‘₯2
is____
(a)[0,1] (b)(0,1)
(c)(1,∞) (d)[1, ∞]
56. A function f:Rβ†’R is defined by 𝑓(π‘₯) = { βˆ’1
1 , if π‘₯ ∈
𝑄 , 𝑖𝑓 π‘₯ ∈ 𝑄′ then f(πœ‹)-f(
22
7
)=?
(a)0 (b)2
(c)-2 (d)None of these
57. π‘₯β†’2
πΏπ‘–π‘šπ‘–π‘‘[π‘₯] =?
(a)1 (b)2
(c)0 (d)Does not exist
58.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ 𝑒π‘₯βˆ’π‘’βˆ’π‘₯
𝑠𝑖𝑛π‘₯
=?
(a)1 (b)2
(c)0 (d)-1
59.
π‘₯β†’0
πΏπ‘–π‘šπ‘–π‘‘ 4π‘₯βˆ’3π‘₯
3π‘₯βˆ’2π‘₯ =?
(a)ln(
4
3
) (b)ln(
3
2
)
(c)ln(
4
3
)
ln(
4
3
)
(d)ln (
4
3
) βˆ’ ln(
3
2
)
60.
π‘₯β†’ 4
πœ‹
πΏπ‘–π‘šπ‘–π‘‘ 𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯
π‘₯βˆ’ 4
πœ‹ =?
(a)2 (b)√2
(c) 1
√2
(d)2√2
CHAPTER#02
DIFFERENTIATION
1.

More Related Content

DOCX
Banco de preguntas para el ap
PDF
Chapter 1 (math 1)
PDF
Aieee 2003 maths solved paper by fiitjee
PDF
Maieee03
DOCX
mathematics question bank for engineering students
PDF
(Www.entrance exam.net)-sail placement sample paper 5
PDF
01 sets, relations and functions
PDF
MFMTQP_MAT_nda question paper for nda class 12
Banco de preguntas para el ap
Chapter 1 (math 1)
Aieee 2003 maths solved paper by fiitjee
Maieee03
mathematics question bank for engineering students
(Www.entrance exam.net)-sail placement sample paper 5
01 sets, relations and functions
MFMTQP_MAT_nda question paper for nda class 12

Similar to maths-presentation.pdf (9)

DOC
12th mcq
DOC
12th mcq
PDF
Iit jee question_paper
PDF
ISI MSQE Entrance Question Paper (2008)
PDF
Formulario Geometria Analitica
PDF
Mcq differential and ordinary differential equation
PDF
Mcq for manavsthali( 7 worksheets)
PDF
cl 9 polynomial.pdf
12th mcq
12th mcq
Iit jee question_paper
ISI MSQE Entrance Question Paper (2008)
Formulario Geometria Analitica
Mcq differential and ordinary differential equation
Mcq for manavsthali( 7 worksheets)
cl 9 polynomial.pdf
Ad

Recently uploaded (20)

PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Complications of Minimal Access Surgery at WLH
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Β 
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
RMMM.pdf make it easy to upload and study
PDF
Computing-Curriculum for Schools in Ghana
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Β 
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Trump Administration's workforce development strategy
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
A systematic review of self-coping strategies used by university students to ...
Complications of Minimal Access Surgery at WLH
human mycosis Human fungal infections are called human mycosis..pptx
Final Presentation General Medicine 03-08-2024.pptx
GDM (1) (1).pptx small presentation for students
Microbial diseases, their pathogenesis and prophylaxis
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Β 
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
RMMM.pdf make it easy to upload and study
Computing-Curriculum for Schools in Ghana
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Β 
Orientation - ARALprogram of Deped to the Parents.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Trump Administration's workforce development strategy
Module 4: Burden of Disease Tutorial Slides S2 2025
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Yogi Goddess Pres Conference Studio Updates
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Ad

