SlideShare a Scribd company logo
(C) Transformations
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  axfy 
(a is grouped with y: shift up or down by a)
 xfayOR 
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  axfy 
(a is grouped with y: shift up or down by a)
 xfayOR 
y
x
y=f(x)
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  axfy 
(a is grouped with y: shift up or down by a)
 xfayOR 
y
x
y=f(x)a
a
a
a
  axfy 
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  axfy 
(a is grouped with y: shift up or down by a)
 xfayOR 
 axfy  (a is grouped with x: shift left or right by a)
y
x
y=f(x)a
a
a
a
  axfy 
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  axfy 
(a is grouped with y: shift up or down by a)
 xfayOR 
 axfy  (a is grouped with x: shift left or right by a)
y
x
y=f(x)a
a
a
a
  axfy 
b
b
b
b
b
 bxfy 
 xfy  (reflect f(x) in the x axis)
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy 
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy 
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy 
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy 
 xfy  (reflect f(x) in the y axis)
 xfy 
 xfy  (reflect f(x) in the x axis)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect f(x) in the x axis)
y
x
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect f(x) in the x axis)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect the part of f(x) where x>0 in the y axis)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy 
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xfy  (reflect f(x) in the x axis)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect the part of f(x) where x>0 in the y axis)
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kxkfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kxkfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  1,  kxkfy
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kxkfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  1,  kxkfy
Note:
•domain remains same
•x intercepts remain same
 xfy  (reflect f(x) in the x axis)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect the part of f(x) where x>0 in the y axis)
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kkxfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kkxfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  1,  kkxfy
 kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
 xfy  (reflect f(x) in the x axis)
y=f(x)
 xfy  (reflect f(x) in the y axis)
 xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  1,  kkxfy
 xfy  (reflect the part of f(x) where x>0 in the y axis)
y
x
 xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  1,  kkxfyNote:
•range remains same
•y intercepts remain same
 kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)

More Related Content

PDF
X2 T07 02 transformations (2011)
PPT
X2 T04 02 curve sketching - transformations
PPT
21 lagrange multipliers
PPT
12 quadric surfaces
PDF
X2 T04 01 curve sketching - basic features/ calculus
PPT
16 partial derivatives
PPTX
2.10 translations of graphs t
PPT
Calculas
X2 T07 02 transformations (2011)
X2 T04 02 curve sketching - transformations
21 lagrange multipliers
12 quadric surfaces
X2 T04 01 curve sketching - basic features/ calculus
16 partial derivatives
2.10 translations of graphs t
Calculas

What's hot (14)

PPTX
1 3 d coordinate system
KEY
Notes parabolas
PPT
Quadratic functions
PPTX
Curve sketching
PPTX
16 slopes and difference quotient x
PPT
11 equations of planes
PPT
Lecture 7 quadratic equations
PDF
Lesson 2: A Catalog of Essential Functions (slides)
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
PDF
Pc12 sol c03_ptest
PDF
Introduccio al calculo vectorial
PPT
Parabola Lesson Powerpoint Presentation
PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
Horizontal Shifts of Quadratic Functions
1 3 d coordinate system
Notes parabolas
Quadratic functions
Curve sketching
16 slopes and difference quotient x
11 equations of planes
Lecture 7 quadratic equations
Lesson 2: A Catalog of Essential Functions (slides)
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Pc12 sol c03_ptest
Introduccio al calculo vectorial
Parabola Lesson Powerpoint Presentation
X2 T04 04 curve sketching - reciprocal functions
Horizontal Shifts of Quadratic Functions
Ad

Similar to X2 t07 02 transformations (2013) (20)

