SlideShare a Scribd company logo
Basic Radiation Interactions,
Definition of Dosimetric Quantities,
and Data Sources
J.V. Siebers
Virginia Commonwealth University
Richmond, Virginia USA
2009 AAPM Summer School
2009 AAPM Summer School
Learning Objectives
g j
T i d d ib th b i f
1. To review and describe the basics of
radiation interactions for understanding
radiation dosimetry
2 To review definitions of quantities
2. To review definitions of quantities
required for understanding radiation
dosimetry
dosimetry
©JVS: 2009 AAPM SS
Constants Units Conversions
©JVS: 2009 AAPM SS
©JVS: 2009 AAPM SS
Scope
Radiation Types
Ionizing
Ionizing
Interactions can remove
atomic orbital electrons Non-Ionizing
Particulate Electromagnetic
Particulate
-electron
-positron
Electromagnetic
-proton
-neutron
- alpha
©JVS: 2009 AAPM SS
p
- etc.
Types of ionizing radiation
yp g
Di tl i i i di ti
 Directly ionizing radiation
 Direct interactions via the Coulomb force along a
particles track
 Charged particles
 electrons
 positrons
protons
 protons
 heavy charged particles
©JVS: 2009 AAPM SS
Direct Ionization
Coulombic Interaction
e-
Coulombic Interaction
 A charged particle
exerts
exerts
electromagnetic
forces on atomic  Energy transfer can
electrons result in the ejection
of an electron
(ionization)
(ionization)
©JVS: 2009 AAPM SS
Indirectly Ionizing Radiation
y g
 Uncharged particles that must first transfer energy to
a charged particle which can then further ionize
matter
T t
 Two step process
 Examples
El t ti di ti
 Electromagnetic radiations: x- or γ-rays
 Neutrons
©JVS: 2009 AAPM SS
Indirectly Ionizing Radiation
Ph t l t i Eff t
Photoelectric Effect
e-
Ej t d


h
Ejected
electrons
further
ionize
 ionize
matter
©JVS: 2009 AAPM SS
Radiant Energy R
gy
 R Total energy excluding rest mass
 R – Total energy, excluding rest mass,
carried by particles
 Photons: E = hν = hc/λ
 Electrons + other CPs: kinetic energy T
©JVS: 2009 AAPM SS
Energy imparted ε
 ε - Energy imparted
R R Q
    
 ε - Energy imparted
i l i
in out
R R Q
    
Q

 mass to energy conversion resulting
from interactions or radioactive decay
Q

if(m→E), Q>0
in
R  out
R
h

e-
h

e-
©JVS: 2009 AAPM SS
if(E→m), Q<0
       
in in out out
c u c u
R R R R Q
      
Dose
 
Gy
d
D


Energy deposited per unit mass
 
y
dm
 Energy deposited per unit mass
 1 Gy = 1 J/kg
 Knowledge of D is the object of dosimetry
©JVS: 2009 AAPM SS
Equilibrium Part 1:
R di ti E ilib i
Radiation Equilibrium
R R
h

e-
in out
R R

h

e- e-
h

h

e-
R R Q

Q
 d Q
d 
RE
in out
R R Q
    
Q
   d Q
d
D
dm dm

 

RE
RE
©JVS: 2009 AAPM SS
Radiation Sources
S
 Radioactive decay
 Radioactive decay
 Alpha-decay
 Beta-decay
 Electron capture
 Electron capture
 Isomeric transitions
 Accelerated charged particles
 Direct
 Direct
 X-ray generators
 Atomic energy transitions
Characteristic X rays
 Characteristic X-rays
 Auger electrons
 Interaction products
©JVS: 2009 AAPM SS
Radioactive Decay
y
General balance equations
General balance equations
R R
R R
A A A
A
Z Z Z Z
P D R Q


   
P D R
Q M M M
  

©JVS: 2009 AAPM SS
Q

©JVS: 2009 AAPM SS
Radioactive Decay
Activity
dN
A N
dt

  
0
t
t
A A e 


1
ln 2
t 
©JVS: 2009 AAPM SS
1
2 
Radioactive Decay
 α
 4 4
2 2
A A
Z Z
P D He Q


   
 α ‘s have short range
  
/  
 
 0
1 1
A A
Z Z
P D Q
 

 
    
 0
1 1
A A
Z Z
P D Q
 


    
 Neutrino ( , ) results in spectrum of  energies
( ) p  g
 max
E and E are tabulated
 ( , ) are non-ionizing
 Electron Capture
0
A A
P D Q

 0
1 1
A A
Z Z
P e D v Q
 
    
 Can occur when  
energetically prohibited
 Followed by characteristic x-rays or Auger electron
 Isomeric Transition
so e c a s o
 * 0
0
A A
Z Z
P P Q

   
 decay from meta-stable state
 Internal Conversion
* 0 0
A A
P P Q

©JVS: 2009 AAPM SS
 0 0
1 1
A A
Z Z
P e P e Q
 
    
 Competes with isomeric transition
 Results in ejection of atomic electron
©JVS: 2009 AAPM SS
15 15 0 0
1 732
O N M V
 