maths-presentation.pdf

  • 1. MATHS PRESENTATION MCQS of Topics: Functions, Limits, differentiation, and Integration CHAPTER#1 LIMITS AND FUNCTIONS 1. π‘₯ β†’0 πΏπ‘–π‘šπ‘–π‘‘ √49+π‘₯βˆ’7 π‘₯ =? (a)0 (b) 1 14 (c)-6 (d)∞ 2. The domain of the function h(x)=√π‘₯2 βˆ’ 4 is: (a)Real no’s (b)Real no’s-{2} (c){x/x π›œ R ^-2<x<2} (d)R-(-2,2)
  • 2. 3. πΏπ‘–π‘šπ‘–π‘‘ π‘₯β†’0 𝑒π‘₯ βˆ’1 4 =? (a)∞ (b)0 (c) -1 (d)1 4. The domain of the inverse of the function f(x)= 2+√π‘₯ βˆ’ 1 is _______: (a)[1,∞) (b)[2,∞) (c)(1,∞) (d)(2,∞) 5. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ π‘₯π‘βˆ’π‘’π‘› π‘₯βˆ’π‘’ (a)0 (b)1 (c)𝑝π‘₯π‘›βˆ’1 (d)π‘π‘’π‘βˆ’1 6. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ 4π‘₯βˆ’8 π‘₯+2 (a)-6 (b)20 (c)-20 (d)4 5 7. Given f(x)=π‘₯2+3 then f(a+b)=? (a)π‘Ž2 + 𝑏2 + 2π‘Žπ‘ + 3 (b) π‘Ž2 + 𝑏2 βˆ’ 2π‘Žπ‘ βˆ’ 3 (c) π‘Ž2 + 𝑏2 βˆ’ 3π‘Žπ‘ (d) π‘₯2 + 3 8. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ 5π‘₯4+3π‘₯3+9 7π‘₯4+5π‘₯2+17 =? (a) 5 7 (b) 3 5 (c) 9 17 (d) 0 9. Let the Variable Z take in succession the values 6,62 1 , 63 2 , 65 4 , … then zβ†’? (a)0 (b)7
  • 3. (c)5 (d)6 10. Give f(x)=4x+5, g(x)=3x+7 then f(g(x))=? (a)12x+28 (b)12x+33 (c)4x-31 (d)25x+34 11. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ π‘₯5+3π‘₯3+9π‘₯2+7π‘₯+8 2π‘₯6+17π‘₯4+3π‘₯2+5 =? (a)0 (b)8 5 (c)1 2 (d)∞ 12. 𝑧 β†’0 πΏπ‘–π‘šπ‘–π‘‘ sin 𝑝𝑧 π‘šπ‘§ (a)0 (b)∞ (c)1 π‘š (d)𝑝 π‘š 13. Which one is true? (𝐼) π‘₯ β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ 𝑒π‘₯ = ∞ (𝐼𝐼) π‘₯ β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ 𝑒π‘₯ = 0 (𝐼𝐼𝐼) π‘₯ β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ π‘Žπ‘₯ = π‘Ž (a)𝐼 π‘Žπ‘›π‘‘ 𝐼𝐼 π‘œπ‘›π‘™π‘¦ (b)𝐼𝐼 π‘Žπ‘›π‘‘ 𝐼𝐼𝐼 π‘œπ‘›π‘™π‘¦ (c) 𝐼 π‘œπ‘›π‘™π‘¦ (d)π‘Žπ‘™π‘™ 14. Let |π‘₯| denotes the number of elements in X, then |𝑋 βˆ— π‘Œ| =? (a)|π‘₯| + |𝑦| (b)|π‘₯| βˆ’ |𝑦| (c)|π‘₯| βˆ— |𝑦| (d)none of these 15. Let A={3,5,7,-9}, B={0,1,-3} and R={(3,0),(7,-3),(-9,0)} then domain of R=? (a){0,1,-3,0} (b){0,1,-3} (c){3,5,7,-9} (d){3,5} (e) none.
  • 4. 