SlideShare a Scribd company logo
CODA: Content-aware Frame Dropping Algorithm for High
Frame-rate Video Streaming
Vignesh V Menon, Hadi Amirpour, Mohammad Ghanbari, Christian Timmerer
Christian Doppler Laboratory ATHENA, Institute of Information Technology (ITEC), University of Klagenfurt, Austria
Data Compression Conference (DCC)
24 March 2022
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 1
Outline
1 Introduction
2 CODA
3 Evaluation
4 Conclusions and Future Directions
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 2
Introduction
Introduction
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 3
Introduction
Introduction
High Framerate (HFR) videos
High Framerate (HFR) video streaming enhances the viewing experience and improves
visual clarity.1
However, it may lead to an increase of both encoding time complexity and compression
artifacts, particularly at lower bitrates.
1
ITU-R BT.2020-2. “Parameter values for ultra-high definition television systems for production and international programme exchange”. In: 2015.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 4
Introduction
Introduction
0.2 0.5 1.2 4.5 16.8
Bitrate (in Mbps)
40
50
60
70
80
90
VMAF
120fps
60fps
30fps
24fps
(a) HoneyBee
0.2 0.5 1.2 4.5 16.8
Bit-rate (in Mbps)
30
40
50
60
70
80
VMAF
120fps
60fps
30fps
24fps
(b) Lips
Figure: Rate-Distortion (RD) curves of UHD encodings of (a) HoneyBee and (b) Lips sequences for
multiple framerates.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 5
Introduction
Introduction
Variable Framerate (VFR) coding
Input
Video
. Temporal
Downsampling
Framerate Selection
Encoder Decoder
Temporal Up-
sampling
Display
f
d ∈ D
ˆ
f = f ∗ (1 − d) ˆ
f
f =
ˆ
f
1−d
Figure: Block diagram of a variable framerate (VFR) coding scheme2
in the context of video encoding.
f and ˆ
f denote the original framerate of the video and the framerate at which the video is encoded. d
represents the frame dropping factor.
2
G. Herrou et al. “Quality-driven Variable Frame-Rate for Green Video Coding in Broadcast Applications”. In: IEEE Transactions on Circuits and Systems for
Video Technology (2020), pp. 1–1. doi: 10.1109/TCSVT.2020.3046881.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 6
CODA
CODA
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 7
CODA Phase 1: Feature Extraction
CODA
Phase 1: Feature Extraction
Compute texture energy per block
A DCT-based energy function is used to determine the block-wise feature of each frame
defined as:
Hk =
w
X
i=1
h
X
j=1
e|( ij
wh
)2−1|
|DCT(i − 1, j − 1)| (1)
where w and h are the width and height of the block, and DCT(i, j) is the (i, j)th DCT
component when i + j > 2, and 0 otherwise.
The energy values of blocks in a frame is averaged to determine the energy per frame.3
3
Michael King, Zinovi Tauber, and Ze-Nian Li. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on
Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 8
CODA Phase 1: Feature Extraction
Proposed Algorithm
Phase 1: Feature Extraction
hk: SAD of the block level energy values of frame k to that of the previous frame k − 1.
hk =
SAD(Hk(i) − Hk−1(i))
M
(2)
where M denotes the number of CTUs in frame k.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 9
CODA Phase 2: Framerate prediction
CODA
Phase 2: Framerate prediction
Inputs:
E, h : spatial and temporal complexities
r : video resolution
fmax : original framerate
D : set of all frame drop factors ˜
d
B : set of all target bitrates b (in kbps)
Output: ˆ
f (b) ∀ b ∈ B
Step 1: Determine ˆ
d(b).
ˆ
d(b) = d0e−
βMA(r,fmax )·h·b
E
Step 2: The predicted optimized framerate for the video is given by:
ˆ
f (b) = fmax · (1 − ˆ
d(b))
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 10
Evaluation
Evaluation
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 11
Evaluation
Evaluation
E and h values are extracted using VCA open-source software.4
0.2 0.5 1.2 4.5 16.8
Bit-rate (in Mbps)
20
40
60
80
100
120
Frame-rate
Ground truth (fG)
Predicted (f)
(a)
0.2 0.5 1.2 4.5 16.8
Bit-rate (in Mbps)
20
40
60
80
100
120
Frame-rate
Ground truth (fG)
Predicted (f)
(b)
Figure: Optimized framerate prediction results of Beauty (a) and ShakeNDry (b) sequences. Please
note that, depending on the content, the optimized framerate in various bitrates are different.
4
V. V Menon, C. Feldmann, and H. Amirpour. VCA. Version 1.0.0. Available: https://github.com/cd-athena/VCA. Feb. 2022.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 12
Evaluation
Evaluation
0.2 0.5 1.2 4.5 16.8
Bit-rate (in Mbps)
30
40
50
60
70
VMAF
Original (120fps)
CODA (VFR)
(a)
0.2 0.5 1.2 4.5 16.8
Bit-rate (in Mbps)
40
50
60
70
VMAF
Original (120fps)
CODA (VFR)
(b)
Figure: Rate-Distortion (RD) results of Beauty (a) and ShakeNDry (b) sequences for the default
encoding and CODA-based VFR encoding.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 13
Conclusions and Future Directions
Conclusions and Future Directions
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 14
Conclusions and Future Directions
Conclusions
Presented a content-aware frame dropping algorithm for video streaming applications, es-
pecially for HFR videos.
Predicts the optimized framerate for a set of bitrates defined in a bitrate ladder and res-
olution for every video, which helps in improving the overall performance of HFR video
streaming in terms of encoding time and compression efficiency.
UHD encoding using the proposed algorithm requires 15.87% fewer bits to maintain the
same PSNR and 18.20% fewer bits to maintain the same VMAF as compared to the original
framerate encoding. An overall encoding time reduction of 21.82% is also observed.
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 15
Conclusions and Future Directions
Q & A
Thank you for your attention!
Vignesh V Menon (vignesh.menon@aau.at)
Hadi Amirpour (hadi.amirpourazarian@aau.at)
Mohammad Ghanbari (ghan@essex.ac.uk)
Christian Timmerer (christian.timmerer@aau.at)
Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 16

