SlideShare a Scribd company logo
Communication Networks
E. Mulyana, U. Killat
1
MMB & PGTS 2004 – Dresden – 14.09.2004
Optimization of IP Networks in Various
Hybrid IGP/MPLS Routing Schemes
Eueung Mulyana, Ulrich Killat
FSP 4-06 Communication Networks
Hamburg University of Technology (TUHH)
Communication Networks
E. Mulyana, U. Killat
2
Models for Hybrid Routing
1
2 3
4 5
6
7
8 9
LSP
1
2 3
4 5
6
7
8 9
LSP
1
2 3
4 5
6
7
8 9
LSP
1 3
2 4
5 6
7 8
9
1
1
1
1
1
1
1
2
2
3
2
2
LSP
Basic IGP Shortcut (BIS)
[2] ...
IGP Shortcut (IS)
[2,7,9][] ...
Overlay (OV)
[5,6] ...
Communication Networks
E. Mulyana, U. Killat
3
Problem Setting
Optimization
Network topology
and link capacities
Traffic demand
Set of LSPs
to be installed
Set of metric
values
Objective(s)
Constraint(s)
 Use single-path routing scenario
 Enforcement of single-path routing :
 ECMP disabled ; or
 Unique shortest path routing [2,8] ...
State of the
network (load
distribution,
etc.)
Set of possible node pairs
for the LSPs (optional)
Communication Networks
E. Mulyana, U. Killat
4
Utilization Upper boundObjective Function
Formulation
}||{min max1
 c max,
 ji Aji  ),(
1|| max
 hN kLSP
k
Hop/Static-Delay limit
 Intended to Heuristics (it is not suitable for Mathematical
Programming)
 Applicable for most core networks
Utilization
 
k
LSP
ji
uv
vu
jiji
k
lll ,
,
,,
ji
ji
ji
c
l
,
,
,

Aji  ),(
max
 kLSP
k
Communication Networks
E. Mulyana, U. Killat
5
A Heuristic Approach : GA
Crossover
Mutation
Population
50 chromosomes
Selection (parents)
8 chromosomes
Selection
(remove 10%)
Population
45 chromosomes
Offsprings
16 chromosomes
Population
61 chromosomes
Selection
(best 50 chromosomes)
Initialize population
Exit condition
fulfilled ?
Parents selection
Crossover
Mutation
Remove some bad individuals
Add new individuals
Survivors selection
An example of the population dynamic
yes
no
Communication Networks
E. Mulyana, U. Killat
6
Representation
2 1 0 2 3 0
LSP A
LSP B
LSP C
LSP D
LSP E
LSP F
LSP G
LSP H
LSP I
LSP J
LSP K
LSP L
LSP M
LSP N
LSP O
LSP P
LSP Q
LSP R
1
2
3
4
Shortest Path
(SP)
4 3 2 2 4 3
4 LSPs are installed
in the network
Possible
LSPs
chromosome
vector of cl


 

else
||if||
k
kPP
c
ll
l
number/
index
 LSP candidates (for each of the considered flows) are obtained by
applying k-shortest path algorithm
4|| 
Communication Networks
E. Mulyana, U. Killat
7G-WiN Level 2G-WiN Level 1The G-WiN Network
Case Study
Network
instance
27 nodes (10 level-1 + 17 level-2);
76 directed-links (42 level-1 + 34 level-2)
Static delay
model cspproplink
 
prop

sp

c

propagation
proc./serial.
constant
Parameter
setting
(622Mbps)ms1sp

linkperms1c

ms12max 
4max
h
10001
c
cdprop  2
3

Communication Networks
E. Mulyana, U. Killat
8
Results(1)
#LSP
IGP
BIS IS
0.7725 0.570338
0.7725
cons
max

