SlideShare a Scribd company logo
Tuple in Python
Tuple Creation
Tuple in Python
• In python, a tuple is a sequence of immutable elements or items.
• Tuple is similar to list since the items stored in the list can be
changed whereas the tuple is immutable and the items stored in
the tuple cannot be changed.
• A tuple can be written as the collection of comma-separated
values enclosed with the small brackets ( ).
Syntax: var = ( value1, value2, value3,…. )
Example: “tupledemo.py”
t1 = ()
t2 = (123,"python", 3.7)
t3 = (1, 2, 3, 4, 5, 6)
t4 = ("C",)
print(t1)
print(t2)
print(t3)
print(t4)
Output:
python tupledemo.py
()
(123, 'python', 3.7)
(1, 2, 3, 4, 5, 6)
('C',)
Tuple Indexing
Tuple Indexing in Python
• Like list sequence, the indexing of the python tuple starts from
0, i.e. the first element of the tuple is stored at the 0th index,
the second element of the tuple is stored at the 1st index, and
so on.
• The elements of the tuple can be accessed by using the slice
operator [].
Example:
mytuple=(‘banana’,’apple’,’mango’,’tomato’,’berry’)
• mytuple[0]=”banana” mytuple[1:3]=[”apple”,”mango”]
• mytuple[2]=”mango”
Tuple Indexing in Python cont…
• Unlike other languages, python provides us the flexibility to use
the negative indexing also. The negative indices are counted
from the right.
• The last element (right most) of the tuple has the index -1, its
adjacent left element is present at the index -2 and so on until
the left most element is encountered.
Example: mytuple=[‘banana’,’apple’,’mango’,’tomato’,’berry’]
• mytuple[-1]=”berry” mytuple[-4:-2]=[“apple”,mango”]
• mytuple[-3]=”mango”
Tuple Operators
Tuple Operators in Python
+
It is known as concatenation operator used to concatenate two
tuples.
*
It is known as repetition operator. It concatenates the multiple
copies of the same tuple.
[]
It is known as slice operator. It is used to access the item from
tuple.
[:]
It is known as range slice operator. It is used to access the range
of items from tuple.
in
It is known as membership operator. It returns if a particular
item is present in the specified tuple.
not in
It is also a membership operator and It returns true if a
particular item is not present in the tuple.
Tuple Operators in Python cont…
Example: “tupleopdemo.py”
num=(1,2,3,4,5)
lang=('python','c','java','php')
print(num + lang) #concatenates two tuples
print(num * 2) #concatenates same tuple 2 times
print(lang[2]) # prints 2nd index value
print(lang[1:4]) #prints values from 1st to 3rd index.
print('cpp' in lang) # prints False
print(6 not in num) # prints True
Output: python tupleopdemo.py
(1, 2, 3, 4, 5, 'python', 'c', 'java', 'php')
(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
java
('c', 'java', 'php')
False
True
How to add or remove elements from a tuple?
• Unlike lists, the tuple items cannot be updated or deleted as
tuples are immutable.
• To delete an entire tuple, we can use the del keyword with the
tuple name.
Example: “tupledemo1.py”
tup=('python','c','java','php')
tup[3]="html"
print(tup)
del tup[3]
print(tup)
del tup
Output:
python tupledemo1.py
'tuple' object does not
support item assignment
'tuple' object doesn't
support item deletion
Traversing of tuples
• A tuple can be iterated by using a for - in loop. A simple tuple
containing four strings can be iterated as follows..
Example: “tupledemo2.py”
lang=('python','c','java','php')
print("The tuple items are n")
for i in lang:
print(i)
Output:
python tupledemo2.py
The tuple items are
python
c
java
php
Built in functions used on tuples
Tuples Functions in Python
• Python provides various in-built functions which can be used
with tuples. Those are
☞ len():
• In Python, len() function is used to find the length of tuple,i.e it
returns the number of items in the tuple.
Syntax: len(tuple)
• len()
• sum()
Example: lendemo.py
num=(1,2,3,4,5,6)
print("length of tuple :",len(num))
Output:
python lendemo.py
length of tuple : 6
• tuple()
•sorted()
Tuple Functions in Python Cont..
☞ sum ():
• In python, sum() function returns sum of all values in the tuple. The
tuple values must in number type.
Syntax: sum(tuple)
Example: sumdemo.py
t1=(1,2,3,4,5,6)
print("Sum of tuple items :",sum(t1))
Output:
python sumdemo.py
Sum of tuple items : 21
Tuple Functions in Python Cont..
☞ sorted ():
• In python, The sorted() function returns a sorted copy of the tuple
as a list while leaving the original tuple untouched.
• .
Syntax: sorted(tuple)
Example: sorteddemo.py
num=(1,3,2,4,6,5)
lang=('java','c','python','cpp')
print(sorted(num))
print(sorted(lang))
Output:
[1, 2, 3, 4, 5, 6]
['c', 'cpp', 'java', 'python‘]
Tuple Functions in Python Cont..
☞ tuple ():
• In python, tuple() is used to convert given sequence (string or list)
into tuple.
Syntax: tuple(sequence)
Example: tupledemo.py
str="python"
t1=tuple(str)
print(t1)
num=[1,2,3,4,5,6]
t2=tuple(num)
print(t2)
Output:
python tupledemo.py
('p', 'y', 't', 'h', 'o', 'n‘)
(1, 2, 3, 4, 5, 6)
Tuple Functions in Python Cont..
☞ tuple ():
• In python, tuple() is used to convert given sequence (string or list)
into tuple.
