SlideShare a Scribd company logo
Linked Open Data
                   with Drupal

1 sprint
  st



             http://drupal.cat

Drupal.cat             November 10th, 2012   Citilab, Cornellá
Plan del sprint

    10h – 10h15: Introduction

    10h15 – 10h45: brainstorming

    10h45 – 11h: groups and tasks

    11h – 12h: sprint (data analysis)

    12h – 12h15: coffee break

    12h15 – 13h30: sprint (data importation)

    13h30 – 14h: Results and discussions
Introduction
Linked Open Data with Drupal
Summary of the previous session (04/10/12)
http://www.slideshare.net/emmanuel_jamin/linking-open-data-with-drupal



    - Open Data plaforms
                 •   Barcelona / Catalunya / Spain

    - Reuse Open Data to build rich web applications
                 •   Donde van mis impuestos, adopta una playa,
                     etc.

    - Many Drupal modules to reuse Open Data
                 •   RDFx, SPARQL, SPARQL views, etc.
E – LODrupal Hackathon
                      LOD hackathon
         General idea
                                                              Publish LOD



Datos.gob.es


                                  LOD Drupal
                                                            Build applications
 Datos.gen.cat                    Barcelona




     Datos.Bcn

                                                             LOD expertise
                 OD integration           LOD publication
                  1st Sprint               2nd Sprint
1 Sprint → 2 Objectives
Play with Open Data              Find ideas and define
  and Drupal                       what we want to do

- analyze different types of data - select interesting topics
   from Open Data Barcelona          according to the datasets
   and Catalunya

                                 - Build the ODCAT module and
- extract and import data           data.drupal.cat


- reuse and display imported     - build social applications
   data
Before importing Open Data
1. List the available data
           •   Cf. google doc

2. Analysis and evaluation of the datasets
           •   Quality, topic, etc.

3. Selection of the dataset to be imported
           •   Motivation, difficulty, etc.

4. List of the entities to be created
Steps to import Open Data
1. Create the Content type to fit with the data

2. Anticipate the fields type according to the reuse
  objectives
            •   For mapping, scheduling, etc.

3. Create the Feeds structure to match the data source
  and the Content Type fields

4. Execute the importation
            •   test and refine the data importation
Let's Go!

- Brainstorming (30 min)

- Groups and tasks (15 min)

- Sprint 1 → Data analysis (1h)

- Sprint 2 → Data importation (1h)

- Results and discussion (30 min)
Have Fun!!!

More Related Content

PDF
Drupal Day 2011 - Thinking spatially with your open data
KEY
When Drupal meets OpenData
PDF
Sylva (July 2012, CulturePlex Lab)
PPTX
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
ODP
State of the Semantic Web
PDF
Maximising (Re)Usability of Library metadata using Linked Data
PDF
Discovering python search engine
PDF
Getting started with ai for free devopsdays rdu
Drupal Day 2011 - Thinking spatially with your open data
When Drupal meets OpenData
Sylva (July 2012, CulturePlex Lab)
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
State of the Semantic Web
Maximising (Re)Usability of Library metadata using Linked Data
Discovering python search engine
Getting started with ai for free devopsdays rdu

What's hot (6)

PDF
Tue acosta tut_providing_linkeddata
PDF
Discovering python search engines
PPTX
The nature.com ontologies portal: nature.com/ontologies
PPT
Scratchpad 2, Virtual Research Environment: Project Update
PDF
The Nature.com ontologies portal - Linked Science 2015
PPTX
Big Linked Data - Creating Training Curricula
Tue acosta tut_providing_linkeddata
Discovering python search engines
The nature.com ontologies portal: nature.com/ontologies
Scratchpad 2, Virtual Research Environment: Project Update
The Nature.com ontologies portal - Linked Science 2015
Big Linked Data - Creating Training Curricula
Ad

Similar to Sprint linked open_data_with_drupal (20)