0.2345
-
58
link
max

24.9474
link

-
LSP
max

-
LSP

OV
using set of the
considered links,
in this case all level-1
links
cons
max

max

maximum #different flows
carried by an LSP
link
max

average #different flows
carried by a link
link

average #different flows
carried by an LSP
maximum #different flows
carried by a link
LSP
max

LSP

IGP/MPLS
0.570338
0.237114
12
53
25.0526
1
1
0.523714
0.523714
0.240888
16
45
25.4079
4
2.9375
0.483923
0.426447
0.247998
22
51
26.5789
12
8.54545
max
Termination : 150 iterations (maximum) or 70 iterations (no improvements)
GA : population size = 30;
IGP : inverse-capacity metric values; ECMP was disabled
L=48 (all node pairs in the level-1 network, which are not directly connected)
path)shortest-(k4k
Communication Networks
E. Mulyana, U. Killat
9
Results(2) : Delay
IGP OV BIS IS
path
 6.687 6.738 6.904 7.238
)(flows#  - 1.42% 5.7% 21.08%
)(flows#  - 0.28% 1% 5.7%
)(flows#  - 98.3% 93.3% 73.22%
path
max
 12.1697 12.1697 13.1659 14.8418
- 11.1755 10.7706 10.3724
LSP
max

- 8.30118 8.72935 7.56434
LSP

Communication Networks
E. Mulyana, U. Killat
10
Results(3) : Hop-count
IGP OV BIS IS
path
h 2.70 2.71 2.75 2.88
)(flows# h - 1.14% 4.99% 17.66%
)(flows# h - 0% 0% 0%
)(flows# h - 98.86% 95.01% 82.34%
path
hmax
4 4 4 5
- 3 3 3
LSP
hmax
- 2.67 2.75 2.64
LSP
h
Communication Networks
E. Mulyana, U. Killat
11
Summary and Conclusion
 Investigation of various hybrid IGP/MPLS routing schemes related to
network performance and QoS parameters
 Hybrid IGP/MPLS attractive alternative and complement for
traditional offline TE by optimizing IGP metrics.
 New approach based on GA; increasing network efficiency while
minimizing the necessary number of LSPs within certain performance
trade-offs
 Advantages vs. disadvantages:
 OV: no-aggregation, relatively large number of LSPs are needed
to achieve a good performance
 BIS+IS: aggregation is possible, relatively smaller number of
LSPs are –if appropriately configured– enough to achieve a good
performance
Communication Networks
E. Mulyana, U. Killat
12
References (Partial List)
(1) Awduche D. et. al. „Overview and Principles of Internet Traffic Engineering“, RFC
3272, May 2002.
(2) Ben-Ameur W. et. al. „Routing Strategies for IP-Networks“, Telekronikk Magazine
2/3, 2001.
(3) Forzt B., Thorup M. „Internet Traffic Engineering by Optimizing OSPF Weights“,
IEEE Infocom, 2000.
(4) Karas P., Pioro M. „Optimisation Problems Related to the Assignment of
Administrative Weights in the IP Networks‘ Routing Protocols“, Proceedings of 1st
PGTS 2000.
(5) Koehler S., Binzenhoefer A. „MPLS Traffic Engineering in OSPF Networks – A
Combined Approach“,ITC 18, 2003.
(6) Riedl A. „Optimized Routing Adaptation in IP Networks Utilizing OSPF and MPLS“,
IEEE ICC, 2003.
(7) Shen N., Smit H.„Calculating IGP Routes over TE Tunnels“, Internet Draft, 1999.
(8) Thorup M., Roughan M. „Avoiding Ties in Shortest Path First Routing“,[online].
(9) Wang Y., Zhang L., „A Scalable Hybrid IP Network TE Approach“, Internet Draft,
2001.
Communication Networks
E. Mulyana, U. Killat
13
Thank You !
Communication Networks
E. Mulyana, U. Killat
14
Queueing Delay
 [Papagiannaki_02] „Anaysis of Measured Single-Hop Delay from
an Operational Backbone Network“ (Tier-1/Sprint) :
 „99% of packets in the backbone experience single-hop delay
less than 1 ms“ (max 35 ms; maximum link utilization of
70%; average link utilization of 50%; investigation on OC-
3/STM-1 link; GPS-clock)
 Cisco recomendation; [Filsfils_02] „Deploying Tight-SLA Services
on an IP Backbone“:
 „based on simulations for at least 85% utilization with a mean
queue size below 20 ms“(using the recommended WRED
parameter)
Communication Networks
E. Mulyana, U. Killat
15
Crossover and Mutation
2 1 0 2 3 0
1 0 1 2 2 3
4 1 2 0 1 1
1 0 1 1 0 1
2
1
0 2
3
0
1
0
1 2
2
3
0 0 0 1 0 0
4 1 2 2 1 1
Chr. 1
Chr. 2
Crossover
vector
Chr. 3
Chr. 4
Chr. 5
Chr. 6
Mutation
vector
4 3 2 2 4 3Vector of cmax
Communication Networks
E. Mulyana, U. Killat
16
Applicability for Using max
 Should be ensured that it is always possible to reroute load in each
link in the network
 If not the case : transform
.
maxmax
cons
 
