SlideShare a Scribd company logo
Implementing the Seven Principles:
Technology as Lever
By Arthur W. Chickering and Stephen C. Ehrmann
From the October 1996 AAHE Bulletin.
In March 1987, the AAHE Bulletin first published “Seven Principles for Good Practice in
Undergraduate Education.” With support from Lilly Endowment, that document was followed by a Seven
Principles Faculty Inventory and an Institutional Inventory (Johnson Foundation, 1989) and by a Student
Inventory (1990). The Principles, created by Art Chickering and Zelda Gamson with help from higher
education colleagues, AAHE, and the Education Commission of the States, with support from the Johnson
Foundation, distilled findings from decades of research on the undergraduate experience.
Several hundred thousand copies of the Principles and Inventories have been distributed on two- and
four-year campuses in the United States and Canada. (Copies are available at cost from the Seven
Principles Resource Center, Winona State University, PO Box 5838, Winona, MN 55987-5838; ph
507/457-5020.) — Eds.
Since the Seven Principles of Good Practice were created in 1987, new communication and information
technologies have become major resources for teaching and learning in higher education. If the power of
the new technologies is to be fully realized, they should be employed in ways consistent with the Seven
Principles. Such technologies are tools with multiple capabilities; it is misleading to make assertions like
“Microcomputers will empower students” because that is only one way in which computers might be used.
Any given instructional strategy can be supported by a number of contrasting technologies (old and new),
just as any given technology might support different instructional strategies. But for any given instructional
strategy, some technologies are better than others: Better to turn a screw with a screwdriver than a
hammer — a dime may also do the trick, but a screwdriver is usually better.
This essay, then, describes some of the most cost-effective and appropriate ways to use computers,
video, and telecommunications technologies to advance the Seven Principles.
1. Good Practice Encourages Contacts Between Students and Faculty
Frequent student-faculty contact in and out of class is a most important factor in student motivation and
involvement. Faculty concern helps students get through rough times and keep on working. Knowing a
few faculty members well enhances students’ intellectual commitment and encourages them to think
about their own values and plans.
Communication technologies that increase access to faculty members, help them share useful resources,
and provide for joint problem solving and shared learning can usefully augment face-to-face contact in and
outside of class meetings. By putting in place a more “distant” source of information and guidance for
students, such technologies can strengthen faculty interactions with all students, but especially with shy
students who are reluctant to ask questions or challenge the teacher directly. It is often easier to discuss
values and personal concerns in writing than orally, since inadvertent or ambiguous nonverbal signals are
not so dominant. As the number of commuting part-time students and adult learners increases,
technologies provide opportunities for interaction not possible when students come to class and leave
soon afterward to meet work or family responsibilities.
The biggest success story in this realm has been that of time-delayed (asynchronous) communication.
Traditionally, time-delayed communication took place in education through the exchange of homework,
http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
either in class or by mail (for more distant learners). Such time-delayed exchange was often a rather
impoverished form of conversation, typically limited to three conversational turns:
1. The instructor poses a question (a task).
2. The student responds (with homework).
3. The instructor responds some time later with comments and a grade.
The conversation often ends there; by the time the grade or comment is received, the course and student
are off on new topics.
Now, however, electronic mail, computer conferencing, and the World Wide Web increase opportunities
for students and faculty to converse and exchange work much more speedily than before, and more
thoughtfully and “safely” than when confronting each other in a classroom or faculty office. Total
communication increases and, for many students, the result seems more intimate, protected, and
convenient than the more intimidating demands of face-to-face communication with faculty.
Professor Norman Coombs reports that, after twelve years of teaching black history at the Rochester
Institute of Technology, the first time he used email was the first time a student asked what he, a white
man, was doing teaching black history. The literature is full of stories of students from different cultures
opening up in and out of class when email became available. Communication also is eased when student
or instructor (or both) is not a native speaker of English; each party can take a bit more time to interpret
what has been said and compose a response. With the new media, participation and contribution from
diverse students become more equitable and widespread.
2. Good Practice Develops Reciprocity and Cooperation Among Students
Learning is enhanced when it is more like a team effort than a solo race. Good learning, like good work, is
collaborative and social, not competitive and isolated. Working with others often increases involvement in
learning. Sharing one’s ideas and responding to others’ improves thinking and deepens understanding.
