SlideShare a Scribd company logo
ENGINEERING
THERMODYNAMICS
Feel the heat…….
Unit – 1 Basic concept and first law
ENGINEERING THERMODYNAMICS?
ENGINEERING + THERMODYNAMICS
ENGINEERING-BRANCH OF SCIENCE- ENVIRONMENT
THERMODYNAMICS = THERMAL+ DYNAMICS
(HEAT) (POWER)
HEAT – Kind of energy transfer- Temp. difference
POWER- Capable to work
THERMODYNAMICS- Science of energy and energy transfer
2
Some application areas of
thermodynamics.
3
BASIC CONCEPT OF
THERMODYNAMICS
• Science which deals with energy transfer and
its effect on physical properties of substances.
4
• Macroscopic or Classical Approach:
• It is not concerned with the behavior of
individual molecules.
• These effects can be perceived by human senses
or measured by instruments
Eg: pressure, temperature
• Microscopic or Statistical Approach:
• Based on the average behavior of large groups
of individual particles.
• the effect of molecular motion is Considered.
5
SYSTEMS AND CONTROL VOLUMES
• A system is defined as a quantity of matter or a region in space chosen for
study.
• Surroundings: The mass or region outside the system boundary.
• Boundary: The real or imaginary surface that separates the system from its
surroundings.
• The boundary of a system can be fixed or movable.
• Systems may be considered to be closed or open.
6
Thermodynamic System and Types
• A specified region in which transfer of mass / energy
takes place is called system.
• To a thermodynamic system two ‘things’ may be
added/removed:
 energy (heat, work)  matter (mass)
CLASSIFICATION OF THERMODYNAMIC SYSTEM
• Closed or Non-flow
• Open or Flow
• Isolated
• Homogeneous
• Hetrogeneous 7
Closed System (Control Mass)
• No mass can cross system boundary
• Energy may cross system boundary
8
Open System/Control Volume
• Mass may cross system boundary (control
surface)
• Energy may cross system boundary
9
Isolated System
• No interaction between the system and the
surroundings.
• Neither mass nor energy can cross the
boundry.
• This is purely a theoretical system.
10
11
Homogeneous and Hetrogeneous
system
• Homogeneous system:
• System exists in single phase.
• Heterogeneous system:
• System exists in more than one phase.
12
THERMODYNAMIC PROPERTIES
• MASS – quantity of matter
• WEIGHT - force exerted on a body by gravity
• VOLUME – space occupied by matter
• SPECIFIC VOLUME – volume per unit mass
• SPECIFIC WEIGHT – weight per unit volume
• DENSITY – mass per volume of substance
• TEMPERATURE – degree of hotness or coldness
• PRESSURE - force exerted per unit area
• SPECIFIC HEAT – energy required to raise or lower temp.
of substance about 1 k or 1°C
• INTERNAL ENERGY – energy contain within system
• WORK – kind of energy transfer – acting force- flow
direction
• HEAT- kind of energy transfer – temp difference
• ENTHALPY – total energy of the system (I.E + F.W)
13
INTENSIVE or EXTENSIVE PROPERTY
• Intensive properties: The
property which is
independent of the mass of
a system, such as
temperature, pressure, and
density and specific
volume.
• Extensive properties: The
property which depends up
on the mass of a system,
such as volume, internal
energy and enthalpy.
14
DENSITY AND SPECIFIC GRAVITY
15
Specific gravity:
The ratio of the density of a substance to the density of some
standard substance at a specified temperature
Density
Density is mass per unit volume; specific volume is volume per unit mass.
Specific weight:
The weight of a unit volume of a substance.
Specific volume
PRESSURE
16
The normal stress (or “pressure”) on the feet of a chubby
person is much greater than on the feet of a slim person.
Pressure: A normal force exerted
by a fluid per unit area
68 kg 136 kg
Afeet=300cm2
0.23 kgf/cm2
0.46 kgf/cm2
P=68/300=0.23 kgf/cm2
• Absolute pressure: The actual pressure at a given position. It is
measured relative to absolute vacuum (i.e., absolute zero pressure).
• Gage pressure: The difference between the absolute pressure and
the local atmospheric pressure. Most pressure-measuring devices are
calibrated to read zero in the atmosphere, and so they indicate gage
pressure.