2
3
4 5
6
7
1
considered
not
considered
Mark each link as
considered or
unconsidered
Communication Networks
E. Mulyana, U. Killat
17
|Rall|  cardinality of all routing entries for all nodes
|D|  cardinality of all demand entries
c (>>)  a quite high constant
Objective function
Unique Shortest-Path Routing :
Heuristics
 Thorup, Roughan „Avoiding Ties in Shortest Path First Routing“
 Using an explicit penalty in the objective function :
2
3
41
vu
f ,
2
,vu
f
2
,vu
f
2
3
41



c
fcf vuvu ,,
2
,

vu
f
2
,

vu
f
|)||(| all
DRc 


Communication Networks
E. Mulyana, U. Killat
18
The Normalized Objective Function
Utilization Upper boundObjective Function
}||
1
{min max1

L
c  max,
 ji Aji  ),(
1|| max
 hN kLSP
k
Hop limitUtilization
 
k
LSP
ji
uv
vu
jiji
k
lll ,
,
,,
ji
ji
ji
c
l
,
,
,

Aji  ),(
 L  length of the chromosome = max. LSPs can be installed (cf. GA
representation)
max
 kLSP
k
Communication Networks
E. Mulyana, U. Killat
19
IGP Shortcut : Routing Loop
1
2 3
4
5
6
7
8 9
LSP
1 3
2 4
5 6
7 8
9
1
1
1
1
1
1
1
2
2
3
2
2
LSP
1 2 4 6 8 7 5 7
8
9
LSP
Routing
Loop
 Bad configuration! It is certainly not
optimal w.r.t. network utilization
 Using an explicit penalty in the
objective function (cf. Page 18), if
there exist routing entries which
contain loop
Communication Networks
E. Mulyana, U. Killat
20
IGP Shortcut : The Algorithm [7]
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
LSP B
LSP A
LSP C
LSP D
LSP A
LSP B
LSP C
LSP D
LSP E
Communication Networks
E. Mulyana, U. Killat
21
Convergence (1)
Iterations
Objective value
(fitness)
fitness = 443.987
utilMax = 0.483923
utilMaxConsidered = 0.413987
totalTunnels = 30
---------------------------
fitness (bestIndividual) = 443.987
utilMaxCons (b.I.) = 0.413987
totalTunnels (b.I.) = 30
----------------------------
Total Computation Time = 32.3 minutes
Computation Time (Network) = 32.25 minutes
Computation Time (Network) = 99.8452 %
----------------------------
Average
Best Individual
Communication Networks
E. Mulyana, U. Killat
22
Convergence (2)
Iterations
Maximum utilization
(considered) # LSPs
Average
Best Individual
Best Individual
Average