  
β+ 15 15 0 0
8 7 1 0 1.732
O N MeV
 


   
15 0 15 0
8 1 7 0 1.732
O e N MeV


   
Electron
Capture
β+
©JVS: 2009 AAPM SS
8 1 7 0
Capture
©JVS: 2009 AAPM SS
Accelerated Charged Particles
g
Di t
 Direct use
 Electrons, protons, …
 Indirect via production of electromagnetic
radiation
radiation
 Synchrotron radiation
 Bremmstrahlung
 Bremmstrahlung
©JVS: 2009 AAPM SS
Synchrotron
Radiation
h
Radiation
Magnetic Field
e-
©JVS: 2009 AAPM SS
Synchrotron image courtesy of http://www-project.slac.stanford.edu/ssrltxrf/spear.htm
Bremmstrahlung
brems
h
Bremmstrahlung
brems
e-
©JVS: 2009 AAPM SS
Atomic Energy Transition
gy
Characteristic x-ray
xray h
©JVS: 2009 AAPM SS
Atomic Energy Transition
Auger Electron
e-
©JVS: 2009 AAPM SS
Quantifying Radiation Fields
Q y g
Th f
 Thus far
 R
 ε
 D
©JVS: 2009 AAPM SS
Radiation Fluence
 N is number of particles
i h
dN particles
 
 crossing sphere
surrounding P with cross-
sectional area da
2
p
da m
 
   
 
sectional area da
 Integrated over all
directions and energies
 Single particle type
©JVS: 2009 AAPM SS
Equivalent definition of fluence
q
 l = particle track
l
  l = particle track
length through a
volume
nTracks
l
V
 

 l need not be
straight
 Volume can be
irregular
U f l f M t
 Useful for Monte
Carlo applications
©JVS: 2009 AAPM SS
Energy Fluence
gy
 Definition
dR J
 
2
dR J
da m
 
   
 
 Poly-energetic Mono-energetic
da m
 
 
 E
 
Diff ti l fl
 
E
E E dE
  
 E
  
 Differential energy fluence
 
E E d dE
  
©JVS: 2009 AAPM SS
 
E E d dE
 
Attenuation
t
d n dl
   
t
l
 0
el
1
n

 
  
©JVS: 2009 AAPM SS
l 0
t
n
m
    
 
Attenuation coefficient
l
 0
el
Attenuation coefficient
t th i t ti ( l) f
 µ represents the interaction (removal) of
primaries from the beam
 No consideration is given to what occurs as a
result of the interaction
 Secondary particles
 Energy-to-mass conversion
 …
 To remove density dependence, tabulated as µ/ρ
[ 2/ ]
©JVS: 2009 AAPM SS
[cm2/g]
TERMA
 Total Energy Release per unit MAss
J
kg
TERMA


 
   
 
*
 Describes loss of radiant energy from uncharged
kg
  
 
primaries as they interact in material
 Energy lost can be absorbed locally or at a distance
©JVS: 2009 AAPM SS
 
  J
kg
E
E
E
TERMA E dE


   
     
 
 

For poly-energetic spectra
*
Aside:
Photon Interactions
Photon Interactions
 To understand what happens with the
radiant energy removed, understand the
interactions
(e.g. γ interactions)
©JVS: 2009 AAPM SS
Photon interactions contributing to
Photon interactions contributing to µ
-1
m
Rayleigh
       
      
 σ = Rayleigh + Compton scattering
 σ = Rayleigh + Compton scattering
 τ = photo-electric
 κ = pair production
 κ = pair production
 η = photo-nuclear
©JVS: 2009 AAPM SS
Rayleigh Scattering
y g S g
 Elastic coherent scattering of the photon
by an atom
y
 Important for low energy photons
C t ib t < 20% t t t l tt ti
 Contributes < 20% to total attenuation
coefficient
©JVS: 2009 AAPM SS
Compton Scattering
Compton Scattering
e-
h
e
h



h
2
cm
A
N Z


 
 

©JVS: 2009 AAPM SS
g
e
A

  
 
Compton
p
©JVS: 2009 AAPM SS
Photoelectric Effect
Photoelectric Effect
e-


h b A
e
T h E T

   
b
e
T h E

  

©JVS: 2009 AAPM SS
Photo-electric
 
3 4
2 3
Z
h

 


 Au
τ increases when
τ increases when
shell can
participate in
reaction
reaction
©JVS: 2009 AAPM SS
Pair Production
Pair Production
e-
h
+
pair
h
e+
2
2 e
e e
avail
T T T h m c

 

   e
e e
avail
 
2
di
o
m c

©JVS: 2009 AAPM SS
 
radian
o
T
 

Triplet Production
Triplet Production
2
2
avail e
T h m c

 
e-
e- triplet
h
e+
2
2
h
©JVS: 2009 AAPM SS
2
2
3
e
h m c
T
 

Photo-nuclear interactions
 (γ n) (γ Xn) (γ p)
 (γ,n), (γ,Xn), (γ,p), …
 BE (Binding Energies) result in thresholds
>~ 10 MeV
 Cross-section is small (η<0.1µ)
 Neutrons are penetrating
©JVS: 2009 AAPM SS
p g
©JVS: 2009 AAPM SS
Pb attenuation coefficient
©JVS: 2009 AAPM SS
Relative importance of interactions
Relative importance of interactions
©JVS: 2009 AAPM SS
Summary photon interactions
©JVS: 2009 AAPM SS
Energy transferred to charged particles
i t ti
Energy transferred to charged particles
 per-interaction
 general
   
nonr
tr in out
u u
R R Q
    
 photo
u u
=
 compton
 pair
=
=
 Average
i
tr
n



©JVS: 2009 AAPM SS
i
tr
i
n
 
Recall
Attenuation coefficient
l
 0
el
Attenuation coefficient
 represents the interaction (removal) of
 µ represents the interaction (removal) of
primaries from the beam
 No consideration is given to what occurs as a
 No consideration is given to what occurs as a
result of the interaction
 Secondary particles
 Secondary particles
 Energy-to-mass conversion
 …
 To remove density dependence, tabulated as µ/ρ
[cm2/g]
©JVS: 2009 AAPM SS
Mass-energy transfer coefficient
 Describes the transfer of energy to charged
ti l
particles

 
tr tr
h
  
  
 
  
 
©JVS: 2009 AAPM SS
KERMA
 Kinetic Energy Release per unit MAss
d tr
d
KERMA K
dm

 
*
J
kg
tr


 
   