The increased opportunities for interaction with faculty noted above apply equally to communication with
fellow students. Study groups, collaborative learning, group problem solving, and discussion of
assignments can all be dramatically strengthened through communication tools that facilitate such activity.
The extent to which computer-based tools encourage spontaneous student collaboration was one of the
earliest surprises about computers. A clear advantage of email for today’s busy commuting students is
that it opens up communication among classmates even when they are not physically together.
For example: One of us, attempting to learn to navigate the Web, took a course taught entirely by a
combination of televised class sessions (seen live or taped) and by work on a course Web page. The
hundred students in the course included persons in Germany and the Washington, DC, area.
Learning teams helped themselves “learn the plumbing” and solve problems. These team members never
met face-to-face. But they completed and exchanged Myers-Briggs Type Inventories, surveys of their prior
experience and level of computer expertise, and brief personal introductions. This material helped
teammates size one another up initially; team interactions then built working relationships and encouraged
acquaintanceship. This kind of “collaborative learning” would be all but impossible without the presence of
the media we were learning about and with.
3. Good Practice Uses Active Learning Techniques
Learning is not a spectator sport. Students do not learn much just sitting in classes listening to teachers,
memorizing prepackaged assignments, and spitting out answers. They must talk about what they are
learning, write reflectively about it, relate it to past experiences, and apply it to their daily lives. They must
make what they learn part of themselves.
The range of technologies that encourage active learning is staggering. Many fall into one of three
categories: tools and resources for learning by doing, time-delayed exchange, and real-time conversation.
Today, all three usually can be supported with “worldware,” i.e., software (such as word processors)
originally developed for other purposes but now used for instruction, too.
We’ve already discussed communication tools, so here we will focus on learning by doing. Apprentice-like
learning has been supported by many traditional technologies: research libraries, laboratories, art and
architectural studios, athletic fields. Newer technologies now can enrich and expand these opportunities.
For example:
http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
Supporting apprentice-like activities in fields that themselves require the use of technology as a
tool, such as statistical research and computer-based music, or use of the Internet to gather
information not available in the local library.
Simulating techniques that do not themselves require computers, such as helping chemistry
students develop and practice research skills in “dry” simulated laboratories before they use the
riskier, more expensive real equipment.
Helping students develop insight. For example, students can be asked to design a radio antenna.
Simulation software displays not only their design but the ordinarily invisible electromagnetic
waves the antenna would emit. Students change their designs and instantly see resulting changes
in the waves. The aim of this exercise is not to design antennae but to build deeper understanding
of electromagnetism.
4. Good Practice Gives Prompt Feedback
Knowing what you know and don’t know focuses your learning. In getting started, students need help in
assessing their existing knowledge and competence. Then, in classes, students need frequent
opportunities to perform and receive feedback on their performance. At various points during college, and
at its end, students need chances to reflect on what they have learned, what they still need to know, and
how they might assess themselves.
The ways in which new technologies can provide feedback are many — sometimes obvious, sometimes
more subtle. We already have talked about the use of email for supporting person-to-person feedback, for
example, and the feedback inherent in simulations. Computers also have a growing role in recording and
analyzing personal and professional performances. Teachers can use technology to provide critical
observations for an apprentice; for example, video to help a novice teacher, actor, or athlete critique his or
her own performance. Faculty (or other students) can react to a writer’s draft using the “hidden text” option
available in word processors: Turned on, the “hidden” comments spring up; turned off, the comments
recede and the writer’s prized work is again free of “red ink.”
As we move toward portfolio evaluation strategies, computers can provide rich storage and easy access
to student products and performances. Computers can keep track of early efforts, so instructors and
students can see the extent to which later efforts demonstrate gains in knowledge, competence, or other
valued outcomes. Performances that are time-consuming and expensive to record and evaluate — such
as leadership skills, group process management, or multicultural interactions — can be elicited and
stored, not only for ongoing critique but also as a record of growing capacity.
5. Good Practice Emphasizes Time on Task
Time plus energy equals learning. Learning to use one’s time well is critical for students and professionals
alike. Allocating realistic amounts of time means effective learning for students and effective teaching for
faculty.
