1) The document introduces the classical linear regression model, which describes the relationship between a dependent variable (y) and one or more independent variables (x). Regression analysis aims to evaluate this relationship.
2) Ordinary least squares (OLS) regression finds the linear combination of variables that best predicts the dependent variable. It minimizes the sum of the squared residuals, or vertical distances between the actual and predicted dependent variable values.
3) The OLS estimator provides formulas for calculating the estimated intercept (α) and slope (β) coefficients based on the sample data. These describe the estimated linear regression line relating y and x.