 
 The transfer of radiant energy from uncharged primaries
to charged particles as they interact in a material
kg
  
to charged particles as they interact in a material
 Energy transferred can be absorbed locally or at a distance
©JVS: 2009 AAPM SS *Mono-energetic, integrate for poly-energetic
Net energy transfer
 Accounts for portion of kerma is radiated away
   
nonr
net r r
tr tr u in out u
u u
R R R R Q
 
      
       
r nonr r
net
tr tr out in out out
u u u u
R R R R Q
 
      
Te-
T’
h
 Accounts for portion of kerma is radiated away
brems
hv
Compton example
h Te-
net
tr brems
e
T hv
 
 
©JVS: 2009 AAPM SS
h
Mass energy absorption coefficient
Mass-energy absorption coefficient
R di ti l f ti
 Radiative loss fraction g
1
net
tr
g

 
M b ti ffi i t
1
tr
g


 Mass-energy absorption coefficient
 
1
en tr
g
 
 
 
1 g
 

©JVS: 2009 AAPM SS
Kerma Components
C lli i K
c r
K K K
 
 Collision Kerma
net
tr
d
K


en
K

 
*
 Portion of kerma that remains collisional energy losses
c
K
dm
 c
K

 
(non-radiative)
 Radiative Kerma
 Portion of kerma (transported elsewhere) by radiative losses
©JVS: 2009 AAPM SS
Exposure and W
 Exposure
Hi t i l di ti it  
 Historical radiation unit
 Ionization density in air
C
kg
dQ
X
dm
 
  
 
 Related to air collision kerma by mean energy
required to produce an ion pair
required to produce an ion pair
 
C
kg
c air
e
X K
W
 
 
    
   
kg
air
W
   
19
19
1.602 10 ( ) 1
33.97 33.97
1 602 10 ( )
W ev J eV ip J
e ip C electron electron C


   
      
   
   
     
    
   
 
©JVS: 2009 AAPM SS
1.602 10 ( )
air
e ip C electron electron C
    
   
 
Aside
Indirectly ionizing radiation
Indirectly ionizing radiation
 How many ionization events can be initiated by a
10 keV photo-electron?
   
3 1
? 10 10 294
ip
ip eV ip
 
   
   
? 10 10 294
33.97
p
ip eV ip
eV
   
 
 
©JVS: 2009 AAPM SS
Equilibrium Part 2:
Charged Particle Equilibrium
Charged Particle Equilibrium
h

e-
   
R R
e-
e- e-
   
in out c
c
R R

h

e-


       
in in out out
c u c u
R R R R Q
      
    net
R R Q

CPE CPE
CPE


    ... net
in out tr
u u
R R Q
 
    

net
tr
d
d
D K


CPE CPE
CPE
CPE
©JVS: 2009 AAPM SS
tr
c
D K
dm dm
  
Charge particles
g p
 e-, e+, p, α, …
 Sources
 Sources
 Accelerated beams
 Radioactive decay
 Reaction products
 Reaction products
 (e,γ) , …
 (n,p), …
 (e,e), …
( )
 Coulomb force interaction
 Inverse square dependence
 Semi-continuous rather than discrete interactions
 Semi continuous rather than discrete interactions
 Results in energy loss and directional change
 Interaction can be classified by impact parameter
©JVS: 2009 AAPM SS
undisturbed incident trajectory
CP interactions
b = impact parameter
t i di
b
a = atomic radius
n = nuclear radius
 b>>a
Soft, atomic interaction
 b~a
Hard, knock-on interaction
a
 b<<a
Nuclear interactions
possible
©JVS: 2009 AAPM SS
Stopping power
S pp g p
E l it th l th
 Energy loss per unit path-length
MeV
dE
S
  2
MeVcm
S dE  
S t t b i t ti
MeV
cm
dE
S
dx
 
  
 
MeVcm
g
S dE
dx
 
 
  
 
 Separate components by interaction
col rad
S S
S
 
  
 
©JVS: 2009 AAPM SS
Stopping power formulations
S pp g p
B d B th Bl h H itl
 Based on Bethe-Bloch, Heitler, …
 Electrons: ICRU 37
 
 
 
2
2 2
2
2 2
2
1
2 ln
2
e e A
Collisional
S Z
r m c N F
A I m c
 
  
 

 
 

   
 
  
   
 
   
 
 
 
2
Collisional e
I m c
 
   
 
 
2
e
T m c
 
v
c
 
 
2
2 2
13
rad e A
r
e
S r N
Z E m c B
A
 
 
 
137
e
A
      
2
2
1 1 2 1 ln 2
8
F

  
  
    
 
 
Material dependent terms
©JVS: 2009 AAPM SS
Material dependent terms
©JVS: 2009 AAPM SS
Water--electrons
©JVS: 2009 AAPM SS
Material Comparisons
Electron stopping powers
Electron stopping powers
©JVS: 2009 AAPM SS
Stopping power formulations
S pp g p
 Protons/ Heavy charged particles: ICRU 49
 Protons/ Heavy charged particles: ICRU 49
 
2 2
2 2 2 2
1 2
2 2 2
2
1 1
4 ln
col e m
e e A
S m c W
Z C
r m c N z B B
 
 

 
 
 
 
     
 
 
  1 2
2 2 2
2 2
1
e e A
A Z
I

  
 
 

 
 
With Wm, the maximum energy that can be
2
2 2
2
2 1
1 2
e e e
m
m c m m
W
  
   
  
 
   
 
m, gy
transferred to an electron in a single collision
Material dependent terms
2 2
1 1
m
M M
 
 
   
  

 
   
©JVS: 2009 AAPM SS
©JVS: 2009 AAPM SS
Water--protons
p
©JVS: 2009 AAPM SS
Recall KERMA
Transfer of radiant energy from uncharged
 Transfer of radiant energy from uncharged
primaries to charged particles as they interact in
a material
a material
 
max
( )
E
tr
E
E
K E dE

 
   