16. π‘₯ β†’0 πΏπ‘–π‘šπ‘–π‘‘ 1βˆ’π‘π‘œπ‘ 2π‘₯ π‘₯2 =? (a)0 (b)1 (c)-1 (d)2 17. π‘₯ β†’3 πΏπ‘–π‘šπ‘–π‘‘ π‘₯3βˆ’27 π‘₯2βˆ’9 =? (a)0 (b)∞ (c)1 (d)9 2 18. πœƒβ†’0 πΏπ‘–π‘šπ‘–π‘‘ 1βˆ’π‘π‘œπ‘ π‘πœƒ 1βˆ’π‘π‘œπ‘ π‘žπœƒ =? (a) 𝑝2 π‘ž2 (b) π‘ž2 𝑝2 (c)0 (d)∞ 19. π‘₯ β†’π‘Ž πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘₯)βˆ’π‘“(π‘Ž) π‘₯βˆ’π‘Ž =? (a) β„Ž β†’0 πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘Ž+𝐻)+𝑓(π‘Ž) 𝐻 (b) β„Ž β†’0 πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘Ž+𝐻)βˆ’π‘“(π‘Ž) 𝐻 (c)π‘™π‘›π‘Ž (d)𝑒 20. Inverse function of y= π‘₯ π‘₯+5 is (a) π‘₯ π‘₯+5 (b) π‘₯ π‘₯βˆ’5 (c) 1π‘₯ 1βˆ’π‘₯ (d) 15π‘₯ 1βˆ’π‘₯ 21. β„Ž β†’0 πΏπ‘–π‘šπ‘–π‘‘ π‘π‘œπ‘ π‘’π‘(πœ‹ + 𝕙) =? (a)0 (b)1 (c)-1 (d)∞ 22. The graph of function y-logx has an asymptote at______. (a)𝑦 = 0 (b)π‘₯ = 0 (c)π‘₯ = 10 (d)𝑦 = 10
  • 5. 23. π‘₯ β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ ( π‘₯ 1+π‘₯ ) π‘₯ =? (a)𝑒 (b)𝑒1 (c)𝑒2 (d) 1 𝑒2 24. The graph of the parametric equations π‘₯ = π‘Ÿ2 and 𝑦 = 𝑑 (a)circle (b)parabola (c)ellipse (d)straight line 25. If A={1,2,……..n}, how many distinct relations can be defined on A? (a)𝑛2 (b)2𝑛 (c)2𝑛2 (d)0 26. π‘₯ β†’0 πΏπ‘–π‘šπ‘–π‘‘ 𝑒 βˆ’1 π‘₯2 1+𝑒 βˆ’1 π‘₯2 (a)0 (b)1 (c)-1 (d)∞ 27. π‘₯ β†’0 πΏπ‘–π‘šπ‘–π‘‘(1 βˆ’ 4π‘₯) 1 π‘₯ =? (a)𝑒4 (b) 1 𝑒4 (c)𝑒 (d)π‘’βˆ’4π‘₯ 28. π‘₯ β†’ πœ‹ 2 πΏπ‘–π‘šπ‘–π‘‘ tan ( πœƒ 2 ) =? (a)1 (b)0 (c)∞ (d)-1
  • 6. 29. The values of b and c for which f(x+1)-f(x)=8x+3 hold true, where f(x)=bπ‘₯2 + 𝑐π‘₯ + 𝑑 are (a)b=2, c=-1 (b)b=4,c=-1 (c)b=-1, c=4 (d)none 30. If f(x)=π‘₯2 βˆ’ 1 π‘₯2 π‘‘β„Žπ‘’π‘› 𝑓(π‘₯) =? (a)βˆ’π‘“( 1 π‘₯ ) (b)𝑓( 1 π‘₯ ) (c)𝑓(π‘₯) (d)𝑓(π‘₯2 ) 31. The range of a function f(x)=[x] is (a)N (b)Z (c)R (d)none 32. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ (1βˆ’π‘π‘œπ‘ 2π‘₯)𝑠𝑖𝑛5π‘₯ π‘₯2𝑠𝑖𝑛3π‘₯ (a)10 3 (b) 3 10 (c)6 5 (d)5 6 33. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ π‘₯2βˆ’3π‘₯+2 2π‘₯2+π‘₯βˆ’3 (a)2 (b)1 2 (c)0 (d)does not exist 34. π‘₯β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ 𝑠𝑖𝑛π‘₯ π‘₯ (a)0 (b)undefined (c)1 (d)∞
  • 7. 35. π‘₯β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ ( π‘₯ π‘₯+2 ) 𝑦 (a)𝑒 (b)π‘’βˆ’1 (c) 1 𝑒2 (d)𝑒5 36. 𝑒π‘₯+π‘’βˆ’π‘₯ 𝑒π‘₯βˆ’π‘’βˆ’π‘₯ (a)tanhx (b)cothx (c)π‘π‘œπ‘‘β„Žβˆ’1 π‘₯ (d)cosechx 37. πΆπ‘œπ‘ β„Žβˆ’1 π‘₯ = _____? (a)1 2 ln(1 + π‘₯) (b)1 2 ln(1 βˆ’ π‘₯) (c)1 2 ln(π‘₯ + π‘₯√π‘₯2 βˆ’ 1) (d) ln(π‘₯ + π‘₯√π‘₯2 βˆ’ 1) 38. Which of the following is an implicit function? (a)y=x-1 (b)y-1=π‘₯2 (c)π‘₯2 + 𝑦 + 2 = 0 (d) π‘₯2 + π‘₯𝑦 + 𝑦2 = 9 39. If 𝑓(π‘₯) = 4π‘₯2 + π‘₯𝑦 + 𝑦2 βˆ’ 7 then f(x) is (an)_____function (a)Even (b)Odd (c)Both even and odd (d)Neither even nor odd 40. 𝑓(π‘₯) = 3π‘₯+1 2π‘₯βˆ’1 π‘‘β„Žπ‘’π‘› 𝑓(π‘“βˆ’1(2)) =? (a)x (b)1 2 ⁄ (c)2 (d)7 41. 𝐿𝑒𝑑 𝑝 𝑏𝑒 π‘Ž + 𝑣𝑒 π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ 𝑖𝑓 π‘₯𝑝 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 π‘‘β„Žπ‘’π‘›: π‘₯β†’βˆž πΏπ‘–π‘šπ‘–π‘‘ π‘Ž π‘₯𝑝 =?