More Related Content

PDF
TQPM.pdf
PDF
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming
PDF
OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf
PDF
LiveVBR presentation at VQEG NORM.pdf
PDF
OPTE: Online Per-title Encoding for Live Video Streaming
PDF
OPTE: Online Per-title Encoding for Live Video Streaming.pdf
PDF
CAPS_Presentation.pdf
PPT
Introduction to Video Compression Techniques - Anurag Jain
TQPM.pdf
OPSE: Online Per-Scene Encoding for Adaptive HTTP Live Streaming
OPSE_Online Per-Scene Encoding for Adaptive HTTP Live Streaming.pdf
LiveVBR presentation at VQEG NORM.pdf
OPTE: Online Per-title Encoding for Live Video Streaming
OPTE: Online Per-title Encoding for Live Video Streaming.pdf
CAPS_Presentation.pdf
Introduction to Video Compression Techniques - Anurag Jain

Similar to CODA_presentation.pdf (20)

PDF
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
PDF
INCEPT: Intra CU Depth Prediction for HEVC
PDF
VCIP_MCBE_presentation.pdf
PDF
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
PDF
HTTP Adaptive Streaming – Quo Vadis (2024)
PDF
Perceptually-aware Per-title Encoding for Adaptive Video Streaming.pdf
PDF
Perceptually-aware Per-title Encoding for Adaptive Video Streaming
PDF
Efficient bitrate ladder construction for live video streaming
PDF
Tutorial High Efficiency Video Coding Coding - Tools and Specification.pdf
PDF
JASLA_presentation.pdf
PDF
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
PDF
Are you Digitized Files Really OK? Levels of QC and Film Digitization (SCHALL...
PDF
Paper id 2120148
PDF
HTTP Adaptive Streaming – Quo Vadis? (2023)
PDF
Online Bitrate ladder prediction for Adaptive VVC Streaming
PPT
Video Coding Standard
PPT
Barcelona keynote web
PDF
ComplexCTTP: Complexity Class Based Transcoding Time Prediction for Video Seq...
PPT
MPEG4 codec for Access Grid
PPT
MPEG4 codec for Access Grid
IEEE MMSP'21: INCEPT: Intra CU Depth Prediction for HEVC
INCEPT: Intra CU Depth Prediction for HEVC
VCIP_MCBE_presentation.pdf
Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Str...
HTTP Adaptive Streaming – Quo Vadis (2024)
Perceptually-aware Per-title Encoding for Adaptive Video Streaming.pdf
Perceptually-aware Per-title Encoding for Adaptive Video Streaming
Efficient bitrate ladder construction for live video streaming
Tutorial High Efficiency Video Coding Coding - Tools and Specification.pdf
JASLA_presentation.pdf
Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming
Are you Digitized Files Really OK? Levels of QC and Film Digitization (SCHALL...
Paper id 2120148
HTTP Adaptive Streaming – Quo Vadis? (2023)
Online Bitrate ladder prediction for Adaptive VVC Streaming
Video Coding Standard
Barcelona keynote web
ComplexCTTP: Complexity Class Based Transcoding Time Prediction for Video Seq...
MPEG4 codec for Access Grid
MPEG4 codec for Access Grid

More from JunZhao68 (20)