Syntax: tuple(sequence)
Example: tupledemo.py
str="python"
t1=tuple(str)
print(t1)
num=[1,2,3,4,5,6]
t2=tuple(num)
print(t2)
Output:
python tupledemo.py
('p', 'y', 't', 'h', 'o', 'n‘)
(1, 2, 3, 4, 5, 6)
Tuple Methods in Python Cont..
☞ count():
• In python, count() method returns the number of times an element
appears in the tuple. If the element is not present in the tuple, it
returns 0.
Syntax: tuple.count(item)
Example: countdemo.py
num=(1,2,3,4,3,2,2,1,4,5,8)
cnt=num.count(2)
print("Count of 2 is:",cnt)
cnt=num.count(10)
print("Count of 10 is:",cnt) Output:
python countdemo.py
Count of 2 is: 3
Count of 10 is: 0
Tuple Methods in Python Cont..
☞ index():
• In python, index () method returns index of the passed element. If
the element is not present, it raises a ValueError.
• If tuple contains duplicate elements, it returns index of first
occurred element.
• This method takes two more optional parameters start and end
which are used to search index within a limit.
Syntax: tuple.index(item [, start[, end]])
Example: indexdemo.py
t1=('p','y','t','o','n','p')
print(t1.index('t'))
Print(t1.index('p'))
Print(t1.index('p',3,10))
Print(t1.index('z')) )
Output:
python indexdemo.py
2
0
5
Value Error
Relation between Tuples and Lists
• Tuples are immutable, and usually, contain a heterogeneous
sequence of elements that are accessed via unpacking or
indexing.
• Lists are mutable, and their items are accessed via indexing.
• Items cannot be added, removed or replaced in a tuple.
• Ex:
• tuple=(10,20,30,40,50)
• tuple[0]=15
• Traceback (most recent call last):
• File "<pyshell#5>", line 1, in <module>
• tuple[0]=15
• TypeError: 'tuple' object does not support item assignment
Relation between Tuples and Lists
• Convert tuple to list:
• tuple_to_list=list(tuple)
• print(tuple_to_list)
• [10, 20, 30, 40, 50]
• If an item within a tuple is mutable, then you can change it.
Consider the presence of a list as an item in a tuple, then any
changes to the list get reflected on the overall items in the
tuple. For example,
Relation between Tuples and Lists
• lang=["c","c++","java","python"]
• tuple=(10,20,30,40,50,lang)
• Print(tuple)
• (10, 20, 30, 40, 50, ['c', 'c++', 'java', 'python'])
• lang.append("php")
• lang
• ['c', 'c++', 'java', 'python', 'php']
• tuple
• (10, 20, 30, 40, 50, ['c', 'c++', 'java', 'python', 'php'])
Relation between Tuples and dictionaries
• Tuples can be used as key:value pairs to build dictionaries. For
example,
• num=(("one",1),("two",2),("three",3))
• tuple_to_dict=dict(num)
• print(tuple_to_dict)
• {'one': 1, 'two': 2, 'three': 3}
• num
• (('one', 1), ('two', 2), ('three', 3))
• The tuples can be converted to dictionaries by passing the tuple
name to the dict() function. This is achieved by nesting tuples
within tuples, wherein each nested tuple item should have two
items in it .
• The first item becomes the key and second item as its value when
• the tuple gets converted to a dictionary
• The method items() in a dictionary returns a list of tuples
where each tuple corresponds to a key:value pair of the
dictionary. For example,
• dict1={"y":"yellow","o":"orange","b":"blue"}
• dict1.items()
• dict_items([('y', 'yellow'), ('o', 'orange'), ('b', 'blue')])
• for symbol,colour in dict1.items():
• print(symbol," ",colour)
Output:
• y yellow
• o orange
• b blue
• Tuple packing and unpacking:
The statement t = 12345, 54321, 'hello!' is an example of tuple packing.
t=12345,54321,'hello!'
t
(12345, 54321, 'hello!')
The values 12345, 54321 and 'hello!' are packed together into a tuple.
The reverse operation of tuple packing is also possible. For example,
tuple unpacking
x,y,z=t
x
12345
y
54321
z
'hello!‘
Tuple unpacking requires that there are as many variables on the left side of the
equals sign as there are items in the tuple.
Note that multiple assignments are really just a combination of tuple packing and
unpacking.
• Populating tuples with items:
• You can populate tuples with items using += operator and also by
converting list items to tuple items.
• Example:
tuple_items=()
tuple_items+=(10,)
tuple_items+=(20,30,)
print(tuple_items)
(10, 20, 30)
• converting list to tuple :
list_items=[]
list_items.append(50)
list_items.append(60)
list_items
[50, 60]
tuple1=tuple(list_items)
print(tuple1)
(50, 60)
• Using zip() Function
• The zip() function makes a sequence that aggregates elements from each
of the iterables (can be zero or more). The syntax for zip() function is,
• zip(*iterables)
• An iterable can be a list, string, or dictionary.
• It returns a sequence of tuples, where the i-th tuple contains the i-th
element from each of the iterables.
For Example,
x=[1,2,3]
y=[4,5,6]
zipped=zip(x,y)
list(zipped)
[(1, 4), (2, 5), (3, 6)]
Here zip() function is used to zip two iterables of list type
To loop over two or more sequences at the same time, the
entries can be paired with the zip() function. For
example,
symbol=("y","o","b","r")
colour=("yellow","orange","blue","red")
for symbol,colour in zip(symbol,colour):
print(symbol," ",colour)
Output:
y yellow
o orange
b blue
r red
Since zip() function returns a tuple, you can use a for loop
with multiple iterating variables to print tuple items.