• Vacuum pressures: Pressures below atmospheric pressure.
17
Conti…
TEMPERATURE
Degree of hotness or coldness
Unit- kelvin (k) or degree celsius (°C )
y K = 273 + x °C
280 K = 273 + 7 °C
18
Specific Heat Capacity
• Quantity of heat required to raise the
temperature of unit mass of the material
through one degree celsius.
• Specific Heat at constant pressure( Cp)
• Specific Heat at constant volume (Cv)
• Cp=1.003 kJ/kg-K
• Cv= 0.71 kJ/kg-K for air.
UNIVERSAL RU = Cp - Cv
19
STATE, PROCESSES AND CYCLES
State:
It is the condition of a system as
defined by the values of all its
properties.
It gives a complete description of
the system
Process:
Any change that a system
undergoes from one
equilibrium state to another.
20
STATE1- T1,P1,V1
STATE 2- T2,P2,V2
PROCESS - 1 2
STATE AND EQUILIBRIUM
• State:
• It is the condition of
• the system namely
temperature, pressure,
density, composition,.
• Equilibrium:
• In an equilibrium state there are no unbalanced
potentials (or driving forces) within the system.
21
A system at two different states
STATE AND EQUILIBRIUM
• Thermal Equilibrium:
The temperature is the
same throughout the
entire system.
• Mechanical equilibrium:
There is no change in
pressure at any point
of the system with
time.
22
A closed system reaching thermal
equilibrium.
.
STATE AND EQUILIBRIUM(Con…)
• Phase equilibrium:
• A system which is having two phases and
when the mass of each phase reaches an
equilibrium level.
• Chemical equilibrium:
• The chemical composition of a system does
not change with time, that is, no chemical
reactions occur.
23
Thermodynamic Cycle
• Path: The series of states
through which a system
passes during a process. To
describe a process
completely, one should
specify the initial and final
states,
• Cycle: A number of
processes in sequence
bring back the system to
the original condition.
24
Quasistatic or quasi-equilibrium
process
• Reversible process is a succession of
equilibrium states and infinite slowness is its
characteristic feature.
• Work done w = ∫ pdv
25
Zeroth Law
• If two bodies A and B are in thermal
equilibrium with a third body C
independently, then these two bodies (A and
B) must be in thermal equilibrium with each
other.
Application: Thermometer
26
Thermodynamic Work
• positive work is done by a
system when the sole effect
external to the system could
be reduced to the rise of a
weight.
• Unit of work is N-m or Joule.
• Work flow into the system is
negative
• Work flow out of the system
is positive
27
Thermodynamic Heat
• Energy transferred without
mass transfer between the
system and the surroundings
due to difference in
temperature between the
system and the surroundings.
• The unit of heat is Joule or kilo
Joule
• Heat flow into the system is
positive
• Heat flow out of the system is
negative
28
Energy and Forms of Energy
• Energy:
• Capacity to do work
• Forms of Energy:
• Stored Energy
• Energy in transition form
29
Stored Energy(Con…)
• Internal Energy(U):It is sum of kinetic energies
of individual atoms or molecules, that kinetic
energy occurred by external heat supplied to
the system it will converted to work.
• Sum energy always stored in the system (U)
not fully converted to work.
• Change in internal energy =mcv (T2-T1) kJ
30
Stored Energy(Con…)
• Kinetic Energy: Energy possessed by a body by
virtue of its motion.
• Change in K.E.=1/2 m(c2
2
-c1
2
) N-m.
• Flow Energy: Energy required to make the
flow of the system in and out of the device.
• Change in F.E.=( p2v2-p1v1) N-m
31
Enthalpy(H)
• Internal energy and pressure volume product.
• H=u+pv
• Change in enthalpy= mcp(T2-T1) kJ
• Where m=mass in kg
• cp=sp.heat at const.pressure in kJ/kg
• (T2-T1)= temp. difference in K
32
PATH and POINT FUNCTION
• If cyclic integral of a variable is not equal to
zero, then the variable is said to be a path
function.
• If cyclic integral of a variable is equal to zero,
then the variable is said to be a point
function.
