SlideShare a Scribd company logo
Predictive Analytics:
Modeling Concepts 

April 15th, 2014
Presented by:
Andrew Pulvermacher
Director | Predictive Analytics
in/drewpulvermacher	
  
2	
  
“We’re	
  forge+ng	
  how	
  to	
  fly.”	
  
-­‐Rory	
  Kay,	
  United	
  captain	
  and	
  co-­‐chairman	
  of	
  
a	
  Federal	
  AviaAon	
  AdministraAon	
  commiCee	
  
“among	
  the	
  accidents	
  and	
  certain	
  categories	
  
of	
  incidents	
  that	
  were	
  examined,	
  roughly	
  
two-­‐thirds	
  of	
  the	
  pilots	
  either	
  had	
  diculty	
  
manually	
  flying	
  planes	
  or	
  made	
  mistakes	
  
using	
  flight	
  computers.”	
  	
  
	
  
	
  
This	
  reliance	
  on	
  computer-­‐heavy	
  flight	
  decks	
  
and	
  the	
  “problems	
  that	
  result	
  when	
  crews	
  
fail	
  to	
  properly	
  keep	
  up	
  with	
  changes	
  in	
  
levels	
  of	
  automaAon”	
  now	
  pose	
  “the	
  biggest	
  
threats”	
  to	
  airliner	
  safety	
  in	
  the	
  world.	
  
3	
  
4	
  
Predic@ve	
  Analy@cs	
  
5	
  
	
  	
  Forward-­‐Looking	
  Decision	
  Making	
  
	
  	
  ObjecAve	
  |	
  Variables	
  |	
  Constraints	
  
TODAY:	
  Modeling	
  Concepts	
  
Predictive Analytics Series
1.  ExecuAve	
  IntroducAon	
  
2.  Data	
  Modeling	
  
3.  SimulaAon	
  
4.  OpAmizaAon	
  
5.  Data-­‐Driven	
  Leadership	
  
in/drewpulvermacher	
  
in/drewpulvermacher	
  
Predictive Analytics Modeling Concepts
WHAT is flying the plane…
8	
  
OBJECTIVE:	
  
We	
  need	
  to	
  RETAIN	
  
our	
  top	
  employees	
  
and	
  RECRUIT	
  More	
  
EffecAvely	
  
Starts	
  with	
  Data	
   Easy	
  3	
  Step	
  Process	
  
1)  Data	
  
2)  What	
  Column	
  
3)  Select	
  
The	
  TECHNOLOGY	
  does	
  it	
  for	
  me	
  
Recommenda@on:	
  Give	
  
everyone	
  a	
  PosiAve	
  
Performance	
  Review	
  (?)	
  
in/drewpulvermacher	
  
Predictive Analytics Modeling Concepts
1. ClassificaAon	
  
2. A/B	
  TesAng	
  
3. Decision	
  Trees	
  
4. Regression	
  
10	
  10	
  
Classica@on	
  
1)  Hidden	
  RelaAonships	
  
2)  Data	
  Familiarity	
  
3)  SegmentaAon	
  
11	
  11	
  
A/B	
  Tes@ng	
  
In	
  markeAng,	
  A/B	
  tes@ng	
  is	
  a	
  simple	
  randomized	
  
experiment	
  with	
  two	
  variants,	
  A	
  and	
  B,	
  which	
  are	
  the	
  
control	
  and	
  treatment	
  in	
  the	
  controlled	
  experiment.	
  	
  
	
  
It	
  is	
  a	
  form	
  of	
  sta@s@cal	
  hypothesis	
  tes@ng.	
  	
  
12	
  12	
  
A/B	
  Tes@ng	
  
Customer	
  Response	
  Rate	
  
Failure	
  Rate	
  
Pricing	
  
Loan	
  Default	
  
13	
  
Summary Statistics
Probability	
  of	
  Breast	
  Cancer:	
  0.8%	
  
•  Woman	
  >	
  40	
  
MAMMOGRAM	
  
Unknown:	
  Breast	
  Cancer	
  
YES	
  
NO	
  
Test	
  Posi@ve	
  
90%	
  
7%	
  
Flesh	
  &	
  Blood	
  Example	
  
14	
  
BAYES	
  THEOREM	
  
1	
  
70	
  
15	
  
Decision	
  Trees	
  
Reason	
  for	
  Being:	
  