• SETS:
• A set is an unordered collection with no dupli- cate items.
• Sets also support mathematical operations, such as union,
intersection, difference, and symmetric difference.
• Curly braces { } or the set() function can be used to create sets with
a comma-separated list of items inside curly brackets { }.
• To create an empty set you have to use set() and not { } as the
latter creates an empty dictionary.
• Set operations:
• Example:
• basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
• >>> print(basket)
• {'pear', 'orange', 'banana', 'apple'}
• >>> 'orange' in basket
• True
• >>> 'crabgrass' in basket
• False
Difference:
a={'b', 'c', 'a', 'r', 'd', 's'}
b={'z', 'c', 'a', 'm', 'l'}
a-b
{'r', 's', 'd', 'b'}
It Displays letters present in a, but not in b, are printed.
Union:
a={'b', 'c', 'a', 'r', 'd', 's'}
b={'z', 'c', 'a', 'm', 'l'}
a|b
{'b', 'z', 'c', 'a', 'r', 'd', 'm', 'l', 's'}
Letters present in set a and set b are printed.
Intersection:
a={'b', 'c', 'a', 'r', 'd', 's'}
b={'z', 'c', 'a', 'm', 'l'}
a&b
{'c', 'a'}
Letters present in both set a and set b are printed
Symmetric Difference:
a={'b', 'c', 'a', 'r', 'd', 's'}
b={'z', 'c', 'a', 'm', 'l'}
a^b
{'z', 'b', 'r', 'd', 'm', 'l', 's'}
Letters present in set a or set b, but not both are printed.
Length function():
basket={'apple','orange','apple','pear','apple','banana'}
print(basket)
{'pear', 'apple', 'orange', 'banana'}
len(basket)
4
Total number of items in the set basket is found using the len()
function
Sorted function():
sorted(basket)
['apple', 'banana', 'orange', 'pear']
The sorted() function returns a new sorted list from items in the
set .
Set Methods:
You can get a list of all the methods associated with the set by passing the set
function to dir().
dir(set)
['__and__', '__class__', '__class_getitem__', '__contains__', '__delattr__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getstate__', '__gt__', '__hash__', '__iand__', '__init__', '__init_subclass__',
'__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__',
'__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__',
'__repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__',
'__str__', '__sub__', '__subclasshook__', '__xor__', 'add', 'clear', 'copy',
'difference', 'difference_update', 'discard', 'intersection',
'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop', 'remove',
'symmetric_difference', 'symmetric_difference_update', 'union', 'update']
Set Methods:
 Add():
 The add() method adds an item to the set set_name.
 Syntax: set_name.clear()
basket={"orange","Apple","strawberry","orange" }
basket
{'orange', 'Apple', 'strawberry'}
basket.add("pear")
basket
{'orange', 'Apple', 'strawberry', 'pear'}
Set Methods:
 Difference:
• The difference() method returns a new set with items in the set set_name that
are not in the others sets.
• Syntax : set_name.difference(*others)
Ex:
flowers={"roses","tulips","lilies","sunflowers"}
american_flowers={"roses","orchid","tulips","daisies"}
american_flowers.difference(flowers)
{'orchid', 'daisies'}
 intersection():
• The intersection() method returns a new set with items common to the set
set_name and all others sets.
• Syntax: set_name. Intersection(*others)
Ex:
flowers={"roses","tulips","lilies","sunflowers"}
american_flowers={"roses","orchid","tulips","daisies"}
american_flowers.intersection(flowers)
{'roses', 'tulips'}
Set Methods:
 Symmetric Difference:
 The method symmetric difference() returns a new set with items in either
the set or other but not both.
• Syntax : set_name. symmetric_difference(other)
Ex:
flowers={"roses","tulips","lilies","sunflowers"}
american_flowers={"roses","orchid","tulips","daisies"}
american_flowers. symmetric_difference (flowers)
{'orchid', 'lilies', 'daisies', 'sunflowers'}
 Union:
• The method union() returns a new set with items from
• the set set_name and all others sets.
• Syntax: set_name.union(*others)
Ex:
flowers={"roses","tulips","lilies","sunflowers"}
american_flowers={"roses","orchid","tulips","daisies"}
american_flowers.union(flowers)
{'orchid', 'lilies', 'tulips', 'daisies', 'roses', 'sunflowers'}
Set Methods:
 isdisjoint:
• The isdisjoint() method returns True if the set set_name has no items in
common with other set. Sets are disjoint if and only if their intersection is
the empty set.
• Syntax : set_name.isdisjoint(other)
Ex:
flowers={"roses","tulips","lilies","sunflowers"}
american_flowers={"roses","orchid","tulips","daisies"}
american_flowers.isdisjoint(flowers)
False
a= {'b', 'c', 'a', 'd'}
b={'f', 'g', 'h', 'e'}
a.isdisjoint(b)
True
Set Methods:
 issubset:
• The issubset() method returns True if every item in the set
• set_name is in other set.
• Syntax : set_name.issubset(other)
Ex:
a={'b', 'c', 'a', 'd'}
b={'f', 'g', 'h', 'e'}
a.issubset(b)
False
c={"a","b","c","d"}
d={"a","b","c","d"}
c.issubset(d)
True
Set Methods:
 Issuperset():
• The issuperset() method returns True if every element in other set is in the
set set_name.
• Syntax : set_name.issuperset(other)
Ex:
a={'b', 'c', 'a', 'd'}
b={'f', 'g', 'h', 'e'}
a.issubset(b)
False
c={"a","b","c","d"}
d={"a","b","c","d"}
c.issubset(d)
True
Set Methods:
 Pop():
• The method pop() removes and returns an arbitrary item from
the set set_name. It raises KeyError if the set is empty.
