SlideShare a Scribd company logo
© 2010 – 2016 eoda GmbHAndreas Wygrabek
Application fields for in
classical industrial-analytics
industry
eRum 2016
Andreas Wygrabek
Data Scientist
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Objectives
1. Differentiation of data science and classical analytics tasks
in industry
2. Application scenarios for R in industry
3. Reveal the potential of R in scenarios of classical analytics
What is this talk about?
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Representative applications of ...
Data Science
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
AnalyticMetrological Data Data Science
Data Science | Energy Forecast
Weather Forecast
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
AnalyticSensor Data Data Science
Data Science | Predictive Maintenance
Machine Failure Predictions
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
AnalyticCustomer Data Data Science
Data Science | Scoring
Conversion Probability
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Representative applications of ...
Classical_Analytics
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
AnalyticAcceptance Sampling Analytic
Classical Analytics | Incoming Goods Inspection
Results (Acceptance, Rejection)
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytic
Sampling Data
Analytic
Classical Analytics | Statistical Process Control
Process Charts
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytic
Sampling Data
Analytic
Classical Analytics | Design of Experiments
Cause-Effect-Relations
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
How do the applications of data science and
classical analytics in industry differ?
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Exploratory Data Analysis
(Data Science Methods)
Predictive
Classification
Regression
Clusteranalysis
Modelling
PCA
Forecasts
Data-Mining
Algorithms
Statistics
Mu Sigma
alpha/beta
ProbabilitiesNormal Distribution
Confidence
Inference Statistics
Descriptive
Statistics
Mean
Range
Variance
Correlation
…
…
Time Series
…
Testing
Deep Learning
Analytics and Data Science | Methodology
Analytics Data Science
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytics and Data Science | Project Management
Analytic: Traditional PM
- Solution known
- Standardized Issues
- Ressource estimation
Data Science: Agile
- Interative solution
- Individual Issues
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytics and Data Science | Data
Analytic: Data is certain
- Data certainly contains
all required informations
Data Science: Data is uncertain
- Often it is not certain that
the data contains the
required information
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytics and Data Science | Difficulty
Analytic is complicated
- Experts will solve the issue
Data Science is complex
- No guarantee
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytics and Data Science | Location
Analytic:
Data Science:
- Quality Management
- Production
- IT
- Business Intelligence
- Data Science Lab
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Analytics and Data Science | Implementation
Analytic: Choosing the right tool
Data Science: Proof of Concept
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
How capable is R to solve the issues which are
typical in industry?
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
- Incoming Goods Inspection
- Sampling
- AcceptanceSampling
- Statistical Process Control
- spc
- qcc
- IQCC
- qualityTools
- SixSigma
- DoE
- CRAN Task View: Design of Experiments (DoE) &
Analysis of Experimental Data
- Most used package: agricolae
Classical_Analytics
Reporting
- knitr
- shiny
- interfaces to external
software
in
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
Mind the gap
1. R is powerfull – all the tasks mentioned can be solved
2. R is free
3. R is able to report
4. The need for new tools in classical analytics is growing
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
What are the reasons?
1. Qualification
2. Old processes
3. Established Software
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
To Do´s
1. Bring R-Developers closer to QM and
production
2. Upskill engineers in R
3. Further package development (AQL, ISO
2859, ISO 3951)
4. Create stable R environments
© 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de
@eodaGmbH
@eodaGmbH eodaGmbH
blog.eoda.de
eoda GmbH
Universitätsplatz 12
34127 Kassel - Germany
www.eoda.de/en
info@eoda.de
+49 561 202724-40
The Data Science Specialists.

More Related Content

PDF
Data Science outside the box: Developing a generic scoring algorithm for cust...
PDF
Aargh! I have to teach R (Experiences in the teaching of R)
PDF
R in the Mittelstand: Bringing Data Science to small and mid-size companies.
PDF
Implementing R in the old economy
PDF
Esc company presentation 2017.
PDF
Ovidius GmbH: Your partner for SGML/ XML-based processes and solutions
PDF
CV Pasi Kalliomäki
DOC
PETERGRZNARIK_CV_2015_new
Data Science outside the box: Developing a generic scoring algorithm for cust...
Aargh! I have to teach R (Experiences in the teaching of R)
R in the Mittelstand: Bringing Data Science to small and mid-size companies.
Implementing R in the old economy
Esc company presentation 2017.
Ovidius GmbH: Your partner for SGML/ XML-based processes and solutions
CV Pasi Kalliomäki
PETERGRZNARIK_CV_2015_new