More Related Content

PDF
Haqr the hierarchical ant based qos aware on demand routing for manets
PDF
MFMP Vs ECMP Under RED Queue Management
DOCX
Dynamic fragmentation using path exchange scheme in EON
PDF
Improved data efficiency of programmable arbiter based on chip permutation ne...
PDF
A Tunnel Compress Scheme for Multi-Tunneling in PMIPv6-based Nested NEMO
PDF
Hb3512341239
PDF
Routing Optimization in IP/MPLS Networks under Per-Class Over-Provisioning Co...
PDF
A novel hierarchical ant based qos aware intelligent routing scheme for manets
Haqr the hierarchical ant based qos aware on demand routing for manets
MFMP Vs ECMP Under RED Queue Management
Dynamic fragmentation using path exchange scheme in EON
Improved data efficiency of programmable arbiter based on chip permutation ne...
A Tunnel Compress Scheme for Multi-Tunneling in PMIPv6-based Nested NEMO
Hb3512341239
Routing Optimization in IP/MPLS Networks under Per-Class Over-Provisioning Co...
A novel hierarchical ant based qos aware intelligent routing scheme for manets

What's hot (16)

PDF
IRJET-Spectrum Allocation Policies for Flex Grid Network with Data Rate Limit...
PDF
Wc & lte 4 g module 4- 2019 by prof.sv1
PDF
Protocol based QoS Estimation of OFDM-WIMAX Network
PDF
Determining the Optimum Number of Paths for Realization of Multi-path Routing...
PDF
ON DEMAND CHANNEL ASSIGNMENT METHOD FOR CHANNEL DIVERSITY (ODCAM)
PDF
Performance evaluation of proactive, reactive and hybrid routing protocols wi...
PDF
Performance evaluation of proactive, reactive and
PDF
K017426872
PDF
AN EFFICIENT ANT BASED QOS AWARE INTELLIGENT TEMPORALLY ORDERED ROUTING ALGOR...
PDF
Routing Optimization in IP/MPLS Networks under Per-Class Over-Provisioning Co...
PDF
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
PDF
COMP-JT WITH DYNAMIC CELL SELECTION, GLOBAL PRECODING MATRIX AND IRC RECEIVER...
PDF
White paper communication method in sonic speed vacuum train rev 0-.english
PDF
Performance Evaluation of Reactive, Proactive and Hybrid Routing Protocols Ba...
PDF
C0431320
IRJET-Spectrum Allocation Policies for Flex Grid Network with Data Rate Limit...
Wc & lte 4 g module 4- 2019 by prof.sv1
Protocol based QoS Estimation of OFDM-WIMAX Network
Determining the Optimum Number of Paths for Realization of Multi-path Routing...
ON DEMAND CHANNEL ASSIGNMENT METHOD FOR CHANNEL DIVERSITY (ODCAM)
Performance evaluation of proactive, reactive and hybrid routing protocols wi...
Performance evaluation of proactive, reactive and
K017426872
AN EFFICIENT ANT BASED QOS AWARE INTELLIGENT TEMPORALLY ORDERED ROUTING ALGOR...
Routing Optimization in IP/MPLS Networks under Per-Class Over-Provisioning Co...
PSO-based Training, Pruning, and Ensembling of Extreme Learning Machine RBF N...
COMP-JT WITH DYNAMIC CELL SELECTION, GLOBAL PRECODING MATRIX AND IRC RECEIVER...
White paper communication method in sonic speed vacuum train rev 0-.english
Performance Evaluation of Reactive, Proactive and Hybrid Routing Protocols Ba...
C0431320
Ad

Viewers also liked (13)