New technologies can dramatically improve time on task for students and faculty members. Some years
ago a faculty member told one of us that he used technology to “steal students’ beer time,” attracting them
to work on course projects instead of goofing off. Technology also can increase time on task by making
studying more efficient. Teaching strategies that help students learn at home or work can save hours
otherwise spent commuting to and from campus, finding parking places, and so on. Time efficiency also
increases when interactions between teacher and students, and among students, fit busy work and home
schedules. And students and faculty alike make better use of time when they can get access to important
resources for learning without trudging to the library, flipping through card files, scanning microfilm and
microfiche, and scrounging the reference room.
For faculty members interested in classroom research, computers can record student participation and
interaction and help document student time on task, especially as related to student performance.
6. Good Practice Communicates High Expectations
Expect more and you will get it. High expectations are important for everyone — for the poorly prepared,
for those unwilling to exert themselves, and for the bright and well motivated. Expecting students to
perform well becomes a self-fulfilling prophecy.
New technologies can communicate high expectations explicitly and efficiently. Significant real-life
problems, conflicting perspectives, or paradoxical data sets can set powerful learning challenges that
drive students to not only acquire information but sharpen their cognitive skills of analysis, synthesis,
application, and evaluation.
Many faculty report that students feel stimulated by knowing their finished work will be “published” on the
http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
World Wide Web.With technology, criteria for evaluating products and performances can be more clearly
articulated by the teacher, or generated collaboratively with stu- dents. General criteria can be illustrated
with samples of excellent, average, mediocre, and faulty performance. These samples can be shared and
modified easily. They provide a basis for peer evaluation, so learning teams can help everyone succeed.
7. Good Practice Respects Diverse Talents and Ways of Learning
Many roads lead to learning. Different students bring different talents and styles to college. Brilliant
students in a seminar might be all thumbs in a lab or studio; students rich in hands-on experience may not
do so well with theory. Students need opportunities to show their talents and learn in ways that work for
them. Then they can be pushed to learn in new ways that do not come so easily.
Technological resources can ask for different methods of learning through powerful visuals and well-
organized print; through direct, vicarious, and virtual experiences; and through tasks requiring analysis,
synthesis, and evaluation, with applications to real-life situations. They can encourage self-reflection and
self-evaluation. They can drive collaboration and group problem solving. Technologies can help students
learn in ways they find most effective and broaden their repertoires for learning. They can supply structure
for students who need it and leave assignments more open-ended for students who don’t. Fast, bright
students can move quickly through materials they master easily and go on to more difficult tasks; slower
students can take more time and get more feedback and direct help from teachers and fellow students.
Aided by technologies, students with similar motives and talents can work in cohort study groups without
constraints of time and place.
Evaluation and the Seven Principles
How are we to know whether given technologies are as useful in promoting the Seven Principles and
learning as this article claims? One approach is to look and see, which is the aim of the “Flashlight
Project,” a three-year effort of the Annenberg/CPB Project to develop and share evaluation procedures.
The Flash-light Project is developing a suite of evaluation tools that any campus can use to monitor the
usefulness of technology in implementing the Seven Principles and the impacts of such changes on
learning outcomes (e.g., the student’s ability to apply what was learned in the academic program) and on
access (e.g., whether hoped-for gains in time on task and retention are saving money for the institution
and its funders).
[For more about the Flashlight Project, see Stephen Ehrmann’s “Asking the Right Questions: What Does
Research Tell Us About Technology and Higher Learning?” in the March/April 1995 Change. Or, check
out the Flashlight Project’s website at http://www.tltgroup.org/programs/flashlight.html]
Technology Is Not Enough
The Seven Principles cannot be implemented by technophiles alone, or even by faculty alone. Students
need to become familiar with the Principles and be more assertive with respect to their own learning.
When confronted with teaching strategies and course requirements that use technologies in ways contrary
to the Principles, students should, if possible, move to alternatives that serve them better. If teaching
focuses simply on memorizing and regurgitating prepackaged information, whether delivered by a faculty
lecture or computer, students should reach for a different course, search out additional resources or
complementary experiences, establish their own study groups, or go to the professor for more substantial
activities and feedback.
Faculty members who already work with students in ways consistent with the Principles need to be tough-
minded about the software- and technology-assisted interactions they create and buy into. They need to
eschew materials that are simply didactic, and search instead for those that are interactive, problem
oriented, relevant to real-world issues, and that evoke student motivation.