What's hot (8)

PDF
Industrial success cases: MANUFACTURA MODERNA DE METALES
PDF
Flexi Force
PDF
CR May 2015 - OOA profile
PDF
Portfolio JHK Architecten
PDF
Concept 5 North Overview V1
PDF
New CV LH English
PPTX
Kal slide deck techmeetup amsterdam
PDF
Swisscom Intranet Transformation Journey - Digital Workplace Group live
Industrial success cases: MANUFACTURA MODERNA DE METALES
Flexi Force
CR May 2015 - OOA profile
Portfolio JHK Architecten
Concept 5 North Overview V1
New CV LH English
Kal slide deck techmeetup amsterdam
Swisscom Intranet Transformation Journey - Digital Workplace Group live
Ad

Viewers also liked (11)

PDF
Data-Based Maintenance: The Killer App for IoT
PPTX
IOQ Protocol
PDF
Implementierung von R im Mittelstand
PDF
eoda R-Akademie 2016
PDF
eoda | R-Support
PDF
eoda R-Akademie 2015_Kursprogramm
PDF
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
PPTX
Predictive maintenance withsensors_in_utilities_
PDF
Predictive Maintenance with R
PDF
SAP CBM
PDF
[Tutorial] building machine learning models for predictive maintenance applic...
Data-Based Maintenance: The Killer App for IoT
IOQ Protocol
Implementierung von R im Mittelstand
eoda R-Akademie 2016
eoda | R-Support
eoda R-Akademie 2015_Kursprogramm
BA Summit 2014 Predictive maintenance: Met big data het lek dichten
Predictive maintenance withsensors_in_utilities_
Predictive Maintenance with R
SAP CBM
[Tutorial] building machine learning models for predictive maintenance applic...
Ad

Similar to Application fields of R in classical industrial analytics (20)

PDF
The use of R in Predictive Maintenance: A use case with TRUMPF Laser GmbH
PDF
Oracle IoT Cloud Service - First practical experience
PDF
DTIM 2016 - Post Event Report
PDF
Viviota: R&D Engineering Analysis & Data Management
PPTX
The Journey to Big Data Analytics
PDF
Feira IAA 2019
PPTX
Partner Exec Summit 2018 - Frankfurt: AIOps
PDF
Cambashi Industrial IoT introduction at Connect event 2017.06.21
PDF
Infodream
PDF
Automatisierte Provisionierung einer Data Lab Umgebung für Data Scientists
PDF
Dallas TechWeek - JoinPad
PPTX
Da Industria 4.0 a Azienda 4.0
PDF
AIOps Roundtable Munich 2018
PDF
Sap Leonardo IoT Overview
PPTX
DMT GROUP Company Presentation
PDF
940 diamond sponsor sengupta,_using our laptop
PDF
940 paw business general session - ssg - data-robot
PDF
940 diamond sponsor sengupta
PDF
Realizing Traceability for Safety and Certainty
PDF
Analytics with IMS Assets - 2017
The use of R in Predictive Maintenance: A use case with TRUMPF Laser GmbH
Oracle IoT Cloud Service - First practical experience
DTIM 2016 - Post Event Report
Viviota: R&D Engineering Analysis & Data Management
The Journey to Big Data Analytics
Feira IAA 2019
Partner Exec Summit 2018 - Frankfurt: AIOps
Cambashi Industrial IoT introduction at Connect event 2017.06.21
Infodream
Automatisierte Provisionierung einer Data Lab Umgebung für Data Scientists
Dallas TechWeek - JoinPad
Da Industria 4.0 a Azienda 4.0
AIOps Roundtable Munich 2018
Sap Leonardo IoT Overview
DMT GROUP Company Presentation
940 diamond sponsor sengupta,_using our laptop
940 paw business general session - ssg - data-robot
940 diamond sponsor sengupta
Realizing Traceability for Safety and Certainty
Analytics with IMS Assets - 2017

Recently uploaded (20)