• Syntax : set_name.pop()
Ex:
d={'b', 'c', 'a', 'd'}
item=d.pop()
print(item)
b
print(d)
{'c', 'a', 'd'}
Set Methods:
 remove():
• The method remove() removes an item from the set set_name. It raises
KeyError if the item is not contained in the set.
• Syntax : set_name.remove(item)
• Ex:
• c={"a","b","c","d"}
c.remove("a")
print(c)
{'b', 'c', 'd'}
 update():
• Update the set set_name by adding items from all others sets.
Syntax : set_name.update(*others)
Ex:
c={'b', 'c', 'd'}
d={"e","f","g"}
c.update(d)
print(c)
{'b', 'c', 'f', 'g', 'd', 'e'}
Set Methods:
 Discard():
• The discard() method removes an item from the set set_name if it is present.
Syntax: set_name.discard(item)
Ex:
d={"e","f","g"}
d.discard("e")
print(d)
{'f', 'g'}
 Clear():
• The clear() method removes all the items from the set set_name.
• Syntax: set_name.clear()
• Ex:
alpha={"a","b","c","d"}
print(alpha)
{'a', 'b', 'c', 'd'}
alpha.clear()
print(alpha)
set()
Traversing of sets
You can iterate through each item in a set using a for loop.
Ex:
alpha={"a","b","c","d"}
print(alpha)
{'a', 'b', 'c', 'd'}
for i in alpha:
print(i)
Output:
a
b
c
d
Frozenset
• A frozenset is basically the same as a set, except that it is
immutable. Once a frozenset is created, then its items cannot be
changed.
• The frozensets have the same functions as normal sets, except none
of the functions that change the contents (update, remove, pop,
etc.) are available.
methods in Frozenset:
1. >>> dir(frozenset)
[' and ', ' class ', ' contains ', ' delattr ', ' dir ', ' doc ', ' eq
', ' format ', ' ge ', ' getattribute ', ' gt ', ' hash ', ' init ', '
init_ subclass ', ' iter ', ' le ', ' len ', ' lt ', ' ne ', ' new ', ' or
', ' rand ', '__reduce ', ' reduce_ex ', ' repr ', ' ror ', ' rsub
', ' rxor ', ' setattr__', ' sizeof ', ' str ', ' sub ', ' subclasshook ', '
xor ', 'copy', 'difference', 'intersection', 'isdisjoint', 'issubset',
'issuperset', 'symmetric_difference', 'union']
Frozenset Methods
• List of methods available for frozenset .For example,
Convert set to frozenset
• fs=frozenset({"d","o","g"})
• print(fs)
• frozenset({'d', 'o', 'g'})
Convert list to frozenset:
• list=[10,20,30]
• lfs=frozenset(list)
• print(lfs)
• frozenset({10, 20, 30})
Convert dict to frozenset
dict1={"one":1,"two":2,"three":3,"four":4}
dfs=frozenset(dict1)
print(dfs)
frozenset({'four', 'one', 'three', 'two'})
• frozenset used as a key in dictionary and item in set:
item=frozenset(["g"])
dict1={"a":95,"b":96,"c":97,item:6}
print(dict1)
{'a': 95, 'b': 96, 'c': 97, frozenset({'g'}): 6}
EX:
item=frozenset(["g"])
set={"a","b","c",item}
print(set)
{frozenset({'g'}), 'a', 'c', 'b'}

More Related Content

PDF
Python-Tuples
PPTX
Tuples class 11 notes- important notes for tuple lesson
PPTX
Tuples-and-Dictionaries.pptx
PPTX
Tuples in python better understanding with slides
PDF
Python Tuple.pdf
PDF
Tuple in Python class documnet pritened.
PDF
Python Is Very most Important for Your Life Time.
Python-Tuples
Tuples class 11 notes- important notes for tuple lesson
Tuples-and-Dictionaries.pptx
Tuples in python better understanding with slides
Python Tuple.pdf
Tuple in Python class documnet pritened.
Python Is Very most Important for Your Life Time.