Institutional policies concerning learning resources and technology support need to give high priority to
user-friendly hardware, software, and communication vehicles that help faculty and students use
technologies efficiently and effectively. Investments in professional development for faculty members, plus
training and computer lab assistance for students, will be necessary if learning potentials are to be
realized.
Finally, it is appropriate for legislators and other benefactors to ask whether institutions are striving to
improve educational practice consistent with the Seven Principles. Much depends on the answer.
Note: This article draws on Arthur Chickering’s participation in “The Future of Face-to-Face and Distance
http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
Copyright © 2003 - American Association for Higher Education
Learning in Post-Secondary Education,” a workgroup chaired by W.L. Renwick as part of a larger effort
examining The Future of Post-Secondary Education and the Role of Information and Communication
Technology: A Clarifying Report, carried out by the Center for Educational Research and Innovation,
Organization for Economic Cooperation and Development. Paris: 1993, 1994.
http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1

More Related Content

PDF
(MY) THREE PRINCIPLES OF EFFECTIVE ONLINE PEDAGOGY
PDF
Asynchronous vs Synchronous Learning
PDF
802 paper
PPT
Using%20the%20 Lms%20to%20increase%20student%20engagement%20in1
DOCX
Tech Quest Project Rich Edelen
PPT
Teaching EFL with the Brain in mind
 
PPT
Instructional Strategies Web 2.0
PPT
OFT - pr3_communication
(MY) THREE PRINCIPLES OF EFFECTIVE ONLINE PEDAGOGY
Asynchronous vs Synchronous Learning
802 paper
Using%20the%20 Lms%20to%20increase%20student%20engagement%20in1
Tech Quest Project Rich Edelen
Teaching EFL with the Brain in mind
 
Instructional Strategies Web 2.0
OFT - pr3_communication

What's hot (20)

PPTX
Clickers - research and practice
PDF
Actively engaging student in large classes
DOC
PPT
Seven Principles of Effective Teaching Online
PPTX
Fac nursing2011
PPTX
RICELT - Manuel Herrera
PDF
Macknight+2000+questions[1]
DOCX
Personal Lifelong Learning Plan
PDF
Reflecting on large class teaching at UJ
PDF
Case study in creative /critical thinking. Akram Jabar Najim
PPT
Education in a New Era
PPTX
"How to Manage my Moodle course" Workshop
PPTX
Huntly Middle School Syndicate
PPTX
Best practices for teaching online
PPTX
Pg cert2
PPT
Distance Learning and Education
PPT
Csla presentation reading online 2011
PPT
Achterman csla 2011reading_online
PDF
H800 TMA04
PDF
HOW TO MAKE A FLIPPED CLASS ROOM Changing trends in Education
Clickers - research and practice
Actively engaging student in large classes
Seven Principles of Effective Teaching Online
Fac nursing2011
RICELT - Manuel Herrera
Macknight+2000+questions[1]
Personal Lifelong Learning Plan
Reflecting on large class teaching at UJ
Case study in creative /critical thinking. Akram Jabar Najim
Education in a New Era
"How to Manage my Moodle course" Workshop
Huntly Middle School Syndicate
Best practices for teaching online
Pg cert2
Distance Learning and Education
Csla presentation reading online 2011
Achterman csla 2011reading_online
H800 TMA04
HOW TO MAKE A FLIPPED CLASS ROOM Changing trends in Education
Ad

Viewers also liked (20)

PDF
Ingles lll ciclo
PPTX
Deporte
PPTX
PDF
Estudio de Caso de dibujo infantil
PDF
EDUCACION EN UN MUNDO CONECTADO
PPTX
Competencia tecnologicas
PDF
La pedagogía de la crueldad
PDF
Ti port2 mai2015_cad2_ext
PDF
Ingles diversificada
PPTX
Levers for change in healthcare systems: The role of performance measurement ...
DOCX
Concept note env laboratory infrastructure-ppp min of env
PPTX
Lesson 16 vlan
PPTX
700 posts – 1 menu, organizing a large info site with taxonomies and facets
PPS
Levers (Palancas 1º Eso)
PDF
Neuroprotección Fetal ( Sulfato de Magnesio )
PPTX
Aprendizaje emocional: cómo hacer actividades eficaces
PPTX
Rpd biomechanics principles of levers design consideration 4th year
PPT
Ppt Levers
PPT
Levers
Ingles lll ciclo
Deporte
Estudio de Caso de dibujo infantil
EDUCACION EN UN MUNDO CONECTADO
Competencia tecnologicas
La pedagogía de la crueldad
Ti port2 mai2015_cad2_ext
Ingles diversificada
Levers for change in healthcare systems: The role of performance measurement ...