Contingent Probabilities
Noun:	
  the	
  probability	
  that	
  an	
  event	
  
will	
  occur	
  given	
  that	
  one	
  or	
  more	
  
other	
  events	
  have	
  occurred	
  
16	
  
Decision	
  Trees:	
  Scenario	
  
PRODUCT	
  A	
  
Prob($)	
  =	
  60%	
  
PRODUCT	
  B	
  
Prob($)	
  =	
  20%	
  
Prob($)	
  =	
  40%	
  
17	
  
Let’s	
  Plant	
  a	
  (Decision)	
  Tree	
  
3	
  Probabili@es	
  of	
  Success	
  for	
  Product	
  B	
  
Results	
  are	
  NOT	
  Independent.	
  
p(B)	
  =	
  p(B|A)	
  x	
  p	
  (A)	
  
+	
  p(B	
  |	
  notA)	
  x	
  p(not	
  A)	
  
18	
  
One	
  More?	
   Regression	
  
19	
  
“As	
  our	
  machines	
  get	
  faster	
  and	
  ingest	
  more	
  data,	
  we	
  allow	
  
ourselves	
  to	
  be	
  dumber.	
  
	
  
Instead	
  of	
  wrestling	
  with	
  our	
  problems	
  in	
  earnest,	
  we	
  can	
  just	
  
plug	
  in	
  billions	
  of	
  examples	
  of	
  them.	
  	
  
	
  
Which	
  is	
  a	
  bit	
  like	
  using	
  a	
  graphing	
  calculator	
  to	
  do	
  your	
  high-­‐
school	
  calculus	
  homework	
  –	
  it	
  works	
  great	
  un@l	
  you	
  need	
  to	
  
actually	
  understand	
  calculus.”	
  
	
   	
   	
  -­‐	
  James	
  Somers,	
  “The	
  Man	
  Who	
  Would	
  Teach	
  Machines	
  to	
  Think,”	
  
	
   	
   	
   	
  The	
  AtlanAc,	
  November	
  2013	
  
20	
  
Predic@ve	
  Analy@cs	
  
in/drewpulvermacher	
  
Predictive Analytics Modeling Concepts
1. ClassificaAon	
  
2. A/B	
  TesAng	
  
3. Decision	
  Trees	
  
4. Regression	
  
22	
  Drew@PerformanceG2.com
Q&A
Thank you for attending our webinar
23	
  Drew@PerformanceG2.com
"  Call us: 877.742.4276
"  	
  Email us: info@performanceg2.com or drew@performanceg2.com
"  	
  Visit our web site: performanceg2.com
"  	
  Read our Analytics blog: performanceg2.com/blog
"  	
  Follow us:
"  (Twitter) @performanceg2
"  (Facebook) /performanceg2
"  (YouTube) /performanceg2
"  (LinkedIn) /performanceg2-inc
Predictive Analytics Series
1.  ExecuAve	
  IntroducAon	
  
2.  Data	
  Modeling	
  
3.  SimulaAon	
  –	
  May	
  15,	
  2014	
  
4.  OpAmizaAon	
  
5.  Data-­‐Driven	
  Leadership	
  
Visit	
  hCp://www.performanceg2.com/
events	
  to	
  register	
  for	
  the	
  upcoming	
  series.	
  

More Related Content

PPT
Oops – What Now Assignment 2
PDF
Data Science Isn't a Fad: Let's Keep it That Way
PDF
Association Mining
PDF
Influx/Days 2017 San Francisco | Baron Schwartz
PDF
Three types of lies which should not apply to simulations
PDF
Lab Report on Cognos Insight
PDF
IBM Cognos 10 - An Introduction
Oops – What Now Assignment 2
Data Science Isn't a Fad: Let's Keep it That Way
Association Mining
Influx/Days 2017 San Francisco | Baron Schwartz
Three types of lies which should not apply to simulations
Lab Report on Cognos Insight
IBM Cognos 10 - An Introduction

Similar to Predictive Analytics Modeling (20)

PPTX
Scale your Testing and Quality with Automation Engineering and ML - Carlos Ki...
PDF
1530 track1 rosenbaum
PDF
Validation Is (Not) Easy
PDF
Machine learning e book all chapters.pdf
PPTX
Random Forest Tutorial | Random Forest in R | Machine Learning | Data Science...
PDF
Data Science for Business Managers - An intro to ROI for predictive analytics
PDF
(In)convenient truths about applied machine learning
PPTX
Best practices in building machine learning models in Azure ML
PPTX
Demystifying Data Science Webinar - February 14, 2018
PDF
Stephen cresswell risk are we missing a trick - 25th june
PDF
Is Machine learning useful for Fraud Prevention?
PDF
GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
PDF
Ds for finance day 3
PDF
Machine Learning Ml Overview Algorithms Use Cases And Applications
PDF
machine_learning_section1_ebook.pdf
 