PDF
IMPACT OF PARTIAL DEMAND INCREASE ON THE PERFORMANCE OF IP NETWORKS AND RE-OP...
PDF
A HYBRID GENETIC ALGORITHM APPROACH FOR OSPF WEIGHT SETTING PROBLEM
PDF
An Offline Hybrid IGP/MPLS Traffic Engineering Approach under LSP Constraints
PDF
An Alternative Genetic Algorithm to Optimize OSPF Weights
PDF
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
PDF
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
PDF
Internet Traffic Engineering for Partially Uncertain Demands
PDF
Dimensioning of Multi-Class Over-Provisioned IP Networks
PDF
OPTIMIZATION OF IP NETWORKS IN VARIOUS HYBRID IGP/MPLS ROUTING SCHEMES
PDF
Efficient Planning and Offline Routing Approaches for IP Networks
PDF
An Alternative Genetic Algorithm to Optimize OSPF Weights
PDF
Efficient Planning and Offline Routing Approaches for IP Networks
PDF
Network Planning and Optimization
IMPACT OF PARTIAL DEMAND INCREASE ON THE PERFORMANCE OF IP NETWORKS AND RE-OP...
A HYBRID GENETIC ALGORITHM APPROACH FOR OSPF WEIGHT SETTING PROBLEM
An Offline Hybrid IGP/MPLS Traffic Engineering Approach under LSP Constraints
An Alternative Genetic Algorithm to Optimize OSPF Weights
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
Internet Traffic Engineering for Partially Uncertain Demands
Dimensioning of Multi-Class Over-Provisioned IP Networks
OPTIMIZATION OF IP NETWORKS IN VARIOUS HYBRID IGP/MPLS ROUTING SCHEMES
Efficient Planning and Offline Routing Approaches for IP Networks
An Alternative Genetic Algorithm to Optimize OSPF Weights
Efficient Planning and Offline Routing Approaches for IP Networks
Network Planning and Optimization
Ad

Similar to Optimization of IP Networks in Various Hybrid IGP/MPLS Routing Schemes (20)

PDF
An Offline Hybrid IGP/MPLS Traffic Engineering Approach under LSP Constraints
PDF
Impact of Partial Demand Increase on the Performance of IP Networks and Re-op...
PDF
PhD_Slides
PDF
AIRO2008_Cherubini
PDF
Advanced networking scheduling and QoS part 2
DOCX
opnet lab report
PPT
6761 8-realtime
PDF
MPLS Traffic Engineering
PPTX
lin (local interconnect networks) presentation
PDF
Internet Traffic Engineering for Partially Uncertain Demands
PDF
Paper id 21201449
PPTX
Network layer new
PDF
Adaptive resource allocation and internet traffic engineering on data network
PPTX
G3 phase1 final ppt.pptx
PDF
Traffic Class Assignment for Mixed-Criticality Frames in TTEthernet
PPT
lec 3 4 Core Delays Thruput Net Arch.ppt
PDF
Intelligent Routing Algorithm Using Antnet
PDF
DCCN Network Layer congestion control TCP
PPT
Network layer tanenbaum
PDF
50120140506013 2
An Offline Hybrid IGP/MPLS Traffic Engineering Approach under LSP Constraints
Impact of Partial Demand Increase on the Performance of IP Networks and Re-op...
PhD_Slides
AIRO2008_Cherubini
Advanced networking scheduling and QoS part 2
opnet lab report
6761 8-realtime
MPLS Traffic Engineering
lin (local interconnect networks) presentation
Internet Traffic Engineering for Partially Uncertain Demands
Paper id 21201449
Network layer new
Adaptive resource allocation and internet traffic engineering on data network
G3 phase1 final ppt.pptx
Traffic Class Assignment for Mixed-Criticality Frames in TTEthernet
lec 3 4 Core Delays Thruput Net Arch.ppt
Intelligent Routing Algorithm Using Antnet
DCCN Network Layer congestion control TCP
Network layer tanenbaum
50120140506013 2

Recently uploaded (20)