Concept note env laboratory infrastructure-ppp min of env
Lesson 16 vlan
700 posts – 1 menu, organizing a large info site with taxonomies and facets
Levers (Palancas 1º Eso)
Neuroprotección Fetal ( Sulfato de Magnesio )
Aprendizaje emocional: cómo hacer actividades eficaces
Rpd biomechanics principles of levers design consideration 4th year
Ppt Levers
Levers
Ad

Similar to Implementing 7 principles (20)

DOCX
Chickering & gamson 7 principles of technology
DOCX
Chickering & gamson 7 principles of technology
DOCX
201013150 karabeyeser f. prof. 3 a education and training innovation
PDF
Technology and the Human Connection
RTF
PDF
E-LEARNING TECHNOLOGIES AND HUMAN LEARNING PROCESS
PPTX
FoULT: Learning & Teaching @ CQUni
PDF
Writing With Technology
PDF
Technology learning
PDF
Technology learning
PPT
Effective Online Communication and Presentation
PPTX
ED - (1)Tech For Teaching 1.pptx
PPTX
Passion based cell
DOCX
Impact of Technology in Education
DOCX
Impact Of Technology In Education Final Draft
PPTX
AET/541 LT (A) Staying Relevant
PDF
The School of the Future
DOCX
Impact of technology on teaching and learning
PPTX
EDUCATIONAL TECHNOLGY - ORGANIZATION AND MANAGEMENT OF EDUCATIONAL MEDIA - N...
PPTX
ORGANIZATION & MANAGEMENT OF EDUCATIONAL MEDIA & NEW TRENDS IN EDUCATIONAL T...
Chickering & gamson 7 principles of technology
Chickering & gamson 7 principles of technology
201013150 karabeyeser f. prof. 3 a education and training innovation
Technology and the Human Connection
E-LEARNING TECHNOLOGIES AND HUMAN LEARNING PROCESS
FoULT: Learning & Teaching @ CQUni
Writing With Technology
Technology learning
Technology learning
Effective Online Communication and Presentation
ED - (1)Tech For Teaching 1.pptx
Passion based cell
Impact of Technology in Education
Impact Of Technology In Education Final Draft
AET/541 LT (A) Staying Relevant
The School of the Future
Impact of technology on teaching and learning
EDUCATIONAL TECHNOLGY - ORGANIZATION AND MANAGEMENT OF EDUCATIONAL MEDIA - N...
ORGANIZATION & MANAGEMENT OF EDUCATIONAL MEDIA & NEW TRENDS IN EDUCATIONAL T...

Recently uploaded (20)

PDF
Basic Mud Logging Guide for educational purpose
PDF
01-Introduction-to-Information-Management.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Business Ethics Teaching Materials for college
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Basic Mud Logging Guide for educational purpose
01-Introduction-to-Information-Management.pdf
Pre independence Education in Inndia.pdf
Supply Chain Operations Speaking Notes -ICLT Program
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
102 student loan defaulters named and shamed – Is someone you know on the list?