PDF
Machine Learning Ml Overview Algorithms Use Cases And Applications
PDF
Target Leakage in Machine Learning (ODSC East 2020)
PPTX
Is Bigger Data Really Better? 10 Facts from Theory and Practice
DOCX
Chapter 4 Case study instructions1. Answer the Case Study Ques.docx
PPTX
Deep learning fast and slow, a responsible and explainable AI framework - Ahm...
Scale your Testing and Quality with Automation Engineering and ML - Carlos Ki...
1530 track1 rosenbaum
Validation Is (Not) Easy
Machine learning e book all chapters.pdf
Random Forest Tutorial | Random Forest in R | Machine Learning | Data Science...
Data Science for Business Managers - An intro to ROI for predictive analytics
(In)convenient truths about applied machine learning
Best practices in building machine learning models in Azure ML
Demystifying Data Science Webinar - February 14, 2018
Stephen cresswell risk are we missing a trick - 25th june
Is Machine learning useful for Fraud Prevention?
GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
Ds for finance day 3
Machine Learning Ml Overview Algorithms Use Cases And Applications
machine_learning_section1_ebook.pdf
 
Machine Learning Ml Overview Algorithms Use Cases And Applications
Target Leakage in Machine Learning (ODSC East 2020)
Is Bigger Data Really Better? 10 Facts from Theory and Practice
Chapter 4 Case study instructions1. Answer the Case Study Ques.docx
Deep learning fast and slow, a responsible and explainable AI framework - Ahm...
Ad

More from PerformanceG2, Inc. (13)

PDF
Introduction to Simulation- Predictive Analytics
PDF
IBM Cognos 10.2 Security Best Practices
PDF
An Introduction to Predictive Analytics- An Executive's Guide for Informed De...
PDF
IBM Cognos Insight the Book - An In Depth Presenation by Author Sanjeev Datta
PDF
Business Intelligence for Government - Clark County Family Services Departmen...
PDF
PerformanceG2 Company Profile
PDF
PerformanceG2 Cognos Training Course Catalog 2011
PDF
Performance Management: An Investment in Enterprise Success
PDF
PG2 Multi Dimensional Reporting using Report Studio
PDF
Cognos TM1 for Advanced Users
PDF
PG2 Cognos Express 101
PDF
PG2 Cognos TM1: An Introduction to Design, Maintenance and Performance Tuning
PDF
PG2 Creating Effective Dashboards In Cognos 8
Introduction to Simulation- Predictive Analytics
IBM Cognos 10.2 Security Best Practices
An Introduction to Predictive Analytics- An Executive's Guide for Informed De...
IBM Cognos Insight the Book - An In Depth Presenation by Author Sanjeev Datta
Business Intelligence for Government - Clark County Family Services Departmen...
PerformanceG2 Company Profile
PerformanceG2 Cognos Training Course Catalog 2011
Performance Management: An Investment in Enterprise Success
PG2 Multi Dimensional Reporting using Report Studio
Cognos TM1 for Advanced Users
PG2 Cognos Express 101
PG2 Cognos TM1: An Introduction to Design, Maintenance and Performance Tuning
PG2 Creating Effective Dashboards In Cognos 8
Ad

Recently uploaded (20)

PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Computer network topology notes for revision
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
1_Introduction to advance data techniques.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Global journeys: estimating international migration
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Foundation of Data Science unit number two notes
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
.pdf is not working space design for the following data for the following dat...
Computer network topology notes for revision
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Business Acumen Training GuidePresentation.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
climate analysis of Dhaka ,Banglades.pptx
1_Introduction to advance data techniques.pptx
Supervised vs unsupervised machine learning algorithms
Acceptance and paychological effects of mandatory extra coach I classes.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Miokarditis (Inflamasi pada Otot Jantung)
Fluorescence-microscope_Botany_detailed content
Global journeys: estimating international migration
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Foundation of Data Science unit number two notes
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
STUDY DESIGN details- Lt Col Maksud (21).pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx

Predictive Analytics Modeling

  • 1. Predictive Analytics: Modeling Concepts April 15th, 2014 Presented by: Andrew Pulvermacher Director | Predictive Analytics in/drewpulvermacher  
  • 2. 2   “We’re  forge+ng  how  to  fly.”   -­‐Rory  Kay,  United  captain  and  co-­‐chairman  of   a  Federal  AviaAon  AdministraAon  commiCee   “among  the  accidents  and  certain  categories   of  incidents  that  were  examined,  roughly   two-­‐thirds  of  the  pilots  either  had  diculty   manually  flying  planes  or  made  mistakes   using  flight  computers.”         This  reliance  on  computer-­‐heavy  flight  decks   and  the  “problems  that  result  when  crews   fail  to  properly  keep  up  with  changes  in   levels  of  automaAon”  now  pose  “the  biggest   threats”  to  airliner  safety  in  the  world.  
  • 5. 5      Forward-­‐Looking  Decision  Making      ObjecAve  |  Variables  |  Constraints   TODAY:  Modeling  Concepts   Predictive Analytics Series 1.  ExecuAve  IntroducAon   2.  Data  Modeling   3.  SimulaAon   4.  OpAmizaAon   5.  Data-­‐Driven  Leadership  
  • 7. in/drewpulvermacher   Predictive Analytics Modeling Concepts WHAT is flying the plane…
  • 8. 8   OBJECTIVE:   We  need  to  RETAIN   our  top  employees   and  RECRUIT  More   EffecAvely   Starts  with  Data   Easy  3  Step  Process   1)  Data   2)  What  Column   3)  Select   The  TECHNOLOGY  does  it  for  me   Recommenda@on:  Give   everyone  a  PosiAve   Performance  Review  (?)  
  • 9. in/drewpulvermacher   Predictive Analytics Modeling Concepts 1. ClassicaAon   2. A/B  TesAng   3. Decision  Trees   4. Regression  
  • 10. 10  10   Classica@on   1)  Hidden  RelaAonships   2)  Data  Familiarity   3)  SegmentaAon  
  • 11. 11  11   A/B  Tes@ng   In  markeAng,  A/B  tes@ng  is  a  simple  randomized   experiment  with  two  variants,  A  and  B,  which  are  the   control  and  treatment  in  the  controlled  experiment.       It  is  a  form  of  sta@s@cal  hypothesis  tes@ng.    
  • 12. 12  12   A/B  Tes@ng   Customer  Response  Rate   Failure  Rate   Pricing   Loan  Default  
  • 13. 13   Summary Statistics Probability  of  Breast  Cancer:  0.8%   •  Woman  >  40   MAMMOGRAM   Unknown:  Breast  Cancer   YES   NO   Test  Posi@ve   90%   7%   Flesh  &  Blood  Example  
  • 14. 14   BAYES  THEOREM   1   70  
  • 15. 15   Decision  Trees   Reason  for  Being:   Contingent Probabilities Noun:  the  probability  that  an  event   will  occur  given  that  one  or  more   other  events  have  occurred  
  • 16. 16   Decision  Trees:  Scenario   PRODUCT  A   Prob($)  =  60%   PRODUCT  B   Prob($)  =  20%   Prob($)  =  40%  
  • 17. 17   Let’s  Plant  a  (Decision)  Tree   3  Probabili@es  of  Success  for  Product  B   Results  are  NOT  Independent.   p(B)  =  p(B|A)  x  p  (A)   +  p(B  |  notA)  x  p(not  A)  
  • 18. 18   One  More?   Regression  
  • 19. 19   “As  our  machines  get  faster  and  ingest  more  data,  we  allow   ourselves  to  be  dumber.     Instead  of  wrestling  with  our  problems  in  earnest,  we  can  just   plug  in  billions  of  examples  of  them.       Which  is  a  bit  like  using  a  graphing  calculator  to  do  your  high-­‐ school  calculus  homework  –  it  works  great  un@l  you  need  to   actually  understand  calculus.”        -­‐  James  Somers,  “The  Man  Who  Would  Teach  Machines  to  Think,”          The  AtlanAc,  November  2013  
  • 21. in/drewpulvermacher   Predictive Analytics Modeling Concepts 1. ClassicaAon   2. A/B  TesAng   3. Decision  Trees   4. Regression  
  • 23. Thank you for attending our webinar 23  Drew@PerformanceG2.com "  Call us: 877.742.4276 "    Email us: info@performanceg2.com or drew@performanceg2.com "    Visit our web site: performanceg2.com "    Read our Analytics blog: performanceg2.com/blog "    Follow us: "  (Twitter) @performanceg2 "  (Facebook) /performanceg2 "  (YouTube) /performanceg2 "  (LinkedIn) /performanceg2-inc
  • 24. Predictive Analytics Series 1.  ExecuAve  IntroducAon   2.  Data  Modeling   3.  SimulaAon  –  May  15,  2014   4.  OpAmizaAon   5.  Data-­‐Driven  Leadership   Visit  hCp://www.performanceg2.com/ events  to  register  for  the  upcoming  series. Â