 

tr
d
K

  
0
E
E


 
 

K
dm
c r
K K K
 
 
max
( )
E
en
c E
E
K E dE


 
   
 

net
tr
c
d
K
d


c r
©JVS: 2009 AAPM SS
 
0
E


 
 

c
dm
CEMA
 Converted Energy per unit MAss
D ib f f i h d i l
 Describes energy transfer from primary charged particles
to secondary charged particles (δ-rays)
 Energy transferred can be absorbed locally or at a distance
gy y
 Defined in ICRU 60
 Charged particle analog to KERMA
 C=dEc/dm
J
kg
c
dE
C
dm
 
  
 
 C = integral(). 
 
max
0
E
col
E
S E
C E dE

 

©JVS: 2009 AAPM SS
CEMA example
p
 Thin slab
CP Φ
 constant S/ρ
 straight particle paths
 Fluence Φ of incident
t
mono-energetic charged
particles
t
c
S
dE t

 
Energy loss
J
c
S
C
 
   
CEMA
dE t


 
kg
C

   
 
δCPE
©JVS: 2009 AAPM SS
 When δ-ray equilibrium exists, CEMA = dose
δCPE
Restricted CEMA
Restricted CEMA
E l d l t ti (E Δ) δ
 Excludes energy losses to energetic (E>Δ) δ-rays
(aka knock-on electrons)
 Such δ-rays are added to the fluence Φ’
 
 
 
E
L E
C E dE




 
 
     
col
E E E

    
©JVS: 2009 AAPM SS
     
E E E
E E E

    
Restricted Stopping Power
Restricted Stopping Power
l k
S dE
L 
col ke
S dE
L
dx
  


 
 Includes energy transfers only up to energy Δ
 Includes energy transfers only up to energy Δ
 Excludes energy losses from to energetic
(E>Δ) δ-rays
 Δ is chosen with respect to the distance the δ-rays
can travel in the material of interest
©JVS: 2009 AAPM SS
Restricted CEMA
est cted C
 
 
 
 
max
E
col
E E
L E S E
C E dE E dE



 
   
 
   
0
E E
 
 
 
Track end term & electrons
Energy loss for E > ∆ Track end term & electrons
generated outside volume
Energy loss for Ee > ∆
 lim
max
lim
E
C C



 lim
lim col
S
L

©JVS: 2009 AAPM SS
max
E  

Path Length and
Range
 Variations in energy loss and scattering result in
different paths through a material ( & different
different paths through a material ( & different
maximum penetration distances)
 p = total distance traveled by a particle w/o relation to
p y p
direction
 R = average path length
 CSDA Range
 CSDA Range
2
0
1 g
( ) cm
o
T
CSDA
R dE
S E 
 
  
 

©JVS: 2009 AAPM SS
( ) cm
S E   
Range
Range
 Rt = average depth of penetration in the original
 Rt average depth of penetration in the original
particle direction
 R50 = range at 50% max dose
50 g
 Rp = practical or extrapolated range, intersection of
tangent @R50 with brems tail
50
©JVS: 2009 AAPM SS
Range-Energy
Relationships
 Incident energy
 Incident energy
0 50
2.33
E R

 Average energy at depth (Harder’s Formula)
1
o
p
depth
E E
R
 
 
 
 
©JVS: 2009 AAPM SS
 
Equilibrium Part 3:
CPE Revisited
CPE Revisited
 For an external beam if
 For an external beam, if
no attenuation, CPE
exists beyond Dmax
 But, e- production due to
attenuation
T CPE t i t
 True CPE cannot exist
for external beam
©JVS: 2009 AAPM SS
Equilibrium Part 4:
Transient Charged Particle
Transient Charged Particle
F t l
 For external
beams
 ( ) ( )
c
D x K x


TCPE
©JVS: 2009 AAPM SS
Neutron Interactions
t t
 ….see text
©JVS: 2009 AAPM SS
Problem #5
E h bl i
 Each problem give
©JVS: 2009 AAPM SS
Problem #5
,
©JVS: 2009 AAPM SS
,
©JVS: 2009 AAPM SS
Thank you for your attention
©JVS: 2009 AAPM SS

More Related Content

PDF
Gamma- and X-ray Interaction with Matter.pdf
PDF
Efficiency Improvement of p-i-n Structure over p-n Structure and Effect of p-...
PPT
Ajal electrostatics slides
PDF
AC Circuit Theorems Slides
PDF
Paramagnetismo Quântico - Introdução.pdf
PDF
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
PDF
7 slides
PDF
Chapter2 dosimetric principles, quantities and units
Gamma- and X-ray Interaction with Matter.pdf
Efficiency Improvement of p-i-n Structure over p-n Structure and Effect of p-...
Ajal electrostatics slides
AC Circuit Theorems Slides
Paramagnetismo Quântico - Introdução.pdf
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
7 slides
Chapter2 dosimetric principles, quantities and units

Similar to 02Siebers-BasicInteractionsandQuantities.pdf (20)

