SlideShare a Scribd company logo
Exploring RGB+DSM Convolutional Neural
Networks Fusion Strategies for
Satellite Imagery Segmentation
Mendrika Ramarlina
www.haizaha.com
Dataset
● 38 tiles of 6000x6000px Orthorectified RGB Imagery
● DSM: ground height removed for each pixel => height above the ground
● Ground Sampling Distance of 5cm for both DSM and TOP
● Two classes:
○ Background
○ Building
● Pre-processing:
○ Each tile is split into patches of 2048x2048 pixels
○ Resized down to 256x256
Baseline Architecture: Unet-ResNet34
● Backbone: Unet - https://arxiv.org/abs/1505.04597
● Encoder: 34 Layers Residual Network - https://arxiv.org/abs/1512.03385
● Layer fusion strategy: Conv2d Fusion
○ First stack feature maps
○ Then run a 2d convolution with 1x1 kernel filter
Model: RGB Unet ResNet-34
● Input: RGB images
● Weights initialization: ImageNet
● IOU: 0.836
Model: 1-Channel DSM Only
● Input: DSM
● Weight Initialization: average of RGB channels from ImageNet pre-trained weights
● IOU: 0.832
Model: Elevation Detection Pre-training
● Pre-training phase: train an elevation detection model
● Re-training the model on ground truth
● IOU: 0.829
Model: Fused Segmentation-Heads
● Practically a model ensemble
● Fusion mechanism: Conv2d Fusion
● IOU: 0.865
Model: Fused Decoders
● Fusion mechanism: Conv2d Fusion
● IOU: 0.863
Model: Fused Encoders
● Fusion mechanism: Conv2d fusion and summation fusion
● IOU: 0.87
Model: 4-Channels RGB-D
● Fusion mechanism: Conv2d Fusion
● IOU: 0.888
Results: Final IOU vs. Fusion Location
Results
Input Data Initialization Fusion Location Epochs 0 - 200 Epochs 200 - 400
RGB ImageNet 0.833 0.836
RGB Elevation Detection 0.819 0.829
DSM ImageNet 0.813 0.832
RGB-DSM ImageNet Input 0.877 0.888
RGB-DSM ImageNet Encoder 0.876 0.87
RGB-DSM ImageNet Decoder 0.207 0.863
RGB-DSM ImageNet
Segmentation
Heads
0.164 0.865
Ways to Get in Touch
Mendrika Ramarlina
mendrika@haizaha.com
linkedin.com/in/mendrikaramarlina
github: @ramarlina

More Related Content

PPTX
Semantic Segmentation on Satellite Imagery
PDF
20180129
PDF
Centernet
PDF
R-FCN : object detection via region-based fully convolutional networks
PDF
6. 2x2 matrixaddmulttouchpad
PPTX
20131114
PPT
Mmclass5
PPTX
IOEfficientParalleMatrixMultiplication_present
Semantic Segmentation on Satellite Imagery
20180129
Centernet
R-FCN : object detection via region-based fully convolutional networks
6. 2x2 matrixaddmulttouchpad
20131114
Mmclass5
IOEfficientParalleMatrixMultiplication_present

Similar to Exploring Fused Convolutional Neural Networks for Aerial Imagery Segmentation (8)

PPTX
Analysis by semantic segmentation of Multispectral satellite imagery using de...
PDF
Cnn acuracia remotesensing-08-00329
PPTX
Object extraction from satellite imagery using deep learning
PPTX
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
PDF
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
PDF
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
PDF
Indoor Point Cloud Processing
PDF
Indoor Point Cloud Processing - Deep learning for semantic segmentation of in...
Analysis by semantic segmentation of Multispectral satellite imagery using de...
Cnn acuracia remotesensing-08-00329
Object extraction from satellite imagery using deep learning
Сегментация объектов на спутниковых снимках (Kaggle DSTL) / Артур Кузин (Avito)
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
Indoor Point Cloud Processing
Indoor Point Cloud Processing - Deep learning for semantic segmentation of in...
Ad

Recently uploaded (20)

PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
1_Introduction to advance data techniques.pptx
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PDF
[EN] Industrial Machine Downtime Prediction
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PDF
Business Analytics and business intelligence.pdf
PPTX
Database Infoormation System (DBIS).pptx
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
1_Introduction to advance data techniques.pptx
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Mega Projects Data Mega Projects Data
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Reliability_Chapter_ presentation 1221.5784
IB Computer Science - Internal Assessment.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
[EN] Industrial Machine Downtime Prediction
.pdf is not working space design for the following data for the following dat...
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Business Analytics and business intelligence.pdf
Database Infoormation System (DBIS).pptx
SAP 2 completion done . PRESENTATION.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
STUDY DESIGN details- Lt Col Maksud (21).pptx
Business Ppt On Nestle.pptx huunnnhhgfvu
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Ad

Exploring Fused Convolutional Neural Networks for Aerial Imagery Segmentation

  • 1. Exploring RGB+DSM Convolutional Neural Networks Fusion Strategies for Satellite Imagery Segmentation Mendrika Ramarlina www.haizaha.com
  • 2. Dataset ● 38 tiles of 6000x6000px Orthorectified RGB Imagery ● DSM: ground height removed for each pixel => height above the ground ● Ground Sampling Distance of 5cm for both DSM and TOP ● Two classes: ○ Background ○ Building ● Pre-processing: ○ Each tile is split into patches of 2048x2048 pixels ○ Resized down to 256x256
  • 3. Baseline Architecture: Unet-ResNet34 ● Backbone: Unet - https://arxiv.org/abs/1505.04597 ● Encoder: 34 Layers Residual Network - https://arxiv.org/abs/1512.03385 ● Layer fusion strategy: Conv2d Fusion ○ First stack feature maps ○ Then run a 2d convolution with 1x1 kernel filter
  • 4. Model: RGB Unet ResNet-34 ● Input: RGB images ● Weights initialization: ImageNet ● IOU: 0.836
  • 5. Model: 1-Channel DSM Only ● Input: DSM ● Weight Initialization: average of RGB channels from ImageNet pre-trained weights ● IOU: 0.832
  • 6. Model: Elevation Detection Pre-training ● Pre-training phase: train an elevation detection model ● Re-training the model on ground truth ● IOU: 0.829
  • 7. Model: Fused Segmentation-Heads ● Practically a model ensemble ● Fusion mechanism: Conv2d Fusion ● IOU: 0.865
  • 8. Model: Fused Decoders ● Fusion mechanism: Conv2d Fusion ● IOU: 0.863
  • 9. Model: Fused Encoders ● Fusion mechanism: Conv2d fusion and summation fusion ● IOU: 0.87
  • 10. Model: 4-Channels RGB-D ● Fusion mechanism: Conv2d Fusion ● IOU: 0.888
  • 11. Results: Final IOU vs. Fusion Location
  • 12. Results Input Data Initialization Fusion Location Epochs 0 - 200 Epochs 200 - 400 RGB ImageNet 0.833 0.836 RGB Elevation Detection 0.819 0.829 DSM ImageNet 0.813 0.832 RGB-DSM ImageNet Input 0.877 0.888 RGB-DSM ImageNet Encoder 0.876 0.87 RGB-DSM ImageNet Decoder 0.207 0.863 RGB-DSM ImageNet Segmentation Heads 0.164 0.865
  • 13. Ways to Get in Touch Mendrika Ramarlina mendrika@haizaha.com linkedin.com/in/mendrikaramarlina github: @ramarlina