Similar to updated_tuple_in_python.pdf (20)

PPTX
tuple in python is an impotant topic.pptx
PDF
Python tuples and Dictionary
PDF
Tuples in Python
PPTX
Python Collections
PDF
Python tuple
PDF
‘How to develop Pythonic coding rather than Python coding – Logic Perspective’
PPTX
PRESENTATION ON TUPLES.pptx
PPT
Programming in Python Lists and its methods .ppt
PPTX
Tuplemathspresentationonteupleshhhh.pptx
PPTX
List_tuple_dictionary.pptxList_tuple_dictionary.pptx
PPTX
Chapter 13 Tuples.pptx
PPTX
Chapter 13 Tuples.pptx
PPTX
Tuples in pyhton programming using simple codes.pptx
PPTX
Python programming UNIT III-Part-2.0.pptx
PPTX
Python list tuple dictionary presentation
PPTX
UNIT-3 python and data structure alo.pptx
PPTX
Lecture 09.pptx
PDF
PPTX
58. Tuples python ppt that will help you understand concept of tuples
PPTX
Tuples.pptx
tuple in python is an impotant topic.pptx
Python tuples and Dictionary
Tuples in Python
Python Collections
Python tuple
‘How to develop Pythonic coding rather than Python coding – Logic Perspective’
PRESENTATION ON TUPLES.pptx
Programming in Python Lists and its methods .ppt
Tuplemathspresentationonteupleshhhh.pptx
List_tuple_dictionary.pptxList_tuple_dictionary.pptx
Chapter 13 Tuples.pptx
Chapter 13 Tuples.pptx
Tuples in pyhton programming using simple codes.pptx
Python programming UNIT III-Part-2.0.pptx
Python list tuple dictionary presentation
UNIT-3 python and data structure alo.pptx
Lecture 09.pptx
58. Tuples python ppt that will help you understand concept of tuples
Tuples.pptx
Ad

More from Koteswari Kasireddy (20)

PPTX
DA Syllabus outline (2).pptx
PDF
Chapter-7-Sampling & sampling Distributions.pdf
PDF
Object_Oriented_Programming_Unit3.pdf
PDF
unit-3_Chapter1_RDRA.pdf
PDF
DBMS_UNIT_1.pdf
PDF
business analytics
PPTX
Relational Model and Relational Algebra.pptx
PPTX
CHAPTER -12 it.pptx
PPTX
WEB_DATABASE_chapter_4.pptx
PPTX
Unit 4 chapter - 8 Transaction processing Concepts (1).pptx
PPTX
Database System Concepts AND architecture [Autosaved].pptx
PPTX
Evolution Of WEB_students.pptx
PPTX
Presentation1.pptx
PPTX
Algorithm.pptx
PPTX
Control_Statements_in_Python.pptx
PPTX
Python_Functions_Unit1.pptx
PPTX
parts_of_python_programming_language.pptx
PPTX
linked_list.pptx
PPTX
matrices_and_loops.pptx
PPTX
algorithms_in_linkedlist.pptx
DA Syllabus outline (2).pptx
Chapter-7-Sampling & sampling Distributions.pdf
Object_Oriented_Programming_Unit3.pdf
unit-3_Chapter1_RDRA.pdf
DBMS_UNIT_1.pdf
business analytics
Relational Model and Relational Algebra.pptx
CHAPTER -12 it.pptx
WEB_DATABASE_chapter_4.pptx
Unit 4 chapter - 8 Transaction processing Concepts (1).pptx
Database System Concepts AND architecture [Autosaved].pptx
Evolution Of WEB_students.pptx
Presentation1.pptx
Algorithm.pptx
Control_Statements_in_Python.pptx
Python_Functions_Unit1.pptx
parts_of_python_programming_language.pptx
linked_list.pptx
matrices_and_loops.pptx
algorithms_in_linkedlist.pptx
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Well-logging-methods_new................
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Welding lecture in detail for understanding
PDF
composite construction of structures.pdf
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Embodied AI: Ushering in the Next Era of Intelligent Systems
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Well-logging-methods_new................
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Lecture Notes Electrical Wiring System Components
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Welding lecture in detail for understanding
composite construction of structures.pdf
Mechanical Engineering MATERIALS Selection
Internet of Things (IOT) - A guide to understanding
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Operating System & Kernel Study Guide-1 - converted.pdf
CH1 Production IntroductoryConcepts.pptx

updated_tuple_in_python.pdf

  • 3. Tuple in Python • In python, a tuple is a sequence of immutable elements or items. • Tuple is similar to list since the items stored in the list can be changed whereas the tuple is immutable and the items stored in the tuple cannot be changed. • A tuple can be written as the collection of comma-separated values enclosed with the small brackets ( ). Syntax: var = ( value1, value2, value3,…. ) Example: “tupledemo.py” t1 = () t2 = (123,"python", 3.7) t3 = (1, 2, 3, 4, 5, 6) t4 = ("C",) print(t1) print(t2) print(t3) print(t4) Output: python tupledemo.py () (123, 'python', 3.7) (1, 2, 3, 4, 5, 6) ('C',)
  • 5. Tuple Indexing in Python • Like list sequence, the indexing of the python tuple starts from 0, i.e. the first element of the tuple is stored at the 0th index, the second element of the tuple is stored at the 1st index, and so on. • The elements of the tuple can be accessed by using the slice operator []. Example: mytuple=(‘banana’,’apple’,’mango’,’tomato’,’berry’) • mytuple[0]=”banana” mytuple[1:3]=[”apple”,”mango”] • mytuple[2]=”mango”
  • 6. Tuple Indexing in Python cont… • Unlike other languages, python provides us the flexibility to use the negative indexing also. The negative indices are counted from the right. • The last element (right most) of the tuple has the index -1, its adjacent left element is present at the index -2 and so on until the left most element is encountered. Example: mytuple=[‘banana’,’apple’,’mango’,’tomato’,’berry’] • mytuple[-1]=”berry” mytuple[-4:-2]=[“apple”,mango”] • mytuple[-3]=”mango”
  • 8. Tuple Operators in Python + It is known as concatenation operator used to concatenate two tuples. * It is known as repetition operator. It concatenates the multiple copies of the same tuple. [] It is known as slice operator. It is used to access the item from tuple. [:] It is known as range slice operator. It is used to access the range of items from tuple. in It is known as membership operator. It returns if a particular item is present in the specified tuple. not in It is also a membership operator and It returns true if a particular item is not present in the tuple.