PDF
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
PDF
愛小孩的歐拉一 兼論 108 數學課綱.pdf for 欧拉&数论相关课程描述啊
PDF
svd15_86.pdf for SVD study and revosited
PDF
Quadra-T1-T2-T4_TechSpec.pdf for netint VPA
PDF
Python Advanced Course - part III.pdf for Python
PDF
Python Advanced Course - part I.pdf for Python
PDF
3 - Intro to SVE.pdf for intro ARM SVE part
PDF
pytorch-cheatsheet.pdf for ML study with pythroch
PDF
Vocabulary Cards for AI and KIDs MIT.pdf
PDF
how CNN works for tech Every parts introductions.pdf
PDF
eics22-slides for researchers need when implementing novel imteraction tech
PDF
Netflix-talk for live video streaming tech
PPTX
Linear system 1_linear in linear algebra.pptx
PDF
GDC2012 JMV Rotations with jim van verth
PDF
1-MIV-tutorial-part-1.pdf
PDF
GOP-Size_report_11_16.pdf
PDF
02-VariableLengthCodes_pres.pdf
PDF
MHV-Presentation-Forman (1).pdf
PDF
http3-quic-streaming-2020-200121234036.pdf
PDF
NTTW4-FFmpeg.pdf
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
愛小孩的歐拉一 兼論 108 數學課綱.pdf for 欧拉&数论相关课程描述啊
svd15_86.pdf for SVD study and revosited
Quadra-T1-T2-T4_TechSpec.pdf for netint VPA
Python Advanced Course - part III.pdf for Python
Python Advanced Course - part I.pdf for Python
3 - Intro to SVE.pdf for intro ARM SVE part
pytorch-cheatsheet.pdf for ML study with pythroch
Vocabulary Cards for AI and KIDs MIT.pdf
how CNN works for tech Every parts introductions.pdf
eics22-slides for researchers need when implementing novel imteraction tech
Netflix-talk for live video streaming tech
Linear system 1_linear in linear algebra.pptx
GDC2012 JMV Rotations with jim van verth
1-MIV-tutorial-part-1.pdf
GOP-Size_report_11_16.pdf
02-VariableLengthCodes_pres.pdf
MHV-Presentation-Forman (1).pdf
http3-quic-streaming-2020-200121234036.pdf
NTTW4-FFmpeg.pdf

Recently uploaded (20)

PPTX
Pharmacology of Autonomic nervous system
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
The scientific heritage No 166 (166) (2025)
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
Overview of calcium in human muscles.pptx
PPTX
Application of enzymes in medicine (2).pptx
PDF
An interstellar mission to test astrophysical black holes
Pharmacology of Autonomic nervous system
POSITIONING IN OPERATION THEATRE ROOM.ppt
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Placing the Near-Earth Object Impact Probability in Context
Taita Taveta Laboratory Technician Workshop Presentation.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Phytochemical Investigation of Miliusa longipes.pdf
The scientific heritage No 166 (166) (2025)
lecture 2026 of Sjogren's syndrome l .pdf
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Fluid dynamics vivavoce presentation of prakash
Science Quipper for lesson in grade 8 Matatag Curriculum
6.1 High Risk New Born. Padetric health ppt
Overview of calcium in human muscles.pptx
Application of enzymes in medicine (2).pptx
An interstellar mission to test astrophysical black holes