  • 8. (a)1 (b)p (c)0 (d)x 42. If 𝑓(π‘₯) βˆ’ < 𝑔(π‘₯) βˆ’ < β„Ž(π‘₯)π‘Žπ‘›π‘‘ π‘₯→𝑐 πΏπ‘–π‘šπ‘–π‘‘ 𝑓(π‘₯) = π‘₯→𝑐 πΏπ‘–π‘šπ‘–π‘‘ β„Ž(π‘₯) = 2, π‘‘β„Žπ‘’π‘› π‘₯→𝑐 πΏπ‘–π‘šπ‘–π‘‘ 𝑔(π‘₯) =? (a)<2 (b)>2 (c)=2 (d)nothing can be said 43. For a function if the right hand limit = left hand limit then which of the following must be true; (a)Function is continous (b)Function has same domain and range (c)Function is defined (d)its limit exist 44. Which of the following cannot be the graph of a function? (a)(b) (c)(d) 45. If h(x)=3x+2 and h(f(x))=x, then f(2)=? (a)0 (b)2 (c)-2 (d)1 46. The domain of the function 𝑓(π‘₯) = |π‘₯+2| π‘₯+2 is; (a)R-{2} (b)R (c)R-{ βˆ’ + 2} (d)R-{-2} 47. π‘™π‘œπ‘”2[π‘™π‘œπ‘”3[π‘™π‘œπ‘”2π‘₯]] = 1 π‘‘β„Žπ‘’π‘› π‘₯ =? (a)43 (b)34 (c)29 (d)22
  • 9. 48. The domain of the function g(x)=π‘’βˆšπ‘₯2βˆ’1 . ln(π‘₯ βˆ’ 1) is; (a)(1,∞) (b)[1,∞) (c)R-{1} (d)[1,∞] 49. The graph of π‘₯2 + 𝑦2 = 9 is symmetrical about (a)x-axis (b)y-axis (c)origin (d)All of these 50. The domain of y=βˆšβˆ’π‘₯ is; (a)(0,∞) (b) (c)(-∞,0) (d)(βˆ’βˆž, 0] 51. The range of the function f={(1,x),(2,y),(3,z)} is (a){1,x,z} (b){1,y,z} (c){1,2,3} (d){x,y,z} 52. The domain of definition of function y= 1 √16βˆ’π‘₯2 is______: (a)(-4,4) (b)[-4,4] (c)R-(-4,4) (d)(4, ∞) 53. If 𝑓(π‘₯) = π‘₯βˆ’1 π‘₯+1 , π‘₯ β‰  βˆ’1 π‘‘β„Žπ‘’π‘› π‘“βˆ’1(π‘₯) =? (a)1+π‘₯ π‘₯βˆ’1 (b) 1+π‘₯ 1βˆ’π‘₯ (c) 2 1+π‘₯ (d) 1 π‘₯βˆ’1 54. If f(x)=4π‘₯ βˆ’ π‘₯2, then f(a+1)-f(a-1) is equal to (a)4(2-a) (b)2(4-a) (c)4(2+1) (d)2(4+a)
  • 10. 55. The range of the function 𝑓(π‘₯) = 1+π‘₯2 π‘₯2 is____ (a)[0,1] (b)(0,1) (c)(1,∞) (d)[1, ∞] 56. A function f:Rβ†’R is defined by 𝑓(π‘₯) = { βˆ’1 1 , if π‘₯ ∈ 𝑄 , 𝑖𝑓 π‘₯ ∈ 𝑄′ then f(πœ‹)-f( 22 7 )=? (a)0 (b)2 (c)-2 (d)None of these 57. π‘₯β†’2 πΏπ‘–π‘šπ‘–π‘‘[π‘₯] =? (a)1 (b)2 (c)0 (d)Does not exist 58. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ 𝑒π‘₯βˆ’π‘’βˆ’π‘₯ 𝑠𝑖𝑛π‘₯ =? (a)1 (b)2 (c)0 (d)-1 59. π‘₯β†’0 πΏπ‘–π‘šπ‘–π‘‘ 4π‘₯βˆ’3π‘₯ 3π‘₯βˆ’2π‘₯ =? (a)ln( 4 3 ) (b)ln( 3 2 ) (c)ln( 4 3 ) ln( 4 3 ) (d)ln ( 4 3 ) βˆ’ ln( 3 2 ) 60. π‘₯β†’ 4 πœ‹ πΏπ‘–π‘šπ‘–π‘‘ 𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯ π‘₯βˆ’ 4 πœ‹ =? (a)2 (b)√2 (c) 1 √2 (d)2√2