PPTX
importance of Data-Visualization-in-Data-Science. for mba studnts
PDF
Introduction to Data Science and Data Analysis
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
PPTX
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Business Analytics and business intelligence.pdf
PPTX
Leprosy and NLEP programme community medicine
PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PDF
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Introduction to the R Programming Language
PPTX
CYBER SECURITY the Next Warefare Tactics
importance of Data-Visualization-in-Data-Science. for mba studnts
Introduction to Data Science and Data Analysis
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
STERILIZATION AND DISINFECTION-1.ppthhhbx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
Qualitative Qantitative and Mixed Methods.pptx
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Business Analytics and business intelligence.pdf
Leprosy and NLEP programme community medicine
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
retention in jsjsksksksnbsndjddjdnFPD.pptx
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
ISS -ESG Data flows What is ESG and HowHow
Introduction to the R Programming Language
CYBER SECURITY the Next Warefare Tactics

Application fields of R in classical industrial analytics

  • 1. © 2010 – 2016 eoda GmbHAndreas Wygrabek Application fields for in classical industrial-analytics industry eRum 2016 Andreas Wygrabek Data Scientist
  • 2. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Objectives 1. Differentiation of data science and classical analytics tasks in industry 2. Application scenarios for R in industry 3. Reveal the potential of R in scenarios of classical analytics What is this talk about?
  • 3. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Representative applications of ... Data Science
  • 4. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de AnalyticMetrological Data Data Science Data Science | Energy Forecast Weather Forecast
  • 5. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de AnalyticSensor Data Data Science Data Science | Predictive Maintenance Machine Failure Predictions
  • 6. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de AnalyticCustomer Data Data Science Data Science | Scoring Conversion Probability
  • 7. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Representative applications of ... Classical_Analytics
  • 8. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de AnalyticAcceptance Sampling Analytic Classical Analytics | Incoming Goods Inspection Results (Acceptance, Rejection)
  • 9. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytic Sampling Data Analytic Classical Analytics | Statistical Process Control Process Charts
  • 10. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytic Sampling Data Analytic Classical Analytics | Design of Experiments Cause-Effect-Relations
  • 11. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de How do the applications of data science and classical analytics in industry differ?
  • 12. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Exploratory Data Analysis (Data Science Methods) Predictive Classification Regression Clusteranalysis Modelling PCA Forecasts Data-Mining Algorithms Statistics Mu Sigma alpha/beta ProbabilitiesNormal Distribution Confidence Inference Statistics Descriptive Statistics Mean Range Variance Correlation … … Time Series … Testing Deep Learning Analytics and Data Science | Methodology Analytics Data Science
  • 13. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytics and Data Science | Project Management Analytic: Traditional PM - Solution known - Standardized Issues - Ressource estimation Data Science: Agile - Interative solution - Individual Issues
  • 14. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytics and Data Science | Data Analytic: Data is certain - Data certainly contains all required informations Data Science: Data is uncertain - Often it is not certain that the data contains the required information
  • 15. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytics and Data Science | Difficulty Analytic is complicated - Experts will solve the issue Data Science is complex - No guarantee
  • 16. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytics and Data Science | Location Analytic: Data Science: - Quality Management - Production - IT - Business Intelligence - Data Science Lab
  • 17. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Analytics and Data Science | Implementation Analytic: Choosing the right tool Data Science: Proof of Concept
  • 18. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de How capable is R to solve the issues which are typical in industry?
  • 19. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de - Incoming Goods Inspection - Sampling - AcceptanceSampling - Statistical Process Control - spc - qcc - IQCC - qualityTools - SixSigma - DoE - CRAN Task View: Design of Experiments (DoE) & Analysis of Experimental Data - Most used package: agricolae Classical_Analytics Reporting - knitr - shiny - interfaces to external software in
  • 20. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de Mind the gap 1. R is powerfull – all the tasks mentioned can be solved 2. R is free 3. R is able to report 4. The need for new tools in classical analytics is growing
  • 21. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de What are the reasons? 1. Qualification 2. Old processes 3. Established Software
  • 22. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de To Do´s 1. Bring R-Developers closer to QM and production 2. Upskill engineers in R 3. Further package development (AQL, ISO 2859, ISO 3951) 4. Create stable R environments
  • 23. © 2010 – 2016 eoda GmbHAndreas Wygrabek www.eoda.de @eodaGmbH @eodaGmbH eodaGmbH blog.eoda.de eoda GmbH Universitätsplatz 12 34127 Kassel - Germany www.eoda.de/en info@eoda.de +49 561 202724-40 The Data Science Specialists.