33
The first law of thermodynamics
• Expression of the conservation of energy
principle.
• Statement: If a closed system executes a cyclic
process then net heat transfer is equal to net
work transfer.
• dQ=dW
• Q=W+dU for a process.
34
Laws Of Perfect Gas
• 1) Boyle’s law- “The absolute pressure of a given mass of
perfect gas varies inversely as its volume, when the
temperature remain constant”.
Mathematically pv = constant (T= const.)
• 2) Charles law- “The volume of a given mass of a perfect gas
varies directly as its absolute temperature, when the pressure
remains constant”.
Mathematically, V/T = constant (p= const.)
• 3) Gay-lussac law- “The absolute pressure of a given mass of
a perfect gas varies directly as its absolute temperature when
volume is constant.”
Mathematically, P/T = constant (v= const.)
35
THERMODYNAMIC PROCESS
 Here is a brief listing of a few kinds of processes, which we will encounter in TD:
 Isothermal process → the process takes place at constant temperature
(e.g. freezing of water to ice at –10°C)
 Isobaric → constant pressure
(e.g. heating of water in open air→ under atmospheric pressure)
 Isochoric → constant volume
(e.g. heating of gas in a sealed metal container)
 Reversible process → the system is close to equilibrium at all times (and infinitesimal
alteration of the conditions can restore the universe (system + surrounding) to the original
state.
 Irreversible Process: The reversal of the process leaves some trace on the system and its
surroundings.
 Cyclic process → the final and initial state are the same. However, q and w need not be zero.
 Adiabatic process → dq is zero during the process (no heat is added/removed to/from the
system)
36
Thermodynamics processes
of Perfect Gas
1) Const. Volume/ isochoric process:
-Temperature and Pressure will increase
-No change in volume and No work done by gas
-Governed by Gay-Lussac law
2) Const. Pressure/ isobaric process:
- Temperature and volume will increase
- Increase in internal energy
- Governed by Charles law
3) Constant temperature/ isothermal process:
- No change in internal energy
- No change in Temperature
- Governed by Boyles law (p.v = constant)
37
Conti….
4) Adiabatic/ isentropic process:
- No heat leaves or enters the gas Q = 0,
- Temperature of the gas changes
- Change in internal energy is equal to the work done
5) isentropic process:
- Entropy remains constant dS = 0,
- Temperature of the gas changes
- Change in internal energy is equal to the work done
5) Polytropic process:
- It is general law of expansion and compression of the gases.
p.v^n = Constant
6) Free expansion:
- When a fluid Is allowed to expand suddenly into a vacuum chamber
through on orifice of large dimensions.
Q = 0, W = 0, and dU = 0.
38
Thank you
39

More Related Content

PDF
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
PDF
Ch 3 energy transfer by work, heat and mass
PDF
Engineering Thermodynamics-Basic concepts 1
PPTX
First law of thermodynamic
PPTX
Bab 1 Thermodynamic of Engineering Approach
PPT
THERMODYNAMICS UNIT - I
PDF
Thermodynamics by PK Nag.pdf
PDF
Engineering Thermodynamics -Basic Concepts 2
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
Ch 3 energy transfer by work, heat and mass
Engineering Thermodynamics-Basic concepts 1
First law of thermodynamic
Bab 1 Thermodynamic of Engineering Approach
THERMODYNAMICS UNIT - I
Thermodynamics by PK Nag.pdf
Engineering Thermodynamics -Basic Concepts 2

What's hot (20)

PPT
Basic concept and first law of thermodynamics
PPTX
BASIC CONCEPTS OF THERMODYNAMICS
PDF
Basic Concepts and First Law of Thermodynamics
PPTX
PDF
Thermodynamic properties
PPT
Thermodynamics Chapter 1 (Introduction)
PPTX
2nd law of thermodynamics, entropy
PDF
Thermodynamics
PPT
Basics of thermodynamics
PDF
Unit no 1 fundamentals of thermodyanamics
PPT
PROPERTIES OF PURE SUBSTANCES
PPT
Thermodynamics Lecture 1
PPTX
Energy,heat,work and thermodynamic processes
PPTX
thermodynamics introduction & first law
PPTX
Refrigeration and air conditioning RAC
PPTX
Mixture of gases
PPTX
First law of thermodynamics
PPTX
basics of thermodynamics- chemical engg.