PPS
Linking Open Data with Drupal
PDF
121004 linking open_data_with_drupal_v1
PDF
Data Science: Harnessing Open Data for High Impact Solutions
PDF
Big Data on the Web – What We Will Do
PPT
Exploring the Semantic Web
PDF
Workshop: Open Data - What's the Point?
PPT
Putting the L in front: from Open Data to Linked Open Data
PDF
Introduction to OPEN DATA and other hypes (2017/18)
PPT
State and future of linked data in learning analytics
PPTX
Ontology Engineering at Scale for Open City Data Sharing
PDF
EDF2012: The Web of Data and its Five Stars
PDF
DataGraft: Data-as-a-Service for Open Data
PPT
Broad Data
PDF
An Approach to Publish Spatial Data on the Web: The GeoLinked Data Use Case
PDF
Geo linked data lstd10(v2-boris)
PDF
A Framework for Dynamic Data Source Identification and Orchestration on the Web
PDF
Jose Alonso - W3C
PDF
SFScon22 - Christian Gapp - Data browser for the Open Data Hub.pdf
PDF
Open data under the hood stuart harrison - lichfield district council
PDF
Opendata - Under the hood
Linking Open Data with Drupal
121004 linking open_data_with_drupal_v1
Data Science: Harnessing Open Data for High Impact Solutions
Big Data on the Web – What We Will Do
Exploring the Semantic Web
Workshop: Open Data - What's the Point?
Putting the L in front: from Open Data to Linked Open Data
Introduction to OPEN DATA and other hypes (2017/18)
State and future of linked data in learning analytics
Ontology Engineering at Scale for Open City Data Sharing
EDF2012: The Web of Data and its Five Stars
DataGraft: Data-as-a-Service for Open Data
Broad Data
An Approach to Publish Spatial Data on the Web: The GeoLinked Data Use Case
Geo linked data lstd10(v2-boris)
A Framework for Dynamic Data Source Identification and Orchestration on the Web
Jose Alonso - W3C
SFScon22 - Christian Gapp - Data browser for the Open Data Hub.pdf
Open data under the hood stuart harrison - lichfield district council
Opendata - Under the hood
Ad

Sprint linked open_data_with_drupal

  • 1. Linked Open Data with Drupal 1 sprint st http://drupal.cat Drupal.cat November 10th, 2012 Citilab, Cornellá
  • 2. Plan del sprint  10h – 10h15: Introduction  10h15 – 10h45: brainstorming  10h45 – 11h: groups and tasks  11h – 12h: sprint (data analysis)  12h – 12h15: coffee break  12h15 – 13h30: sprint (data importation)  13h30 – 14h: Results and discussions
  • 4. Linked Open Data with Drupal Summary of the previous session (04/10/12) http://www.slideshare.net/emmanuel_jamin/linking-open-data-with-drupal - Open Data plaforms • Barcelona / Catalunya / Spain - Reuse Open Data to build rich web applications • Donde van mis impuestos, adopta una playa, etc. - Many Drupal modules to reuse Open Data • RDFx, SPARQL, SPARQL views, etc.
  • 5. E – LODrupal Hackathon LOD hackathon General idea Publish LOD Datos.gob.es LOD Drupal Build applications Datos.gen.cat Barcelona Datos.Bcn LOD expertise OD integration LOD publication 1st Sprint 2nd Sprint
  • 6. 1 Sprint → 2 Objectives Play with Open Data Find ideas and define and Drupal what we want to do - analyze different types of data - select interesting topics from Open Data Barcelona according to the datasets and Catalunya - Build the ODCAT module and - extract and import data data.drupal.cat - reuse and display imported - build social applications data
  • 7. Before importing Open Data 1. List the available data • Cf. google doc 2. Analysis and evaluation of the datasets • Quality, topic, etc. 3. Selection of the dataset to be imported • Motivation, difficulty, etc. 4. List of the entities to be created
  • 8. Steps to import Open Data 1. Create the Content type to fit with the data 2. Anticipate the fields type according to the reuse objectives • For mapping, scheduling, etc. 3. Create the Feeds structure to match the data source and the Content Type fields 4. Execute the importation • test and refine the data importation
  • 9. Let's Go! - Brainstorming (30 min) - Groups and tasks (15 min) - Sprint 1 → Data analysis (1h) - Sprint 2 → Data importation (1h) - Results and discussion (30 min)