  • 9. Tuple Operators in Python cont… Example: “tupleopdemo.py” num=(1,2,3,4,5) lang=('python','c','java','php') print(num + lang) #concatenates two tuples print(num * 2) #concatenates same tuple 2 times print(lang[2]) # prints 2nd index value print(lang[1:4]) #prints values from 1st to 3rd index. print('cpp' in lang) # prints False print(6 not in num) # prints True Output: python tupleopdemo.py (1, 2, 3, 4, 5, 'python', 'c', 'java', 'php') (1, 2, 3, 4, 5, 1, 2, 3, 4, 5) java ('c', 'java', 'php') False True
  • 10. How to add or remove elements from a tuple? • Unlike lists, the tuple items cannot be updated or deleted as tuples are immutable. • To delete an entire tuple, we can use the del keyword with the tuple name. Example: “tupledemo1.py” tup=('python','c','java','php') tup[3]="html" print(tup) del tup[3] print(tup) del tup Output: python tupledemo1.py 'tuple' object does not support item assignment 'tuple' object doesn't support item deletion
  • 11. Traversing of tuples • A tuple can be iterated by using a for - in loop. A simple tuple containing four strings can be iterated as follows.. Example: “tupledemo2.py” lang=('python','c','java','php') print("The tuple items are n") for i in lang: print(i) Output: python tupledemo2.py The tuple items are python c java php
  • 12. Built in functions used on tuples
  • 13. Tuples Functions in Python • Python provides various in-built functions which can be used with tuples. Those are ☞ len(): • In Python, len() function is used to find the length of tuple,i.e it returns the number of items in the tuple. Syntax: len(tuple) • len() • sum() Example: lendemo.py num=(1,2,3,4,5,6) print("length of tuple :",len(num)) Output: python lendemo.py length of tuple : 6 • tuple() •sorted()
  • 14. Tuple Functions in Python Cont.. ☞ sum (): • In python, sum() function returns sum of all values in the tuple. The tuple values must in number type. Syntax: sum(tuple) Example: sumdemo.py t1=(1,2,3,4,5,6) print("Sum of tuple items :",sum(t1)) Output: python sumdemo.py Sum of tuple items : 21
  • 15. Tuple Functions in Python Cont.. ☞ sorted (): • In python, The sorted() function returns a sorted copy of the tuple as a list while leaving the original tuple untouched. • . Syntax: sorted(tuple) Example: sorteddemo.py num=(1,3,2,4,6,5) lang=('java','c','python','cpp') print(sorted(num)) print(sorted(lang)) Output: [1, 2, 3, 4, 5, 6] ['c', 'cpp', 'java', 'python‘]
  • 16. Tuple Functions in Python Cont.. ☞ tuple (): • In python, tuple() is used to convert given sequence (string or list) into tuple. Syntax: tuple(sequence) Example: tupledemo.py str="python" t1=tuple(str) print(t1) num=[1,2,3,4,5,6] t2=tuple(num) print(t2) Output: python tupledemo.py ('p', 'y', 't', 'h', 'o', 'n‘) (1, 2, 3, 4, 5, 6)
  • 17. Tuple Functions in Python Cont.. ☞ tuple (): • In python, tuple() is used to convert given sequence (string or list) into tuple. Syntax: tuple(sequence) Example: tupledemo.py str="python" t1=tuple(str) print(t1) num=[1,2,3,4,5,6] t2=tuple(num) print(t2) Output: python tupledemo.py ('p', 'y', 't', 'h', 'o', 'n‘) (1, 2, 3, 4, 5, 6)
  • 18. Tuple Methods in Python Cont.. ☞ count(): • In python, count() method returns the number of times an element appears in the tuple. If the element is not present in the tuple, it returns 0. Syntax: tuple.count(item) Example: countdemo.py num=(1,2,3,4,3,2,2,1,4,5,8) cnt=num.count(2) print("Count of 2 is:",cnt) cnt=num.count(10) print("Count of 10 is:",cnt) Output: python countdemo.py Count of 2 is: 3 Count of 10 is: 0
  • 19. Tuple Methods in Python Cont.. ☞ index(): • In python, index () method returns index of the passed element. If the element is not present, it raises a ValueError. • If tuple contains duplicate elements, it returns index of first occurred element. • This method takes two more optional parameters start and end which are used to search index within a limit. Syntax: tuple.index(item [, start[, end]]) Example: indexdemo.py t1=('p','y','t','o','n','p') print(t1.index('t')) Print(t1.index('p')) Print(t1.index('p',3,10)) Print(t1.index('z')) ) Output: python indexdemo.py 2 0 5 Value Error
  • 20. Relation between Tuples and Lists • Tuples are immutable, and usually, contain a heterogeneous sequence of elements that are accessed via unpacking or indexing. • Lists are mutable, and their items are accessed via indexing. • Items cannot be added, removed or replaced in a tuple. • Ex: • tuple=(10,20,30,40,50) • tuple[0]=15 • Traceback (most recent call last): • File "<pyshell#5>", line 1, in <module> • tuple[0]=15 • TypeError: 'tuple' object does not support item assignment
  • 21. Relation between Tuples and Lists • Convert tuple to list: • tuple_to_list=list(tuple) • print(tuple_to_list) • [10, 20, 30, 40, 50] • If an item within a tuple is mutable, then you can change it. Consider the presence of a list as an item in a tuple, then any changes to the list get reflected on the overall items in the tuple. For example,
  • 22. Relation between Tuples and Lists • lang=["c","c++","java","python"] • tuple=(10,20,30,40,50,lang) • Print(tuple) • (10, 20, 30, 40, 50, ['c', 'c++', 'java', 'python']) • lang.append("php") • lang • ['c', 'c++', 'java', 'python', 'php'] • tuple • (10, 20, 30, 40, 50, ['c', 'c++', 'java', 'python', 'php'])
  • 23. Relation between Tuples and dictionaries • Tuples can be used as key:value pairs to build dictionaries. For example, • num=(("one",1),("two",2),("three",3)) • tuple_to_dict=dict(num) • print(tuple_to_dict) • {'one': 1, 'two': 2, 'three': 3} • num • (('one', 1), ('two', 2), ('three', 3)) • The tuples can be converted to dictionaries by passing the tuple name to the dict() function. This is achieved by nesting tuples within tuples, wherein each nested tuple item should have two items in it . • The first item becomes the key and second item as its value when • the tuple gets converted to a dictionary
  • 24. • The method items() in a dictionary returns a list of tuples where each tuple corresponds to a key:value pair of the dictionary. For example, • dict1={"y":"yellow","o":"orange","b":"blue"} • dict1.items() • dict_items([('y', 'yellow'), ('o', 'orange'), ('b', 'blue')]) • for symbol,colour in dict1.items(): • print(symbol," ",colour) Output: • y yellow • o orange • b blue
  • 25. • Tuple packing and unpacking: The statement t = 12345, 54321, 'hello!' is an example of tuple packing. t=12345,54321,'hello!' t (12345, 54321, 'hello!') The values 12345, 54321 and 'hello!' are packed together into a tuple. The reverse operation of tuple packing is also possible. For example, tuple unpacking x,y,z=t x 12345 y 54321 z 'hello!‘ Tuple unpacking requires that there are as many variables on the left side of the equals sign as there are items in the tuple. Note that multiple assignments are really just a combination of tuple packing and unpacking.