DOCX
Thermodynamic systems and properties
PPTX
Basics of Thermodynamics with problems
Basic concept and first law of thermodynamics
BASIC CONCEPTS OF THERMODYNAMICS
Basic Concepts and First Law of Thermodynamics
Thermodynamic properties
Thermodynamics Chapter 1 (Introduction)
2nd law of thermodynamics, entropy
Thermodynamics
Basics of thermodynamics
Unit no 1 fundamentals of thermodyanamics
PROPERTIES OF PURE SUBSTANCES
Thermodynamics Lecture 1
Energy,heat,work and thermodynamic processes
thermodynamics introduction & first law
Refrigeration and air conditioning RAC
Mixture of gases
First law of thermodynamics
basics of thermodynamics- chemical engg.
Thermodynamic systems and properties
Basics of Thermodynamics with problems
Ad

Similar to ENGINEERING THERMODYNAMICS-UNIT 1 (20)

PPTX
Basics of Thermodynamics-1.pptx
PPT
Thermodynamics and Heat Transfer
PDF
Comrac thermodynamics and heat transfer.pdf
PDF
elements of mechanical engineering for firs year
PPTX
Thermo I CH 1.pptx
PDF
ETHT unit 1 Basics_thermodynamics - Fundamentals
PPTX
Introduction to thermodynamics
PPT
Chap_1_lecture.ppt
PPTX
Thermodynamics 2022_Thermo_Chapter_1.pptx
PPTX
Wp me2320 2016-chapter-1_lecture-wwl-converted
PDF
thermodynamic chapter1 introduction and basic concepts.pdf
PPT
Thermodynamics part 1 course Chemical engineering
PPTX
Thermodynamics
PDF
Chapter-1.pdf
PDF
Thermodynamics One for ChemE I Chapter 1.pdf
PDF
Introduction and first law of tehrmodynamics
PDF
Thermodynamics and Its Properties Lecture.pdf
PPTX
Thermo chapter 1
PPT
Basic of thermodynamics section a
PPTX
thermodynamics tutorial.pptxyjhhjnnbhhbhh
Basics of Thermodynamics-1.pptx
Thermodynamics and Heat Transfer
Comrac thermodynamics and heat transfer.pdf
elements of mechanical engineering for firs year
Thermo I CH 1.pptx
ETHT unit 1 Basics_thermodynamics - Fundamentals
Introduction to thermodynamics
Chap_1_lecture.ppt
Thermodynamics 2022_Thermo_Chapter_1.pptx
Wp me2320 2016-chapter-1_lecture-wwl-converted
thermodynamic chapter1 introduction and basic concepts.pdf
Thermodynamics part 1 course Chemical engineering
Thermodynamics
Chapter-1.pdf
Thermodynamics One for ChemE I Chapter 1.pdf
Introduction and first law of tehrmodynamics
Thermodynamics and Its Properties Lecture.pdf
Thermo chapter 1
Basic of thermodynamics section a
thermodynamics tutorial.pptxyjhhjnnbhhbhh
Ad

More from prakash0712 (20)

PPTX
UNIT-1-Steam Power Plant.pptx
PPTX
Unit-V-Power Plant Economics and Environment.pptx
PPTX
Unit-IV-Renewable Energy Sources.pptx
PPTX
Unit-II-Diesel Gas turbine and Combined Cycle Power Plant.pptx
PPTX
Unit-III-Nuclear Power Plants.pptx
PPTX
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
PPTX
UNIT-II-ENGINE AUXILIARY SYSTEMS.pptx
PPTX
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
PPT
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
PPTX
UNIT-III-TRANSMISSION SYSTEMS.pptx
PPT
AICE-Unit 3
PPT
AICE-Unit 2
PPT
AICE-Unit 5
PPT
AICE-Unit 4
PPT
AICE-Unit 1
PPTX
PRODUCTION PLANNING AND CONTROL-Unit 1
PPTX
PRODUCTION PLANNING AND CONTROL-Unit 2
PPT
PRODUCTION PLANNING AND CONTROL-Unit 3
PPT
PRODUCTION PLANNING AND CONTROL-Unit 4
PPT
PRODUCTION PLANNING AND CONTROL-Unit 5
UNIT-1-Steam Power Plant.pptx
Unit-V-Power Plant Economics and Environment.pptx
Unit-IV-Renewable Energy Sources.pptx
Unit-II-Diesel Gas turbine and Combined Cycle Power Plant.pptx
Unit-III-Nuclear Power Plants.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-II-ENGINE AUXILIARY SYSTEMS.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-III-TRANSMISSION SYSTEMS.pptx
AICE-Unit 3
AICE-Unit 2
AICE-Unit 5
AICE-Unit 4
AICE-Unit 1
PRODUCTION PLANNING AND CONTROL-Unit 1
PRODUCTION PLANNING AND CONTROL-Unit 2
PRODUCTION PLANNING AND CONTROL-Unit 3
PRODUCTION PLANNING AND CONTROL-Unit 4
PRODUCTION PLANNING AND CONTROL-Unit 5

Recently uploaded (20)

PDF
Well-logging-methods_new................