PDF
Complications of Minimal Access Surgery at WLH
PDF
RMMM.pdf make it easy to upload and study
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Computing-Curriculum for Schools in Ghana
Complications of Minimal Access Surgery at WLH
RMMM.pdf make it easy to upload and study
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Final Presentation General Medicine 03-08-2024.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
GDM (1) (1).pptx small presentation for students
Sports Quiz easy sports quiz sports quiz
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Anesthesia in Laparoscopic Surgery in India
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Basic Mud Logging Guide for educational purpose
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
01-Introduction-to-Information-Management.pdf
Microbial diseases, their pathogenesis and prophylaxis
VCE English Exam - Section C Student Revision Booklet
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Computing-Curriculum for Schools in Ghana

Optimization of IP Networks in Various Hybrid IGP/MPLS Routing Schemes

  • 1. Communication Networks E. Mulyana, U. Killat 1 MMB & PGTS 2004 – Dresden – 14.09.2004 Optimization of IP Networks in Various Hybrid IGP/MPLS Routing Schemes Eueung Mulyana, Ulrich Killat FSP 4-06 Communication Networks Hamburg University of Technology (TUHH)
  • 2. Communication Networks E. Mulyana, U. Killat 2 Models for Hybrid Routing 1 2 3 4 5 6 7 8 9 LSP 1 2 3 4 5 6 7 8 9 LSP 1 2 3 4 5 6 7 8 9 LSP 1 3 2 4 5 6 7 8 9 1 1 1 1 1 1 1 2 2 3 2 2 LSP Basic IGP Shortcut (BIS) [2] ... IGP Shortcut (IS) [2,7,9][] ... Overlay (OV) [5,6] ...
  • 3. Communication Networks E. Mulyana, U. Killat 3 Problem Setting Optimization Network topology and link capacities Traffic demand Set of LSPs to be installed Set of metric values Objective(s) Constraint(s)  Use single-path routing scenario  Enforcement of single-path routing :  ECMP disabled ; or  Unique shortest path routing [2,8] ... State of the network (load distribution, etc.) Set of possible node pairs for the LSPs (optional)
  • 4. Communication Networks E. Mulyana, U. Killat 4 Utilization Upper boundObjective Function Formulation }||{min max1  c max,  ji Aji  ),( 1|| max  hN kLSP k Hop/Static-Delay limit  Intended to Heuristics (it is not suitable for Mathematical Programming)  Applicable for most core networks Utilization   k LSP ji uv vu jiji k lll , , ,, ji ji ji c l , , ,  Aji  ),( max  kLSP k
  • 5. Communication Networks E. Mulyana, U. Killat 5 A Heuristic Approach : GA Crossover Mutation Population 50 chromosomes Selection (parents) 8 chromosomes Selection (remove 10%) Population 45 chromosomes Offsprings 16 chromosomes Population 61 chromosomes Selection (best 50 chromosomes) Initialize population Exit condition fulfilled ? Parents selection Crossover Mutation Remove some bad individuals Add new individuals Survivors selection An example of the population dynamic yes no
  • 6. Communication Networks E. Mulyana, U. Killat 6 Representation 2 1 0 2 3 0 LSP A LSP B LSP C LSP D LSP E LSP F LSP G LSP H LSP I LSP J LSP K LSP L LSP M LSP N LSP O LSP P LSP Q LSP R 1 2 3 4 Shortest Path (SP) 4 3 2 2 4 3 4 LSPs are installed in the network Possible LSPs chromosome vector of cl      else ||if|| k kPP c ll l number/ index  LSP candidates (for each of the considered flows) are obtained by applying k-shortest path algorithm 4|| 