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Business Ethics Teaching Materials for college
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
TR - Agricultural Crops Production NC III.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
FourierSeries-QuestionsWithAnswers(Part-A).pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Insiders guide to clinical Medicine.pdf
VCE English Exam - Section C Student Revision Booklet
Microbial diseases, their pathogenesis and prophylaxis
PPH.pptx obstetrics and gynecology in nursing
school management -TNTEU- B.Ed., Semester II Unit 1.pptx

Implementing 7 principles

  • 1. Implementing the Seven Principles: Technology as Lever By Arthur W. Chickering and Stephen C. Ehrmann From the October 1996 AAHE Bulletin. In March 1987, the AAHE Bulletin first published “Seven Principles for Good Practice in Undergraduate Education.” With support from Lilly Endowment, that document was followed by a Seven Principles Faculty Inventory and an Institutional Inventory (Johnson Foundation, 1989) and by a Student Inventory (1990). The Principles, created by Art Chickering and Zelda Gamson with help from higher education colleagues, AAHE, and the Education Commission of the States, with support from the Johnson Foundation, distilled findings from decades of research on the undergraduate experience. Several hundred thousand copies of the Principles and Inventories have been distributed on two- and four-year campuses in the United States and Canada. (Copies are available at cost from the Seven Principles Resource Center, Winona State University, PO Box 5838, Winona, MN 55987-5838; ph 507/457-5020.) — Eds. Since the Seven Principles of Good Practice were created in 1987, new communication and information technologies have become major resources for teaching and learning in higher education. If the power of the new technologies is to be fully realized, they should be employed in ways consistent with the Seven Principles. Such technologies are tools with multiple capabilities; it is misleading to make assertions like “Microcomputers will empower students” because that is only one way in which computers might be used. Any given instructional strategy can be supported by a number of contrasting technologies (old and new), just as any given technology might support different instructional strategies. But for any given instructional strategy, some technologies are better than others: Better to turn a screw with a screwdriver than a hammer — a dime may also do the trick, but a screwdriver is usually better. This essay, then, describes some of the most cost-effective and appropriate ways to use computers, video, and telecommunications technologies to advance the Seven Principles. 1. Good Practice Encourages Contacts Between Students and Faculty Frequent student-faculty contact in and out of class is a most important factor in student motivation and involvement. Faculty concern helps students get through rough times and keep on working. Knowing a few faculty members well enhances students’ intellectual commitment and encourages them to think about their own values and plans. Communication technologies that increase access to faculty members, help them share useful resources, and provide for joint problem solving and shared learning can usefully augment face-to-face contact in and outside of class meetings. By putting in place a more “distant” source of information and guidance for students, such technologies can strengthen faculty interactions with all students, but especially with shy students who are reluctant to ask questions or challenge the teacher directly. It is often easier to discuss values and personal concerns in writing than orally, since inadvertent or ambiguous nonverbal signals are not so dominant. As the number of commuting part-time students and adult learners increases, technologies provide opportunities for interaction not possible when students come to class and leave soon afterward to meet work or family responsibilities. The biggest success story in this realm has been that of time-delayed (asynchronous) communication. Traditionally, time-delayed communication took place in education through the exchange of homework, http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
  • 2. either in class or by mail (for more distant learners). Such time-delayed exchange was often a rather impoverished form of conversation, typically limited to three conversational turns: 1. The instructor poses a question (a task). 2. The student responds (with homework). 3. The instructor responds some time later with comments and a grade. The conversation often ends there; by the time the grade or comment is received, the course and student are off on new topics. Now, however, electronic mail, computer conferencing, and the World Wide Web increase opportunities for students and faculty to converse and exchange work much more speedily than before, and more thoughtfully and “safely” than when confronting each other in a classroom or faculty office. Total communication increases and, for many students, the result seems more intimate, protected, and convenient than the more intimidating demands of face-to-face communication with faculty. Professor Norman Coombs reports that, after twelve years of teaching black history at the Rochester Institute of Technology, the first time he used email was the first time a student asked what he, a white man, was doing teaching black history. The literature is full of stories of students from different cultures opening up in and out of class when email became available. Communication also is eased when student or instructor (or both) is not a native speaker of English; each party can take a bit more time to interpret what has been said and compose a response. With the new media, participation and contribution from diverse students become more equitable and widespread. 