PPT
Mechanical Engineering MATERIALS Selection
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
PPT on Performance Review to get promotions
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Digital Logic Computer Design lecture notes
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Structs to JSON How Go Powers REST APIs.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Geodesy 1.pptx...............................................
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Well-logging-methods_new................
Mechanical Engineering MATERIALS Selection
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPT on Performance Review to get promotions
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Internet of Things (IOT) - A guide to understanding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Arduino robotics embedded978-1-4302-3184-4.pdf
Lecture Notes Electrical Wiring System Components
Digital Logic Computer Design lecture notes
CYBER-CRIMES AND SECURITY A guide to understanding
Structs to JSON How Go Powers REST APIs.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Geodesy 1.pptx...............................................
OOP with Java - Java Introduction (Basics)
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Sustainable Sites - Green Building Construction
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx

ENGINEERING THERMODYNAMICS-UNIT 1

  • 1. ENGINEERING THERMODYNAMICS Feel the heat……. Unit – 1 Basic concept and first law
  • 2. ENGINEERING THERMODYNAMICS? ENGINEERING + THERMODYNAMICS ENGINEERING-BRANCH OF SCIENCE- ENVIRONMENT THERMODYNAMICS = THERMAL+ DYNAMICS (HEAT) (POWER) HEAT – Kind of energy transfer- Temp. difference POWER- Capable to work THERMODYNAMICS- Science of energy and energy transfer 2
  • 3. Some application areas of thermodynamics. 3
  • 4. BASIC CONCEPT OF THERMODYNAMICS • Science which deals with energy transfer and its effect on physical properties of substances. 4
  • 5. • Macroscopic or Classical Approach: • It is not concerned with the behavior of individual molecules. • These effects can be perceived by human senses or measured by instruments Eg: pressure, temperature • Microscopic or Statistical Approach: • Based on the average behavior of large groups of individual particles. • the effect of molecular motion is Considered. 5
  • 6. SYSTEMS AND CONTROL VOLUMES • A system is defined as a quantity of matter or a region in space chosen for study. • Surroundings: The mass or region outside the system boundary. • Boundary: The real or imaginary surface that separates the system from its surroundings. • The boundary of a system can be fixed or movable. • Systems may be considered to be closed or open. 6
  • 7. Thermodynamic System and Types • A specified region in which transfer of mass / energy takes place is called system. • To a thermodynamic system two ‘things’ may be added/removed:  energy (heat, work)  matter (mass) CLASSIFICATION OF THERMODYNAMIC SYSTEM • Closed or Non-flow • Open or Flow • Isolated • Homogeneous • Hetrogeneous 7
  • 8. Closed System (Control Mass) • No mass can cross system boundary • Energy may cross system boundary 8
  • 9. Open System/Control Volume • Mass may cross system boundary (control surface) • Energy may cross system boundary 9