PDF
antennas1.pdf
PDF
RadiationPhysics_Interactions_Medium.pdf
PPTX
Basics of semiconductor, current equation, continuity equation, injected mino...
PPT
Basic Nuc Physics
PPT
Anamolous zeeman effect
PPT
Ch2 slides-1
PDF
Study on the dependency of steady state response on the ratio of larmor and r...
PDF
Ennaoui cours rabat part ii
PPT
Structure ofmatter fin
PDF
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
PPT
"Squeezed States in Bose-Einstein Condensate"
PPTX
Stable unstable atoms and why they are stable or unstable
PPTX
Element-3-GSP-AUG182012 reviewer for NTC Exam.pptx
PDF
Hamiltonian Approach for Electromagnetic Field in One-dimensional Photonic Cr...
PPTX
Charged particle interaction with matter
PPTX
Characterization of Carrier Lifetime
PDF
Adamek_SestoGR18.pdf
PDF
MARM_chiral
PDF
International Journal of Computational Engineering Research(IJCER)
PPTX
Coulombs Law and Electric Field Intensity.pptx
antennas1.pdf
RadiationPhysics_Interactions_Medium.pdf
Basics of semiconductor, current equation, continuity equation, injected mino...
Basic Nuc Physics
Anamolous zeeman effect
Ch2 slides-1
Study on the dependency of steady state response on the ratio of larmor and r...
Ennaoui cours rabat part ii
Structure ofmatter fin
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
"Squeezed States in Bose-Einstein Condensate"
Stable unstable atoms and why they are stable or unstable
Element-3-GSP-AUG182012 reviewer for NTC Exam.pptx
Hamiltonian Approach for Electromagnetic Field in One-dimensional Photonic Cr...
Charged particle interaction with matter
Characterization of Carrier Lifetime
Adamek_SestoGR18.pdf
MARM_chiral
International Journal of Computational Engineering Research(IJCER)
Coulombs Law and Electric Field Intensity.pptx
Ad

More from Nishant835443 (11)

PPT
Estro_revised brachy therapy cervical .ppt
PDF
20Dieterich-SRSSRTDosimetry.pdf
PDF
19Mackie-IMRTDosimetry.pdf
PDF
16Mitch-BrachyPrimaryStandards.pdf
PDF
9_neutrons - Reformat.pdf
PDF
18Ibbott-QAinDosimetry.pdf
PDF
05Seuntjens-MonteCarloIntro.pdf
PDF
03Nahum-CavityTheorywithCorrections.pdf
PDF
01Almond-HistoryandNeedforAccuracy.pdf
PPTX
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
PDF
-Film.pdf
Estro_revised brachy therapy cervical .ppt
20Dieterich-SRSSRTDosimetry.pdf
19Mackie-IMRTDosimetry.pdf
16Mitch-BrachyPrimaryStandards.pdf
9_neutrons - Reformat.pdf
18Ibbott-QAinDosimetry.pdf
05Seuntjens-MonteCarloIntro.pdf
03Nahum-CavityTheorywithCorrections.pdf
01Almond-HistoryandNeedforAccuracy.pdf
02-pre-CDR-Radiobiology-Motivation-March-2020.pptx
-Film.pdf
Ad

Recently uploaded (20)

PPTX
the psycho-oncology for psychiatrists pptx
PDF
focused on the development and application of glycoHILIC, pepHILIC, and comm...
PPTX
2 neonat neotnatology dr hussein neonatologist
PPTX
Morphology of Bacterial Cell for bsc sud
PPTX
obstructive neonatal jaundice.pptx yes it is
PPTX
IMAGING EQUIPMENiiiiìiiiiiTpptxeiuueueur
PPTX
Acute Coronary Syndrome for Cardiology Conference
PPTX
Human Reproduction: Anatomy, Physiology & Clinical Insights.pptx
PPTX
Acid Base Disorders educational power point.pptx
PPTX
Electrolyte Disturbance in Paediatric - Nitthi.pptx
PPTX
NRPchitwan6ab2802f9.pptxnepalindiaindiaindiapakistan
PDF
TISSUE LECTURE (anatomy and physiology )
PPTX
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
DOCX
PEADIATRICS NOTES.docx lecture notes for medical students
PPTX
CHEM421 - Biochemistry (Chapter 1 - Introduction)
PPT
neurology Member of Royal College of Physicians (MRCP).ppt
PPTX
surgery guide for USMLE step 2-part 1.pptx
PPT
Obstructive sleep apnea in orthodontics treatment
PPT
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
PPTX
y4d nutrition and diet in pregnancy and postpartum
the psycho-oncology for psychiatrists pptx
focused on the development and application of glycoHILIC, pepHILIC, and comm...
2 neonat neotnatology dr hussein neonatologist
Morphology of Bacterial Cell for bsc sud
obstructive neonatal jaundice.pptx yes it is
IMAGING EQUIPMENiiiiìiiiiiTpptxeiuueueur
Acute Coronary Syndrome for Cardiology Conference
Human Reproduction: Anatomy, Physiology & Clinical Insights.pptx
Acid Base Disorders educational power point.pptx
Electrolyte Disturbance in Paediatric - Nitthi.pptx
NRPchitwan6ab2802f9.pptxnepalindiaindiaindiapakistan
TISSUE LECTURE (anatomy and physiology )
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
PEADIATRICS NOTES.docx lecture notes for medical students
CHEM421 - Biochemistry (Chapter 1 - Introduction)
neurology Member of Royal College of Physicians (MRCP).ppt
surgery guide for USMLE step 2-part 1.pptx
Obstructive sleep apnea in orthodontics treatment
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
y4d nutrition and diet in pregnancy and postpartum