CODA_presentation.pdf

  • 1. CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming Vignesh V Menon, Hadi Amirpour, Mohammad Ghanbari, Christian Timmerer Christian Doppler Laboratory ATHENA, Institute of Information Technology (ITEC), University of Klagenfurt, Austria Data Compression Conference (DCC) 24 March 2022 Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 1
  • 2. Outline 1 Introduction 2 CODA 3 Evaluation 4 Conclusions and Future Directions Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 2
  • 3. Introduction Introduction Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 3
  • 4. Introduction Introduction High Framerate (HFR) videos High Framerate (HFR) video streaming enhances the viewing experience and improves visual clarity.1 However, it may lead to an increase of both encoding time complexity and compression artifacts, particularly at lower bitrates. 1 ITU-R BT.2020-2. “Parameter values for ultra-high definition television systems for production and international programme exchange”. In: 2015. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 4
  • 5. Introduction Introduction 0.2 0.5 1.2 4.5 16.8 Bitrate (in Mbps) 40 50 60 70 80 90 VMAF 120fps 60fps 30fps 24fps (a) HoneyBee 0.2 0.5 1.2 4.5 16.8 Bit-rate (in Mbps) 30 40 50 60 70 80 VMAF 120fps 60fps 30fps 24fps (b) Lips Figure: Rate-Distortion (RD) curves of UHD encodings of (a) HoneyBee and (b) Lips sequences for multiple framerates. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 5
  • 6. Introduction Introduction Variable Framerate (VFR) coding Input Video . Temporal Downsampling Framerate Selection Encoder Decoder Temporal Up- sampling Display f d ∈ D ˆ f = f ∗ (1 − d) ˆ f f = ˆ f 1−d Figure: Block diagram of a variable framerate (VFR) coding scheme2 in the context of video encoding. f and ˆ f denote the original framerate of the video and the framerate at which the video is encoded. d represents the frame dropping factor. 2 G. Herrou et al. “Quality-driven Variable Frame-Rate for Green Video Coding in Broadcast Applications”. In: IEEE Transactions on Circuits and Systems for Video Technology (2020), pp. 1–1. doi: 10.1109/TCSVT.2020.3046881. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 6
  • 7. CODA CODA Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 7
  • 8. CODA Phase 1: Feature Extraction CODA Phase 1: Feature Extraction Compute texture energy per block A DCT-based energy function is used to determine the block-wise feature of each frame defined as: Hk = w X i=1 h X j=1 e|( ij wh )2−1| |DCT(i − 1, j − 1)| (1) where w and h are the width and height of the block, and DCT(i, j) is the (i, j)th DCT component when i + j > 2, and 0 otherwise. The energy values of blocks in a frame is averaged to determine the energy per frame.3 3 Michael King, Zinovi Tauber, and Ze-Nian Li. “A New Energy Function for Segmentation and Compression”. In: 2007 IEEE International Conference on Multimedia and Expo. 2007, pp. 1647–1650. doi: 10.1109/ICME.2007.4284983. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 8
  • 9. CODA Phase 1: Feature Extraction Proposed Algorithm Phase 1: Feature Extraction hk: SAD of the block level energy values of frame k to that of the previous frame k − 1. hk = SAD(Hk(i) − Hk−1(i)) M (2) where M denotes the number of CTUs in frame k. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 9
  • 10. CODA Phase 2: Framerate prediction CODA Phase 2: Framerate prediction Inputs: E, h : spatial and temporal complexities r : video resolution fmax : original framerate D : set of all frame drop factors ˜ d B : set of all target bitrates b (in kbps) Output: ˆ f (b) ∀ b ∈ B Step 1: Determine ˆ d(b). ˆ d(b) = d0e− βMA(r,fmax )·h·b E Step 2: The predicted optimized framerate for the video is given by: ˆ f (b) = fmax · (1 − ˆ d(b)) Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 10
  • 11. Evaluation Evaluation Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 11
  • 12. Evaluation Evaluation E and h values are extracted using VCA open-source software.4 0.2 0.5 1.2 4.5 16.8 Bit-rate (in Mbps) 20 40 60 80 100 120 Frame-rate Ground truth (fG) Predicted (f) (a) 0.2 0.5 1.2 4.5 16.8 Bit-rate (in Mbps) 20 40 60 80 100 120 Frame-rate Ground truth (fG) Predicted (f) (b) Figure: Optimized framerate prediction results of Beauty (a) and ShakeNDry (b) sequences. Please note that, depending on the content, the optimized framerate in various bitrates are different. 4 V. V Menon, C. Feldmann, and H. Amirpour. VCA. Version 1.0.0. Available: https://github.com/cd-athena/VCA. Feb. 2022. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 12
  • 13. Evaluation Evaluation 0.2 0.5 1.2 4.5 16.8 Bit-rate (in Mbps) 30 40 50 60 70 VMAF Original (120fps) CODA (VFR) (a) 0.2 0.5 1.2 4.5 16.8 Bit-rate (in Mbps) 40 50 60 70 VMAF Original (120fps) CODA (VFR) (b) Figure: Rate-Distortion (RD) results of Beauty (a) and ShakeNDry (b) sequences for the default encoding and CODA-based VFR encoding. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 13
  • 14. Conclusions and Future Directions Conclusions and Future Directions Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 14
  • 15. Conclusions and Future Directions Conclusions Presented a content-aware frame dropping algorithm for video streaming applications, es- pecially for HFR videos. Predicts the optimized framerate for a set of bitrates defined in a bitrate ladder and res- olution for every video, which helps in improving the overall performance of HFR video streaming in terms of encoding time and compression efficiency. UHD encoding using the proposed algorithm requires 15.87% fewer bits to maintain the same PSNR and 18.20% fewer bits to maintain the same VMAF as compared to the original framerate encoding. An overall encoding time reduction of 21.82% is also observed. Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 15
  • 16. Conclusions and Future Directions Q & A Thank you for your attention! Vignesh V Menon (vignesh.menon@aau.at) Hadi Amirpour (hadi.amirpourazarian@aau.at) Mohammad Ghanbari (ghan@essex.ac.uk) Christian Timmerer (christian.timmerer@aau.at) Vignesh V Menon CODA: Content-aware Frame Dropping Algorithm for High Frame-rate Video Streaming 16