PDF
X2 t07 02 transformations (2012)
PDF
College algebra 7th edition by blitzer solution manual
PDF
X2 t07 03 addition, subtraction, multiplication & division (2013)
PPTX
Quadratic Functions graph
PPTX
PDF
X2 t07 07 other graphs (2013)
PPT
PDF
X2 T07 07 other graphs (2011)
PDF
X2 T04 07 curve sketching - other graphs
PPT
Function transformations
PDF
Chapter 1 (math 1)
PPTX
บทที่ 4 ฟังก์ชัน
PPTX
บทที่ 4 ฟังก์ชัน
PDF
X2 t07 07 other graphs (2012)
PPTX
2.6 transformations
PDF
Mc ty-explogfns-2009-1
PPTX
2.5 function transformations
PDF
X2 t07 03 addition, subtraction, multiplication & division (2012)
PDF
2.2 More on Functions and Their Graphs
PPTX
Tmua exam for qualifying entrance for cambridge and oxford
X2 t07 02 transformations (2012)
College algebra 7th edition by blitzer solution manual
X2 t07 03 addition, subtraction, multiplication & division (2013)
Quadratic Functions graph
X2 t07 07 other graphs (2013)
X2 T07 07 other graphs (2011)
X2 T04 07 curve sketching - other graphs
Function transformations
Chapter 1 (math 1)
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
X2 t07 07 other graphs (2012)
2.6 transformations
Mc ty-explogfns-2009-1
2.5 function transformations
X2 t07 03 addition, subtraction, multiplication & division (2012)
2.2 More on Functions and Their Graphs
Tmua exam for qualifying entrance for cambridge and oxford
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
20th Century Theater, Methods, History.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
1_English_Language_Set_2.pdf probationary
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Virtual and Augmented Reality in Current Scenario
Hazard Identification & Risk Assessment .pdf
Computer Architecture Input Output Memory.pptx
Share_Module_2_Power_conflict_and_negotiation.pptx
20th Century Theater, Methods, History.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
IGGE1 Understanding the Self1234567891011
LDMMIA Reiki Yoga Finals Review Spring Summer
My India Quiz Book_20210205121199924.pdf
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
1_English_Language_Set_2.pdf probationary
Paper A Mock Exam 9_ Attempt review.pdf.
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf

X2 t07 02 transformations (2013)

  • 2. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.
  • 3. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.   axfy  (a is grouped with y: shift up or down by a)  xfayOR 
  • 4. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.   axfy  (a is grouped with y: shift up or down by a)  xfayOR  y x y=f(x)
  • 5. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.   axfy  (a is grouped with y: shift up or down by a)  xfayOR  y x y=f(x)a a a a   axfy 
  • 6. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.   axfy  (a is grouped with y: shift up or down by a)  xfayOR   axfy  (a is grouped with x: shift left or right by a) y x y=f(x)a a a a   axfy 
  • 7. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.   axfy  (a is grouped with y: shift up or down by a)  xfayOR   axfy  (a is grouped with x: shift left or right by a) y x y=f(x)a a a a   axfy  b b b b b  bxfy 
  • 8.  xfy  (reflect f(x) in the x axis)
  • 9.  xfy  (reflect f(x) in the x axis) y x y=f(x)
  • 10.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy 
  • 11.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy   xfy  (reflect f(x) in the y axis)
  • 12.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy   xfy  (reflect f(x) in the y axis)
  • 13.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy   xfy  (reflect f(x) in the y axis)  xfy 
  • 14.  xfy  (reflect f(x) in the x axis)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)
  • 15.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy 
  • 16.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy 
  • 17.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy 
  • 18.  xfy  (reflect f(x) in the x axis) y x y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy 
  • 19.  xfy  (reflect f(x) in the x axis)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy  (reflect the part of f(x) where x>0 in the y axis)
  • 20.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy   xfy  (reflect the part of f(x) where x>0 in the y axis) y x
  • 21.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy   xfy  (reflect the part of f(x) where x>0 in the y axis) y x
  • 22.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy   xfy  (reflect the part of f(x) where x>0 in the y axis) y x
  • 23.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy   xfy  (reflect the part of f(x) where x>0 in the y axis) y x
  • 24.  xfy  (reflect f(x) in the x axis)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy  (reflect the part of f(x) where x>0 in the y axis)  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  • 25.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  • 26.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kxkfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  • 27.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kxkfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)   1,  kxkfy
  • 28.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kxkfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)   1,  kxkfy Note: •domain remains same •x intercepts remain same
  • 29.  xfy  (reflect f(x) in the x axis)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy  (reflect the part of f(x) where x>0 in the y axis)  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
  • 30.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
  • 31.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kkxfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
  • 32.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kkxfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)   1,  kkxfy  kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
  • 33.  xfy  (reflect f(x) in the x axis) y=f(x)  xfy  (reflect f(x) in the y axis)  xfy  (reflect the part of f(x) where f(x)<0 in the x axis)   1,  kkxfy  xfy  (reflect the part of f(x) where x>0 in the y axis) y x  xkfy  (stretch f(x) vertically, k<1 shallower,k>1 steeper)   1,  kkxfyNote: •range remains same •y intercepts remain same  kxfy  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)