02Siebers-BasicInteractionsandQuantities.pdf

  • 1. Basic Radiation Interactions, Definition of Dosimetric Quantities, and Data Sources J.V. Siebers Virginia Commonwealth University Richmond, Virginia USA 2009 AAPM Summer School 2009 AAPM Summer School
  • 2. Learning Objectives g j T i d d ib th b i f 1. To review and describe the basics of radiation interactions for understanding radiation dosimetry 2 To review definitions of quantities 2. To review definitions of quantities required for understanding radiation dosimetry dosimetry ©JVS: 2009 AAPM SS
  • 5. Scope Radiation Types Ionizing Ionizing Interactions can remove atomic orbital electrons Non-Ionizing Particulate Electromagnetic Particulate -electron -positron Electromagnetic -proton -neutron - alpha ©JVS: 2009 AAPM SS p - etc.
  • 6. Types of ionizing radiation yp g Di tl i i i di ti  Directly ionizing radiation  Direct interactions via the Coulomb force along a particles track  Charged particles  electrons  positrons protons  protons  heavy charged particles ©JVS: 2009 AAPM SS
  • 7. Direct Ionization Coulombic Interaction e- Coulombic Interaction  A charged particle exerts exerts electromagnetic forces on atomic  Energy transfer can electrons result in the ejection of an electron (ionization) (ionization) ©JVS: 2009 AAPM SS
  • 8. Indirectly Ionizing Radiation y g  Uncharged particles that must first transfer energy to a charged particle which can then further ionize matter T t  Two step process  Examples El t ti di ti  Electromagnetic radiations: x- or γ-rays  Neutrons ©JVS: 2009 AAPM SS
  • 9. Indirectly Ionizing Radiation Ph t l t i Eff t Photoelectric Effect e- Ej t d   h Ejected electrons further ionize  ionize matter ©JVS: 2009 AAPM SS
  • 10. Radiant Energy R gy  R Total energy excluding rest mass  R – Total energy, excluding rest mass, carried by particles  Photons: E = hν = hc/λ  Electrons + other CPs: kinetic energy T ©JVS: 2009 AAPM SS
  • 11. Energy imparted ε  ε - Energy imparted R R Q       ε - Energy imparted i l i in out R R Q      Q   mass to energy conversion resulting from interactions or radioactive decay Q  if(m→E), Q>0 in R  out R h  e- h  e- ©JVS: 2009 AAPM SS if(E→m), Q<0         in in out out c u c u R R R R Q       
  • 12. Dose   Gy d D   Energy deposited per unit mass   y dm  Energy deposited per unit mass  1 Gy = 1 J/kg  Knowledge of D is the object of dosimetry ©JVS: 2009 AAPM SS
  • 13. Equilibrium Part 1: R di ti E ilib i Radiation Equilibrium R R h  e- in out R R  h  e- e- h  h  e- R R Q  Q  d Q d  RE in out R R Q      Q    d Q d D dm dm     RE RE ©JVS: 2009 AAPM SS
  • 14. Radiation Sources S  Radioactive decay  Radioactive decay  Alpha-decay  Beta-decay  Electron capture  Electron capture  Isomeric transitions  Accelerated charged particles  Direct  Direct  X-ray generators  Atomic energy transitions Characteristic X rays  Characteristic X-rays  Auger electrons  Interaction products ©JVS: 2009 AAPM SS
  • 15. Radioactive Decay y General balance equations General balance equations R R R R A A A A Z Z Z Z P D R Q       P D R Q M M M     ©JVS: 2009 AAPM SS
  • 17. Radioactive Decay Activity dN A N dt     0 t t A A e    1 ln 2 t  ©JVS: 2009 AAPM SS 1 2 
  • 18. Radioactive Decay  α  4 4 2 2 A A Z Z P D He Q        α ‘s have short range    /      0 1 1 A A Z Z P D Q            0 1 1 A A Z Z P D Q           Neutrino ( , ) results in spectrum of  energies ( ) p  g  max E and E are tabulated  ( , ) are non-ionizing  Electron Capture 0 A A P D Q   0 1 1 A A Z Z P e D v Q         Can occur when   energetically prohibited  Followed by characteristic x-rays or Auger electron  Isomeric Transition so e c a s o  * 0 0 A A Z Z P P Q       decay from meta-stable state  Internal Conversion * 0 0 A A P P Q  ©JVS: 2009 AAPM SS  0 0 1 1 A A Z Z P e P e Q         Competes with isomeric transition  Results in ejection of atomic electron
  • 20. 15 15 0 0 1 732 O N M V      β+ 15 15 0 0 8 7 1 0 1.732 O N MeV         15 0 15 0 8 1 7 0 1.732 O e N MeV       Electron Capture β+ ©JVS: 2009 AAPM SS 8 1 7 0 Capture
  • 22. Accelerated Charged Particles g Di t  Direct use  Electrons, protons, …  Indirect via production of electromagnetic radiation radiation  Synchrotron radiation  Bremmstrahlung  Bremmstrahlung ©JVS: 2009 AAPM SS
  • 23. Synchrotron Radiation h Radiation Magnetic Field e- ©JVS: 2009 AAPM SS Synchrotron image courtesy of http://www-project.slac.stanford.edu/ssrltxrf/spear.htm
  • 25. Atomic Energy Transition gy Characteristic x-ray xray h ©JVS: 2009 AAPM SS
  • 26. Atomic Energy Transition Auger Electron e- ©JVS: 2009 AAPM SS
  • 27. Quantifying Radiation Fields Q y g Th f  Thus far  R  ε  D ©JVS: 2009 AAPM SS
  • 28. Radiation Fluence  N is number of particles i h dN particles    crossing sphere surrounding P with cross- sectional area da 2 p da m         sectional area da  Integrated over all directions and energies  Single particle type ©JVS: 2009 AAPM SS
  • 29. Equivalent definition of fluence q  l = particle track l   l = particle track length through a volume nTracks l V     l need not be straight  Volume can be irregular U f l f M t  Useful for Monte Carlo applications ©JVS: 2009 AAPM SS
  • 30. Energy Fluence gy  Definition dR J   2 dR J da m          Poly-energetic Mono-energetic da m      E   Diff ti l fl   E E E dE     E     Differential energy fluence   E E d dE    ©JVS: 2009 AAPM SS   E E d dE  