2. Good Practice Develops Reciprocity and Cooperation Among Students Learning is enhanced when it is more like a team effort than a solo race. Good learning, like good work, is collaborative and social, not competitive and isolated. Working with others often increases involvement in learning. Sharing one’s ideas and responding to others’ improves thinking and deepens understanding. The increased opportunities for interaction with faculty noted above apply equally to communication with fellow students. Study groups, collaborative learning, group problem solving, and discussion of assignments can all be dramatically strengthened through communication tools that facilitate such activity. The extent to which computer-based tools encourage spontaneous student collaboration was one of the earliest surprises about computers. A clear advantage of email for today’s busy commuting students is that it opens up communication among classmates even when they are not physically together. For example: One of us, attempting to learn to navigate the Web, took a course taught entirely by a combination of televised class sessions (seen live or taped) and by work on a course Web page. The hundred students in the course included persons in Germany and the Washington, DC, area. Learning teams helped themselves “learn the plumbing” and solve problems. These team members never met face-to-face. But they completed and exchanged Myers-Briggs Type Inventories, surveys of their prior experience and level of computer expertise, and brief personal introductions. This material helped teammates size one another up initially; team interactions then built working relationships and encouraged acquaintanceship. This kind of “collaborative learning” would be all but impossible without the presence of the media we were learning about and with. 3. Good Practice Uses Active Learning Techniques Learning is not a spectator sport. Students do not learn much just sitting in classes listening to teachers, memorizing prepackaged assignments, and spitting out answers. They must talk about what they are learning, write reflectively about it, relate it to past experiences, and apply it to their daily lives. They must make what they learn part of themselves. The range of technologies that encourage active learning is staggering. Many fall into one of three categories: tools and resources for learning by doing, time-delayed exchange, and real-time conversation. Today, all three usually can be supported with “worldware,” i.e., software (such as word processors) originally developed for other purposes but now used for instruction, too. We’ve already discussed communication tools, so here we will focus on learning by doing. Apprentice-like learning has been supported by many traditional technologies: research libraries, laboratories, art and architectural studios, athletic fields. Newer technologies now can enrich and expand these opportunities. For example: http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
  • 3. Supporting apprentice-like activities in fields that themselves require the use of technology as a tool, such as statistical research and computer-based music, or use of the Internet to gather information not available in the local library. Simulating techniques that do not themselves require computers, such as helping chemistry students develop and practice research skills in “dry” simulated laboratories before they use the riskier, more expensive real equipment. Helping students develop insight. For example, students can be asked to design a radio antenna. Simulation software displays not only their design but the ordinarily invisible electromagnetic waves the antenna would emit. Students change their designs and instantly see resulting changes in the waves. The aim of this exercise is not to design antennae but to build deeper understanding of electromagnetism. 4. Good Practice Gives Prompt Feedback Knowing what you know and don’t know focuses your learning. In getting started, students need help in assessing their existing knowledge and competence. Then, in classes, students need frequent opportunities to perform and receive feedback on their performance. At various points during college, and at its end, students need chances to reflect on what they have learned, what they still need to know, and how they might assess themselves. The ways in which new technologies can provide feedback are many — sometimes obvious, sometimes more subtle. We already have talked about the use of email for supporting person-to-person feedback, for example, and the feedback inherent in simulations. Computers also have a growing role in recording and analyzing personal and professional performances. Teachers can use technology to provide critical observations for an apprentice; for example, video to help a novice teacher, actor, or athlete critique his or her own performance. Faculty (or other students) can react to a writer’s draft using the “hidden text” option available in word processors: Turned on, the “hidden” comments spring up; turned off, the comments recede and the writer’s prized work is again free of “red ink.” As we move toward portfolio evaluation strategies, computers can provide rich storage and easy access to student products and performances. Computers can keep track of early efforts, so instructors and students can see the extent to which later efforts demonstrate gains in knowledge, competence, or other valued outcomes. Performances that are time-consuming and expensive to record and evaluate — such as leadership skills, group process management, or multicultural interactions — can be elicited and stored, not only for ongoing critique but also as a record of growing capacity. 5. Good Practice Emphasizes Time on Task Time plus energy equals learning. Learning to use one’s time well is critical for students and professionals alike. Allocating realistic amounts of time means effective learning for students and effective teaching for faculty. New technologies can dramatically improve time on task for students and faculty members. Some years ago a faculty member told one of us that he used technology to “steal students’ beer time,” attracting them to work on course projects instead of goofing off. Technology also can increase time on task by making studying more efficient. Teaching strategies that help students learn at home or work can save hours otherwise spent commuting to and from campus, finding parking places, and so on. Time efficiency also increases when interactions between teacher and students, and among students, fit busy work and home schedules. And students and faculty alike make better use of time when they can get access to important resources for learning without trudging to the library, flipping through card files, scanning microfilm and microfiche, and scrounging the reference room. For faculty members interested in classroom research, computers can record student participation and interaction and help document student time on task, especially as related to student performance. 