  • 10. Isolated System • No interaction between the system and the surroundings. • Neither mass nor energy can cross the boundry. • This is purely a theoretical system. 10
  • 11. 11
  • 12. Homogeneous and Hetrogeneous system • Homogeneous system: • System exists in single phase. • Heterogeneous system: • System exists in more than one phase. 12
  • 13. THERMODYNAMIC PROPERTIES • MASS – quantity of matter • WEIGHT - force exerted on a body by gravity • VOLUME – space occupied by matter • SPECIFIC VOLUME – volume per unit mass • SPECIFIC WEIGHT – weight per unit volume • DENSITY – mass per volume of substance • TEMPERATURE – degree of hotness or coldness • PRESSURE - force exerted per unit area • SPECIFIC HEAT – energy required to raise or lower temp. of substance about 1 k or 1°C • INTERNAL ENERGY – energy contain within system • WORK – kind of energy transfer – acting force- flow direction • HEAT- kind of energy transfer – temp difference • ENTHALPY – total energy of the system (I.E + F.W) 13
  • 14. INTENSIVE or EXTENSIVE PROPERTY • Intensive properties: The property which is independent of the mass of a system, such as temperature, pressure, and density and specific volume. • Extensive properties: The property which depends up on the mass of a system, such as volume, internal energy and enthalpy. 14
  • 15. DENSITY AND SPECIFIC GRAVITY 15 Specific gravity: The ratio of the density of a substance to the density of some standard substance at a specified temperature Density Density is mass per unit volume; specific volume is volume per unit mass. Specific weight: The weight of a unit volume of a substance. Specific volume
  • 16. PRESSURE 16 The normal stress (or “pressure”) on the feet of a chubby person is much greater than on the feet of a slim person. Pressure: A normal force exerted by a fluid per unit area 68 kg 136 kg Afeet=300cm2 0.23 kgf/cm2 0.46 kgf/cm2 P=68/300=0.23 kgf/cm2
  • 17. • Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure). • Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure. • Vacuum pressures: Pressures below atmospheric pressure. 17
  • 18. Conti… TEMPERATURE Degree of hotness or coldness Unit- kelvin (k) or degree celsius (°C ) y K = 273 + x °C 280 K = 273 + 7 °C 18
  • 19. Specific Heat Capacity • Quantity of heat required to raise the temperature of unit mass of the material through one degree celsius. • Specific Heat at constant pressure( Cp) • Specific Heat at constant volume (Cv) • Cp=1.003 kJ/kg-K • Cv= 0.71 kJ/kg-K for air. UNIVERSAL RU = Cp - Cv 19
  • 20. STATE, PROCESSES AND CYCLES State: It is the condition of a system as defined by the values of all its properties. It gives a complete description of the system Process: Any change that a system undergoes from one equilibrium state to another. 20 STATE1- T1,P1,V1 STATE 2- T2,P2,V2 PROCESS - 1 2
  • 21. STATE AND EQUILIBRIUM • State: • It is the condition of • the system namely temperature, pressure, density, composition,. • Equilibrium: • In an equilibrium state there are no unbalanced potentials (or driving forces) within the system. 21 A system at two different states
  • 22. STATE AND EQUILIBRIUM • Thermal Equilibrium: The temperature is the same throughout the entire system. • Mechanical equilibrium: There is no change in pressure at any point of the system with time. 22 A closed system reaching thermal equilibrium. .