  • 31. Attenuation t d n dl     t l  0 el 1 n       ©JVS: 2009 AAPM SS l 0 t n m       
  • 32. Attenuation coefficient l  0 el Attenuation coefficient t th i t ti ( l) f  µ represents the interaction (removal) of primaries from the beam  No consideration is given to what occurs as a result of the interaction  Secondary particles  Energy-to-mass conversion  …  To remove density dependence, tabulated as µ/ρ [ 2/ ] ©JVS: 2009 AAPM SS [cm2/g]
  • 33. TERMA  Total Energy Release per unit MAss J kg TERMA           *  Describes loss of radiant energy from uncharged kg      primaries as they interact in material  Energy lost can be absorbed locally or at a distance ©JVS: 2009 AAPM SS     J kg E E E TERMA E dE                  For poly-energetic spectra *
  • 34. Aside: Photon Interactions Photon Interactions  To understand what happens with the radiant energy removed, understand the interactions (e.g. γ interactions) ©JVS: 2009 AAPM SS
  • 35. Photon interactions contributing to Photon interactions contributing to µ -1 m Rayleigh                 σ = Rayleigh + Compton scattering  σ = Rayleigh + Compton scattering  τ = photo-electric  κ = pair production  κ = pair production  η = photo-nuclear ©JVS: 2009 AAPM SS
  • 36. Rayleigh Scattering y g S g  Elastic coherent scattering of the photon by an atom y  Important for low energy photons C t ib t < 20% t t t l tt ti  Contributes < 20% to total attenuation coefficient ©JVS: 2009 AAPM SS
  • 37. Compton Scattering Compton Scattering e- h e h    h 2 cm A N Z        ©JVS: 2009 AAPM SS g e A      
  • 39. Photoelectric Effect Photoelectric Effect e-   h b A e T h E T      b e T h E      ©JVS: 2009 AAPM SS
  • 40. Photo-electric   3 4 2 3 Z h       Au τ increases when τ increases when shell can participate in reaction reaction ©JVS: 2009 AAPM SS
  • 41. Pair Production Pair Production e- h + pair h e+ 2 2 e e e avail T T T h m c        e e e avail   2 di o m c  ©JVS: 2009 AAPM SS   radian o T   
  • 42. Triplet Production Triplet Production 2 2 avail e T h m c    e- e- triplet h e+ 2 2 h ©JVS: 2009 AAPM SS 2 2 3 e h m c T   
  • 43. Photo-nuclear interactions  (γ n) (γ Xn) (γ p)  (γ,n), (γ,Xn), (γ,p), …  BE (Binding Energies) result in thresholds >~ 10 MeV  Cross-section is small (η<0.1µ)  Neutrons are penetrating ©JVS: 2009 AAPM SS p g
  • 46. Relative importance of interactions Relative importance of interactions ©JVS: 2009 AAPM SS
  • 48. Energy transferred to charged particles i t ti Energy transferred to charged particles  per-interaction  general     nonr tr in out u u R R Q       photo u u =  compton  pair = =  Average i tr n    ©JVS: 2009 AAPM SS i tr i n  
  • 49. Recall Attenuation coefficient l  0 el Attenuation coefficient  represents the interaction (removal) of  µ represents the interaction (removal) of primaries from the beam  No consideration is given to what occurs as a  No consideration is given to what occurs as a result of the interaction  Secondary particles  Secondary particles  Energy-to-mass conversion  …  To remove density dependence, tabulated as µ/ρ [cm2/g] ©JVS: 2009 AAPM SS
  • 50. Mass-energy transfer coefficient  Describes the transfer of energy to charged ti l particles    tr tr h              ©JVS: 2009 AAPM SS
  • 51. KERMA  Kinetic Energy Release per unit MAss d tr d KERMA K dm    * J kg tr            The transfer of radiant energy from uncharged primaries to charged particles as they interact in a material kg    to charged particles as they interact in a material  Energy transferred can be absorbed locally or at a distance ©JVS: 2009 AAPM SS *Mono-energetic, integrate for poly-energetic
  • 52. Net energy transfer  Accounts for portion of kerma is radiated away     nonr net r r tr tr u in out u u u R R R R Q                  r nonr r net tr tr out in out out u u u u R R R R Q          Te- T’ h  Accounts for portion of kerma is radiated away brems hv Compton example h Te- net tr brems e T hv     ©JVS: 2009 AAPM SS h
  • 53. Mass energy absorption coefficient Mass-energy absorption coefficient R di ti l f ti  Radiative loss fraction g 1 net tr g    M b ti ffi i t 1 tr g    Mass-energy absorption coefficient   1 en tr g       1 g    ©JVS: 2009 AAPM SS
  • 54. Kerma Components C lli i K c r K K K    Collision Kerma net tr d K   en K    *  Portion of kerma that remains collisional energy losses c K dm  c K    (non-radiative)  Radiative Kerma  Portion of kerma (transported elsewhere) by radiative losses ©JVS: 2009 AAPM SS
  • 55. Exposure and W  Exposure Hi t i l di ti it    Historical radiation unit  Ionization density in air C kg dQ X dm         Related to air collision kerma by mean energy required to produce an ion pair required to produce an ion pair   C kg c air e X K W              kg air W     19 19 1.602 10 ( ) 1 33.97 33.97 1 602 10 ( ) W ev J eV ip J e ip C electron electron C                                       ©JVS: 2009 AAPM SS 1.602 10 ( ) air e ip C electron electron C           
  • 56. Aside Indirectly ionizing radiation Indirectly ionizing radiation  How many ionization events can be initiated by a 10 keV photo-electron?     3 1 ? 10 10 294 ip ip eV ip           ? 10 10 294 33.97 p ip eV ip eV         ©JVS: 2009 AAPM SS
  • 57. Equilibrium Part 2: Charged Particle Equilibrium Charged Particle Equilibrium h  e-     R R e- e- e-     in out c c R R  h  e-           in in out out c u c u R R R R Q            net R R Q  CPE CPE CPE       ... net in out tr u u R R Q         net tr d d D K   CPE CPE CPE CPE ©JVS: 2009 AAPM SS tr c D K dm dm   