6. Good Practice Communicates High Expectations Expect more and you will get it. High expectations are important for everyone — for the poorly prepared, for those unwilling to exert themselves, and for the bright and well motivated. Expecting students to perform well becomes a self-fulfilling prophecy. New technologies can communicate high expectations explicitly and efficiently. Significant real-life problems, conflicting perspectives, or paradoxical data sets can set powerful learning challenges that drive students to not only acquire information but sharpen their cognitive skills of analysis, synthesis, application, and evaluation. Many faculty report that students feel stimulated by knowing their finished work will be “published” on the http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
  • 4. World Wide Web.With technology, criteria for evaluating products and performances can be more clearly articulated by the teacher, or generated collaboratively with stu- dents. General criteria can be illustrated with samples of excellent, average, mediocre, and faulty performance. These samples can be shared and modified easily. They provide a basis for peer evaluation, so learning teams can help everyone succeed. 7. Good Practice Respects Diverse Talents and Ways of Learning Many roads lead to learning. Different students bring different talents and styles to college. Brilliant students in a seminar might be all thumbs in a lab or studio; students rich in hands-on experience may not do so well with theory. Students need opportunities to show their talents and learn in ways that work for them. Then they can be pushed to learn in new ways that do not come so easily. Technological resources can ask for different methods of learning through powerful visuals and well- organized print; through direct, vicarious, and virtual experiences; and through tasks requiring analysis, synthesis, and evaluation, with applications to real-life situations. They can encourage self-reflection and self-evaluation. They can drive collaboration and group problem solving. Technologies can help students learn in ways they find most effective and broaden their repertoires for learning. They can supply structure for students who need it and leave assignments more open-ended for students who don’t. Fast, bright students can move quickly through materials they master easily and go on to more difficult tasks; slower students can take more time and get more feedback and direct help from teachers and fellow students. Aided by technologies, students with similar motives and talents can work in cohort study groups without constraints of time and place. Evaluation and the Seven Principles How are we to know whether given technologies are as useful in promoting the Seven Principles and learning as this article claims? One approach is to look and see, which is the aim of the “Flashlight Project,” a three-year effort of the Annenberg/CPB Project to develop and share evaluation procedures. The Flash-light Project is developing a suite of evaluation tools that any campus can use to monitor the usefulness of technology in implementing the Seven Principles and the impacts of such changes on learning outcomes (e.g., the student’s ability to apply what was learned in the academic program) and on access (e.g., whether hoped-for gains in time on task and retention are saving money for the institution and its funders). [For more about the Flashlight Project, see Stephen Ehrmann’s “Asking the Right Questions: What Does Research Tell Us About Technology and Higher Learning?” in the March/April 1995 Change. Or, check out the Flashlight Project’s website at http://www.tltgroup.org/programs/flashlight.html] Technology Is Not Enough The Seven Principles cannot be implemented by technophiles alone, or even by faculty alone. Students need to become familiar with the Principles and be more assertive with respect to their own learning. When confronted with teaching strategies and course requirements that use technologies in ways contrary to the Principles, students should, if possible, move to alternatives that serve them better. If teaching focuses simply on memorizing and regurgitating prepackaged information, whether delivered by a faculty lecture or computer, students should reach for a different course, search out additional resources or complementary experiences, establish their own study groups, or go to the professor for more substantial activities and feedback. Faculty members who already work with students in ways consistent with the Principles need to be tough- minded about the software- and technology-assisted interactions they create and buy into. They need to eschew materials that are simply didactic, and search instead for those that are interactive, problem oriented, relevant to real-world issues, and that evoke student motivation. Institutional policies concerning learning resources and technology support need to give high priority to user-friendly hardware, software, and communication vehicles that help faculty and students use technologies efficiently and effectively. Investments in professional development for faculty members, plus training and computer lab assistance for students, will be necessary if learning potentials are to be realized. Finally, it is appropriate for legislators and other benefactors to ask whether institutions are striving to improve educational practice consistent with the Seven Principles. Much depends on the answer. Note: This article draws on Arthur Chickering’s participation in “The Future of Face-to-Face and Distance http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1
  • 5. Copyright © 2003 - American Association for Higher Education Learning in Post-Secondary Education,” a workgroup chaired by W.L. Renwick as part of a larger effort examining The Future of Post-Secondary Education and the Role of Information and Communication Technology: A Clarifying Report, carried out by the Center for Educational Research and Innovation, Organization for Economic Cooperation and Development. Paris: 1993, 1994. http://www.aahebulletin.com/public/archive/sevenprinciples.asp?pf=1