  • 7. Communication Networks E. Mulyana, U. Killat 7G-WiN Level 2G-WiN Level 1The G-WiN Network Case Study Network instance 27 nodes (10 level-1 + 17 level-2); 76 directed-links (42 level-1 + 34 level-2) Static delay model cspproplink   prop  sp  c  propagation proc./serial. constant Parameter setting (622Mbps)ms1sp  linkperms1c  ms12max  4max h 10001 c cdprop  2 3 
  • 8. Communication Networks E. Mulyana, U. Killat 8 Results(1) #LSP IGP BIS IS 0.7725 0.570338 0.7725 cons max  0.2345 - 58 link max  24.9474 link  - LSP max  - LSP  OV using set of the considered links, in this case all level-1 links cons max  max  maximum #different flows carried by an LSP link max  average #different flows carried by a link link  average #different flows carried by an LSP maximum #different flows carried by a link LSP max  LSP  IGP/MPLS 0.570338 0.237114 12 53 25.0526 1 1 0.523714 0.523714 0.240888 16 45 25.4079 4 2.9375 0.483923 0.426447 0.247998 22 51 26.5789 12 8.54545 max Termination : 150 iterations (maximum) or 70 iterations (no improvements) GA : population size = 30; IGP : inverse-capacity metric values; ECMP was disabled L=48 (all node pairs in the level-1 network, which are not directly connected) path)shortest-(k4k
  • 9. Communication Networks E. Mulyana, U. Killat 9 Results(2) : Delay IGP OV BIS IS path  6.687 6.738 6.904 7.238 )(flows#  - 1.42% 5.7% 21.08% )(flows#  - 0.28% 1% 5.7% )(flows#  - 98.3% 93.3% 73.22% path max  12.1697 12.1697 13.1659 14.8418 - 11.1755 10.7706 10.3724 LSP max  - 8.30118 8.72935 7.56434 LSP 
  • 10. Communication Networks E. Mulyana, U. Killat 10 Results(3) : Hop-count IGP OV BIS IS path h 2.70 2.71 2.75 2.88 )(flows# h - 1.14% 4.99% 17.66% )(flows# h - 0% 0% 0% )(flows# h - 98.86% 95.01% 82.34% path hmax 4 4 4 5 - 3 3 3 LSP hmax - 2.67 2.75 2.64 LSP h
  • 11. Communication Networks E. Mulyana, U. Killat 11 Summary and Conclusion  Investigation of various hybrid IGP/MPLS routing schemes related to network performance and QoS parameters  Hybrid IGP/MPLS attractive alternative and complement for traditional offline TE by optimizing IGP metrics.  New approach based on GA; increasing network efficiency while minimizing the necessary number of LSPs within certain performance trade-offs  Advantages vs. disadvantages:  OV: no-aggregation, relatively large number of LSPs are needed to achieve a good performance  BIS+IS: aggregation is possible, relatively smaller number of LSPs are –if appropriately configured– enough to achieve a good performance
  • 12. Communication Networks E. Mulyana, U. Killat 12 References (Partial List) (1) Awduche D. et. al. „Overview and Principles of Internet Traffic Engineering“, RFC 3272, May 2002. (2) Ben-Ameur W. et. al. „Routing Strategies for IP-Networks“, Telekronikk Magazine 2/3, 2001. (3) Forzt B., Thorup M. „Internet Traffic Engineering by Optimizing OSPF Weights“, IEEE Infocom, 2000. (4) Karas P., Pioro M. „Optimisation Problems Related to the Assignment of Administrative Weights in the IP Networks‘ Routing Protocols“, Proceedings of 1st PGTS 2000. (5) Koehler S., Binzenhoefer A. „MPLS Traffic Engineering in OSPF Networks – A Combined Approach“,ITC 18, 2003. (6) Riedl A. „Optimized Routing Adaptation in IP Networks Utilizing OSPF and MPLS“, IEEE ICC, 2003. (7) Shen N., Smit H.„Calculating IGP Routes over TE Tunnels“, Internet Draft, 1999. (8) Thorup M., Roughan M. „Avoiding Ties in Shortest Path First Routing“,[online]. (9) Wang Y., Zhang L., „A Scalable Hybrid IP Network TE Approach“, Internet Draft, 2001.