  • 26. • Populating tuples with items: • You can populate tuples with items using += operator and also by converting list items to tuple items. • Example: tuple_items=() tuple_items+=(10,) tuple_items+=(20,30,) print(tuple_items) (10, 20, 30) • converting list to tuple : list_items=[] list_items.append(50) list_items.append(60) list_items [50, 60] tuple1=tuple(list_items) print(tuple1) (50, 60)
  • 27. • Using zip() Function • The zip() function makes a sequence that aggregates elements from each of the iterables (can be zero or more). The syntax for zip() function is, • zip(*iterables) • An iterable can be a list, string, or dictionary. • It returns a sequence of tuples, where the i-th tuple contains the i-th element from each of the iterables. For Example, x=[1,2,3] y=[4,5,6] zipped=zip(x,y) list(zipped) [(1, 4), (2, 5), (3, 6)] Here zip() function is used to zip two iterables of list type
  • 28. To loop over two or more sequences at the same time, the entries can be paired with the zip() function. For example, symbol=("y","o","b","r") colour=("yellow","orange","blue","red") for symbol,colour in zip(symbol,colour): print(symbol," ",colour) Output: y yellow o orange b blue r red Since zip() function returns a tuple, you can use a for loop with multiple iterating variables to print tuple items.
  • 29. • SETS: • A set is an unordered collection with no dupli- cate items. • Sets also support mathematical operations, such as union, intersection, difference, and symmetric difference. • Curly braces { } or the set() function can be used to create sets with a comma-separated list of items inside curly brackets { }. • To create an empty set you have to use set() and not { } as the latter creates an empty dictionary. • Set operations: • Example: • basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} • >>> print(basket) • {'pear', 'orange', 'banana', 'apple'} • >>> 'orange' in basket • True • >>> 'crabgrass' in basket • False
  • 30. Difference: a={'b', 'c', 'a', 'r', 'd', 's'} b={'z', 'c', 'a', 'm', 'l'} a-b {'r', 's', 'd', 'b'} It Displays letters present in a, but not in b, are printed. Union: a={'b', 'c', 'a', 'r', 'd', 's'} b={'z', 'c', 'a', 'm', 'l'} a|b {'b', 'z', 'c', 'a', 'r', 'd', 'm', 'l', 's'} Letters present in set a and set b are printed.
  • 31. Intersection: a={'b', 'c', 'a', 'r', 'd', 's'} b={'z', 'c', 'a', 'm', 'l'} a&b {'c', 'a'} Letters present in both set a and set b are printed Symmetric Difference: a={'b', 'c', 'a', 'r', 'd', 's'} b={'z', 'c', 'a', 'm', 'l'} a^b {'z', 'b', 'r', 'd', 'm', 'l', 's'} Letters present in set a or set b, but not both are printed.
  • 32. Length function(): basket={'apple','orange','apple','pear','apple','banana'} print(basket) {'pear', 'apple', 'orange', 'banana'} len(basket) 4 Total number of items in the set basket is found using the len() function Sorted function(): sorted(basket) ['apple', 'banana', 'orange', 'pear'] The sorted() function returns a new sorted list from items in the set .