  • 23. STATE AND EQUILIBRIUM(Con…) • Phase equilibrium: • A system which is having two phases and when the mass of each phase reaches an equilibrium level. • Chemical equilibrium: • The chemical composition of a system does not change with time, that is, no chemical reactions occur. 23
  • 24. Thermodynamic Cycle • Path: The series of states through which a system passes during a process. To describe a process completely, one should specify the initial and final states, • Cycle: A number of processes in sequence bring back the system to the original condition. 24
  • 25. Quasistatic or quasi-equilibrium process • Reversible process is a succession of equilibrium states and infinite slowness is its characteristic feature. • Work done w = ∫ pdv 25
  • 26. Zeroth Law • If two bodies A and B are in thermal equilibrium with a third body C independently, then these two bodies (A and B) must be in thermal equilibrium with each other. Application: Thermometer 26
  • 27. Thermodynamic Work • positive work is done by a system when the sole effect external to the system could be reduced to the rise of a weight. • Unit of work is N-m or Joule. • Work flow into the system is negative • Work flow out of the system is positive 27
  • 28. Thermodynamic Heat • Energy transferred without mass transfer between the system and the surroundings due to difference in temperature between the system and the surroundings. • The unit of heat is Joule or kilo Joule • Heat flow into the system is positive • Heat flow out of the system is negative 28
  • 29. Energy and Forms of Energy • Energy: • Capacity to do work • Forms of Energy: • Stored Energy • Energy in transition form 29
  • 30. Stored Energy(Con…) • Internal Energy(U):It is sum of kinetic energies of individual atoms or molecules, that kinetic energy occurred by external heat supplied to the system it will converted to work. • Sum energy always stored in the system (U) not fully converted to work. • Change in internal energy =mcv (T2-T1) kJ 30
  • 31. Stored Energy(Con…) • Kinetic Energy: Energy possessed by a body by virtue of its motion. • Change in K.E.=1/2 m(c2 2 -c1 2 ) N-m. • Flow Energy: Energy required to make the flow of the system in and out of the device. • Change in F.E.=( p2v2-p1v1) N-m 31
  • 32. Enthalpy(H) • Internal energy and pressure volume product. • H=u+pv • Change in enthalpy= mcp(T2-T1) kJ • Where m=mass in kg • cp=sp.heat at const.pressure in kJ/kg • (T2-T1)= temp. difference in K 32
  • 33. PATH and POINT FUNCTION • If cyclic integral of a variable is not equal to zero, then the variable is said to be a path function. • If cyclic integral of a variable is equal to zero, then the variable is said to be a point function. 33
  • 34. The first law of thermodynamics • Expression of the conservation of energy principle. • Statement: If a closed system executes a cyclic process then net heat transfer is equal to net work transfer. • dQ=dW • Q=W+dU for a process. 34
  • 35. Laws Of Perfect Gas • 1) Boyle’s law- “The absolute pressure of a given mass of perfect gas varies inversely as its volume, when the temperature remain constant”. Mathematically pv = constant (T= const.) • 2) Charles law- “The volume of a given mass of a perfect gas varies directly as its absolute temperature, when the pressure remains constant”. Mathematically, V/T = constant (p= const.) • 3) Gay-lussac law- “The absolute pressure of a given mass of a perfect gas varies directly as its absolute temperature when volume is constant.” Mathematically, P/T = constant (v= const.) 35
  • 36. THERMODYNAMIC PROCESS  Here is a brief listing of a few kinds of processes, which we will encounter in TD:  Isothermal process → the process takes place at constant temperature (e.g. freezing of water to ice at –10°C)  Isobaric → constant pressure (e.g. heating of water in open air→ under atmospheric pressure)  Isochoric → constant volume (e.g. heating of gas in a sealed metal container)  Reversible process → the system is close to equilibrium at all times (and infinitesimal alteration of the conditions can restore the universe (system + surrounding) to the original state.  Irreversible Process: The reversal of the process leaves some trace on the system and its surroundings.  Cyclic process → the final and initial state are the same. However, q and w need not be zero.  Adiabatic process → dq is zero during the process (no heat is added/removed to/from the system) 36
  • 37. Thermodynamics processes of Perfect Gas 1) Const. Volume/ isochoric process: -Temperature and Pressure will increase -No change in volume and No work done by gas -Governed by Gay-Lussac law 2) Const. Pressure/ isobaric process: - Temperature and volume will increase - Increase in internal energy - Governed by Charles law 3) Constant temperature/ isothermal process: - No change in internal energy - No change in Temperature - Governed by Boyles law (p.v = constant) 37
  • 38. Conti…. 4) Adiabatic/ isentropic process: - No heat leaves or enters the gas Q = 0, - Temperature of the gas changes - Change in internal energy is equal to the work done 5) isentropic process: - Entropy remains constant dS = 0, - Temperature of the gas changes - Change in internal energy is equal to the work done 5) Polytropic process: - It is general law of expansion and compression of the gases. p.v^n = Constant 6) Free expansion: - When a fluid Is allowed to expand suddenly into a vacuum chamber through on orifice of large dimensions. Q = 0, W = 0, and dU = 0. 38