This document describes a neural network-based system for detecting leaf diseases and recommending remedies. It uses a convolutional neural network (CNN) and deep learning techniques to classify images of plant leaves with different diseases. The system is trained on a dataset of 5000 leaf images across 4 disease classes. It aims to help farmers more easily identify leaf diseases and receive treatment recommendations without needing to directly contact experts. The document outlines the existing problems, proposed solution, literature review on related techniques like boosting and support vector machines, software and algorithms used including Python, Anaconda and Spyder. It also describes the implementation process involving modules for data loading, preprocessing, feature extraction using CNN, disease prediction, and recommending remedies.