  • 13. Communication Networks E. Mulyana, U. Killat 13 Thank You !
  • 14. Communication Networks E. Mulyana, U. Killat 14 Queueing Delay  [Papagiannaki_02] „Anaysis of Measured Single-Hop Delay from an Operational Backbone Network“ (Tier-1/Sprint) :  „99% of packets in the backbone experience single-hop delay less than 1 ms“ (max 35 ms; maximum link utilization of 70%; average link utilization of 50%; investigation on OC- 3/STM-1 link; GPS-clock)  Cisco recomendation; [Filsfils_02] „Deploying Tight-SLA Services on an IP Backbone“:  „based on simulations for at least 85% utilization with a mean queue size below 20 ms“(using the recommended WRED parameter)
  • 15. Communication Networks E. Mulyana, U. Killat 15 Crossover and Mutation 2 1 0 2 3 0 1 0 1 2 2 3 4 1 2 0 1 1 1 0 1 1 0 1 2 1 0 2 3 0 1 0 1 2 2 3 0 0 0 1 0 0 4 1 2 2 1 1 Chr. 1 Chr. 2 Crossover vector Chr. 3 Chr. 4 Chr. 5 Chr. 6 Mutation vector 4 3 2 2 4 3Vector of cmax
  • 16. Communication Networks E. Mulyana, U. Killat 16 Applicability for Using max  Should be ensured that it is always possible to reroute load in each link in the network  If not the case : transform . maxmax cons   2 3 4 5 6 7 1 considered not considered Mark each link as considered or unconsidered
  • 17. Communication Networks E. Mulyana, U. Killat 17 |Rall|  cardinality of all routing entries for all nodes |D|  cardinality of all demand entries c (>>)  a quite high constant Objective function Unique Shortest-Path Routing : Heuristics  Thorup, Roughan „Avoiding Ties in Shortest Path First Routing“  Using an explicit penalty in the objective function : 2 3 41 vu f , 2 ,vu f 2 ,vu f 2 3 41    c fcf vuvu ,, 2 ,  vu f 2 ,  vu f |)||(| all DRc   
  • 18. Communication Networks E. Mulyana, U. Killat 18 The Normalized Objective Function Utilization Upper boundObjective Function }|| 1 {min max1  L c  max,  ji Aji  ),( 1|| max  hN kLSP k Hop limitUtilization   k LSP ji uv vu jiji k lll , , ,, ji ji ji c l , , ,  Aji  ),(  L  length of the chromosome = max. LSPs can be installed (cf. GA representation) max  kLSP k
  • 19. Communication Networks E. Mulyana, U. Killat 19 IGP Shortcut : Routing Loop 1 2 3 4 5 6 7 8 9 LSP 1 3 2 4 5 6 7 8 9 1 1 1 1 1 1 1 2 2 3 2 2 LSP 1 2 4 6 8 7 5 7 8 9 LSP Routing Loop  Bad configuration! It is certainly not optimal w.r.t. network utilization  Using an explicit penalty in the objective function (cf. Page 18), if there exist routing entries which contain loop
  • 20. Communication Networks E. Mulyana, U. Killat 20 IGP Shortcut : The Algorithm [7] 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 LSP B LSP A LSP C LSP D LSP A LSP B LSP C LSP D LSP E
  • 21. Communication Networks E. Mulyana, U. Killat 21 Convergence (1) Iterations Objective value (fitness) fitness = 443.987 utilMax = 0.483923 utilMaxConsidered = 0.413987 totalTunnels = 30 --------------------------- fitness (bestIndividual) = 443.987 utilMaxCons (b.I.) = 0.413987 totalTunnels (b.I.) = 30 ---------------------------- Total Computation Time = 32.3 minutes Computation Time (Network) = 32.25 minutes Computation Time (Network) = 99.8452 % ---------------------------- Average Best Individual
  • 22. Communication Networks E. Mulyana, U. Killat 22 Convergence (2) Iterations Maximum utilization (considered) # LSPs Average Best Individual Best Individual Average