  • 58. Charge particles g p  e-, e+, p, α, …  Sources  Sources  Accelerated beams  Radioactive decay  Reaction products  Reaction products  (e,γ) , …  (n,p), …  (e,e), … ( )  Coulomb force interaction  Inverse square dependence  Semi-continuous rather than discrete interactions  Semi continuous rather than discrete interactions  Results in energy loss and directional change  Interaction can be classified by impact parameter ©JVS: 2009 AAPM SS
  • 59. undisturbed incident trajectory CP interactions b = impact parameter t i di b a = atomic radius n = nuclear radius  b>>a Soft, atomic interaction  b~a Hard, knock-on interaction a  b<<a Nuclear interactions possible ©JVS: 2009 AAPM SS
  • 60. Stopping power S pp g p E l it th l th  Energy loss per unit path-length MeV dE S   2 MeVcm S dE   S t t b i t ti MeV cm dE S dx        MeVcm g S dE dx           Separate components by interaction col rad S S S        ©JVS: 2009 AAPM SS
  • 61. Stopping power formulations S pp g p B d B th Bl h H itl  Based on Bethe-Bloch, Heitler, …  Electrons: ICRU 37       2 2 2 2 2 2 2 1 2 ln 2 e e A Collisional S Z r m c N F A I m c                                       2 Collisional e I m c           2 e T m c   v c     2 2 2 13 rad e A r e S r N Z E m c B A       137 e A        2 2 1 1 2 1 ln 2 8 F                 Material dependent terms ©JVS: 2009 AAPM SS Material dependent terms
  • 64. Material Comparisons Electron stopping powers Electron stopping powers ©JVS: 2009 AAPM SS
  • 65. Stopping power formulations S pp g p  Protons/ Heavy charged particles: ICRU 49  Protons/ Heavy charged particles: ICRU 49   2 2 2 2 2 2 1 2 2 2 2 2 1 1 4 ln col e m e e A S m c W Z C r m c N z B B                          1 2 2 2 2 2 2 1 e e A A Z I              With Wm, the maximum energy that can be 2 2 2 2 2 1 1 2 e e e m m c m m W                   m, gy transferred to an electron in a single collision Material dependent terms 2 2 1 1 m M M                   ©JVS: 2009 AAPM SS
  • 68. Recall KERMA Transfer of radiant energy from uncharged  Transfer of radiant energy from uncharged primaries to charged particles as they interact in a material a material   max ( ) E tr E E K E dE           tr d K     0 E E        K dm c r K K K     max ( ) E en c E E K E dE            net tr c d K d   c r ©JVS: 2009 AAPM SS   0 E        c dm
  • 69. CEMA  Converted Energy per unit MAss D ib f f i h d i l  Describes energy transfer from primary charged particles to secondary charged particles (δ-rays)  Energy transferred can be absorbed locally or at a distance gy y  Defined in ICRU 60  Charged particle analog to KERMA  C=dEc/dm J kg c dE C dm         C = integral().    max 0 E col E S E C E dE     ©JVS: 2009 AAPM SS
  • 70. CEMA example p  Thin slab CP Φ  constant S/ρ  straight particle paths  Fluence Φ of incident t mono-energetic charged particles t c S dE t    Energy loss J c S C       CEMA dE t     kg C        δCPE ©JVS: 2009 AAPM SS  When δ-ray equilibrium exists, CEMA = dose δCPE
  • 71. Restricted CEMA Restricted CEMA E l d l t ti (E Δ) δ  Excludes energy losses to energetic (E>Δ) δ-rays (aka knock-on electrons)  Such δ-rays are added to the fluence Φ’       E L E C E dE               col E E E       ©JVS: 2009 AAPM SS       E E E E E E      
  • 72. Restricted Stopping Power Restricted Stopping Power l k S dE L  col ke S dE L dx         Includes energy transfers only up to energy Δ  Includes energy transfers only up to energy Δ  Excludes energy losses from to energetic (E>Δ) δ-rays  Δ is chosen with respect to the distance the δ-rays can travel in the material of interest ©JVS: 2009 AAPM SS
  • 73. Restricted CEMA est cted C         max E col E E L E S E C E dE E dE                0 E E       Track end term & electrons Energy loss for E > ∆ Track end term & electrons generated outside volume Energy loss for Ee > ∆  lim max lim E C C     lim lim col S L  ©JVS: 2009 AAPM SS max E   
  • 74. Path Length and Range  Variations in energy loss and scattering result in different paths through a material ( & different different paths through a material ( & different maximum penetration distances)  p = total distance traveled by a particle w/o relation to p y p direction  R = average path length  CSDA Range  CSDA Range 2 0 1 g ( ) cm o T CSDA R dE S E          ©JVS: 2009 AAPM SS ( ) cm S E   
  • 75. Range Range  Rt = average depth of penetration in the original  Rt average depth of penetration in the original particle direction  R50 = range at 50% max dose 50 g  Rp = practical or extrapolated range, intersection of tangent @R50 with brems tail 50 ©JVS: 2009 AAPM SS
  • 76. Range-Energy Relationships  Incident energy  Incident energy 0 50 2.33 E R   Average energy at depth (Harder’s Formula) 1 o p depth E E R         ©JVS: 2009 AAPM SS  
  • 77. Equilibrium Part 3: CPE Revisited CPE Revisited  For an external beam if  For an external beam, if no attenuation, CPE exists beyond Dmax  But, e- production due to attenuation T CPE t i t  True CPE cannot exist for external beam ©JVS: 2009 AAPM SS
  • 78. Equilibrium Part 4: Transient Charged Particle Transient Charged Particle F t l  For external beams  ( ) ( ) c D x K x   TCPE ©JVS: 2009 AAPM SS
  • 79. Neutron Interactions t t  ….see text ©JVS: 2009 AAPM SS
  • 80. Problem #5 E h bl i  Each problem give ©JVS: 2009 AAPM SS
  • 83. Thank you for your attention ©JVS: 2009 AAPM SS