  • 33. Set Methods: You can get a list of all the methods associated with the set by passing the set function to dir(). dir(set) ['__and__', '__class__', '__class_getitem__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__iand__', '__init__', '__init_subclass__', '__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 'add', 'clear', 'copy', 'difference', 'difference_update', 'discard', 'intersection', 'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop', 'remove', 'symmetric_difference', 'symmetric_difference_update', 'union', 'update']
  • 34. Set Methods:  Add():  The add() method adds an item to the set set_name.  Syntax: set_name.clear() basket={"orange","Apple","strawberry","orange" } basket {'orange', 'Apple', 'strawberry'} basket.add("pear") basket {'orange', 'Apple', 'strawberry', 'pear'}
  • 35. Set Methods:  Difference: • The difference() method returns a new set with items in the set set_name that are not in the others sets. • Syntax : set_name.difference(*others) Ex: flowers={"roses","tulips","lilies","sunflowers"} american_flowers={"roses","orchid","tulips","daisies"} american_flowers.difference(flowers) {'orchid', 'daisies'}  intersection(): • The intersection() method returns a new set with items common to the set set_name and all others sets. • Syntax: set_name. Intersection(*others) Ex: flowers={"roses","tulips","lilies","sunflowers"} american_flowers={"roses","orchid","tulips","daisies"} american_flowers.intersection(flowers) {'roses', 'tulips'}
  • 36. Set Methods:  Symmetric Difference:  The method symmetric difference() returns a new set with items in either the set or other but not both. • Syntax : set_name. symmetric_difference(other) Ex: flowers={"roses","tulips","lilies","sunflowers"} american_flowers={"roses","orchid","tulips","daisies"} american_flowers. symmetric_difference (flowers) {'orchid', 'lilies', 'daisies', 'sunflowers'}  Union: • The method union() returns a new set with items from • the set set_name and all others sets. • Syntax: set_name.union(*others) Ex: flowers={"roses","tulips","lilies","sunflowers"} american_flowers={"roses","orchid","tulips","daisies"} american_flowers.union(flowers) {'orchid', 'lilies', 'tulips', 'daisies', 'roses', 'sunflowers'}
  • 37. Set Methods:  isdisjoint: • The isdisjoint() method returns True if the set set_name has no items in common with other set. Sets are disjoint if and only if their intersection is the empty set. • Syntax : set_name.isdisjoint(other) Ex: flowers={"roses","tulips","lilies","sunflowers"} american_flowers={"roses","orchid","tulips","daisies"} american_flowers.isdisjoint(flowers) False a= {'b', 'c', 'a', 'd'} b={'f', 'g', 'h', 'e'} a.isdisjoint(b) True
  • 38. Set Methods:  issubset: • The issubset() method returns True if every item in the set • set_name is in other set. • Syntax : set_name.issubset(other) Ex: a={'b', 'c', 'a', 'd'} b={'f', 'g', 'h', 'e'} a.issubset(b) False c={"a","b","c","d"} d={"a","b","c","d"} c.issubset(d) True
  • 39. Set Methods:  Issuperset(): • The issuperset() method returns True if every element in other set is in the set set_name. • Syntax : set_name.issuperset(other) Ex: a={'b', 'c', 'a', 'd'} b={'f', 'g', 'h', 'e'} a.issubset(b) False c={"a","b","c","d"} d={"a","b","c","d"} c.issubset(d) True
  • 40. Set Methods:  Pop(): • The method pop() removes and returns an arbitrary item from the set set_name. It raises KeyError if the set is empty. • Syntax : set_name.pop() Ex: d={'b', 'c', 'a', 'd'} item=d.pop() print(item) b print(d) {'c', 'a', 'd'}
  • 41. Set Methods:  remove(): • The method remove() removes an item from the set set_name. It raises KeyError if the item is not contained in the set. • Syntax : set_name.remove(item) • Ex: • c={"a","b","c","d"} c.remove("a") print(c) {'b', 'c', 'd'}  update(): • Update the set set_name by adding items from all others sets. Syntax : set_name.update(*others) Ex: c={'b', 'c', 'd'} d={"e","f","g"} c.update(d) print(c) {'b', 'c', 'f', 'g', 'd', 'e'}
  • 42. Set Methods:  Discard(): • The discard() method removes an item from the set set_name if it is present. Syntax: set_name.discard(item) Ex: d={"e","f","g"} d.discard("e") print(d) {'f', 'g'}  Clear(): • The clear() method removes all the items from the set set_name. • Syntax: set_name.clear() • Ex: alpha={"a","b","c","d"} print(alpha) {'a', 'b', 'c', 'd'} alpha.clear() print(alpha) set()
  • 43. Traversing of sets You can iterate through each item in a set using a for loop. Ex: alpha={"a","b","c","d"} print(alpha) {'a', 'b', 'c', 'd'} for i in alpha: print(i) Output: a b c d
  • 44. Frozenset • A frozenset is basically the same as a set, except that it is immutable. Once a frozenset is created, then its items cannot be changed. • The frozensets have the same functions as normal sets, except none of the functions that change the contents (update, remove, pop, etc.) are available. methods in Frozenset: 1. >>> dir(frozenset) [' and ', ' class ', ' contains ', ' delattr ', ' dir ', ' doc ', ' eq ', ' format ', ' ge ', ' getattribute ', ' gt ', ' hash ', ' init ', ' init_ subclass ', ' iter ', ' le ', ' len ', ' lt ', ' ne ', ' new ', ' or ', ' rand ', '__reduce ', ' reduce_ex ', ' repr ', ' ror ', ' rsub ', ' rxor ', ' setattr__', ' sizeof ', ' str ', ' sub ', ' subclasshook ', ' xor ', 'copy', 'difference', 'intersection', 'isdisjoint', 'issubset', 'issuperset', 'symmetric_difference', 'union']
  • 45. Frozenset Methods • List of methods available for frozenset .For example, Convert set to frozenset • fs=frozenset({"d","o","g"}) • print(fs) • frozenset({'d', 'o', 'g'}) Convert list to frozenset: • list=[10,20,30] • lfs=frozenset(list) • print(lfs) • frozenset({10, 20, 30}) Convert dict to frozenset dict1={"one":1,"two":2,"three":3,"four":4} dfs=frozenset(dict1) print(dfs) frozenset({'four', 'one', 'three', 'two'})
  • 46. • frozenset used as a key in dictionary and item in set: item=frozenset(["g"]) dict1={"a":95,"b":96,"c":97,item:6} print(dict1) {'a': 95, 'b': 96, 'c': 97, frozenset({'g'}): 6} EX: item=frozenset(["g"]) set={"a","b","c",item} print(set) {frozenset({'g'}), 'a', 'c', 'b'}