SlideShare a Scribd company logo
Addition and Subtraction of Rational Expressions
Addition and Subtraction of Rational Expressions
Only fractions with the same denominator may be added or
subtracted directly.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
= 2
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
=
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
5
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
35
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
Example B.
a. Convert to a fraction with denominator 12.
A
B
A
B * D.
5
4
5
4
* 12
3 15
12
In practice, we write that
A
B
=> A
B
* D D.
5
4
= 12 =
new numerator N
the new numerator
with the new denominator 12.
N
D
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
Addition and Subtraction of Rational Expressions
3x
4y
3x
4y
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
the new numerator
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
new numerator
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
c. Convert into an expression denominator 4x2 – 9.
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
=
2x2 – x – 3
4x2 – 9
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72.
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
55
=
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
72
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2)
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
2x + 26
(x – 2)(x + 4)
= 2(x + 13)
(x – 2)(x + 4)
or
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
=
3
(x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
This is simplified because the numerator is not factorable.
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 =
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
Example H. Combine
Example D. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Hence
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD
–
2x – 2
LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
=
x2 – x + 2
2(2x – 1)(x + 1)
Self–Check:
Do it by the multiplier method to see which way you prefer.
x
2(2x – 1)
–
x – 1
( x + 1)(2x – 1)
[ ]* 2(2x – 1)(x + 1) / LCD
Ex. A. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
x – 2
– 2
x – 2
1.
2x
x – 2
+
4
x – 2
2.
3x
x + 3
+ 6
x + 3
3. – 2x
x – 4
+ 8
x – 4
4.
x + 2
2x – 1
–
2x – 1
5.
2x + 5
x – 2
–
4 – 3x
2 – x
6.
x2 – 2
x – 2
– x
x – 27.
9x2
3x – 2 –
4
3x – 28.
Ex. B. Combine and simplify the answers.
3
12
+ 5
6
– 2
3
9. 11
12
+
5
8
– 7
6
10. –5
6
+ 3
8
– 311.
12.
6
5xy2
– x
6y13.
3
4xy2
– 5x
6y
15. 7
12xy
– 5x
8y316.
5
4xy
– 7x
6y214.
3
4xy2
– 5y
12x217.
–5
6 –
7
12+ 2
+ 1 – 7x
9y2
4 – 3x
Ex. C. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
2x – 4
– 2
3x – 6
18.
2x
3x + 9
–
4
2x + 6
19.
–3
2x + 1
+ 2x
4x + 2
20. 2x – 3
x – 2
– 3x + 4
5 – 10x
21.
3x + 1
6x – 4
– 2x + 3
2 – 3x22.
–5x + 7
3x – 12+
4x – 3
–2x + 823.
x
x – 2
– 2
x – 3
24. 2x
3x + 1
+ 4
x – 6
25.
–3
2x + 1
+ 2x
3x + 2
26.
2x – 3
x – 2
+
3x + 4
x – 5
27.
3x + 1
+
x + 3
x2 – 428.
x2 – 4x + 4
x – 4
–
x + 5
x2 – x – 2
29.
x2 – 5x + 6
3x + 1
+
2x + 3
9 – x230.
x2 – x – 6
3x – 4
–
2x + 5
x2 + x – 6
31.
x2 + 5x + 6
3x + 4
+
2x – 3
–x2 – 2x + 3
32.
x2 – x
5x – 4
–
3x – 5
1 – x233.
x2 + 2x – 3

More Related Content

PPTX
55 addition and subtraction of rational expressions
PPTX
2 6 complex fractions
PPTX
MIT Math Syllabus 10-3 Lesson 8: Inequalities
PPTX
13 multiplication and division of rational expressions
PPTX
2 5literal equations
PPTX
2 7 variations
PPTX
2.1 reviews of exponents and the power functions
PPTX
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
55 addition and subtraction of rational expressions
2 6 complex fractions
MIT Math Syllabus 10-3 Lesson 8: Inequalities
13 multiplication and division of rational expressions
2 5literal equations
2 7 variations
2.1 reviews of exponents and the power functions
MIT Math Syllabus 10-3 Lesson 3: Rational expressions

What's hot (20)

PDF
Appendex e
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PDF
Ma3bfet par 10.7 7 aug 2014
PPT
Functions And Relations
PPTX
Rational Expressions
PPTX
Lecture rational expressions
PPTX
Kyle Galli PowerPoint
PPTX
15 proportions and the multiplier method for solving rational equations
PPTX
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
PPTX
Solving rational inequalities
PPT
Project Town Naku Sa Math
PDF
Algebra 2 Section 1-1
PPTX
Applications of boolean algebra minterm and maxterm expansions
PPT
Rational expressions and equations
PPTX
Algebraic fractions (2)
PDF
Problems and solutions, inmo 2011
PPTX
boolean algebra(continued)
PDF
123a ppt-all-2
PDF
Daa chapter8
PPSX
Algebraic fractionns 2
Appendex e
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
Ma3bfet par 10.7 7 aug 2014
Functions And Relations
Rational Expressions
Lecture rational expressions
Kyle Galli PowerPoint
15 proportions and the multiplier method for solving rational equations
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
Solving rational inequalities
Project Town Naku Sa Math
Algebra 2 Section 1-1
Applications of boolean algebra minterm and maxterm expansions
Rational expressions and equations
Algebraic fractions (2)
Problems and solutions, inmo 2011
boolean algebra(continued)
123a ppt-all-2
Daa chapter8
Algebraic fractionns 2
Ad

Viewers also liked (20)

PPTX
2 2 addition and subtraction ii
PPTX
2 3 proportions
PPTX
1 6 the least common multiple
PPTX
2 5 rational equations word-problems
PPT
Addition and subtraction expressions
PPTX
1.3 rational expressions
PPT
Tutorials--The Language of Math--Variable Expressions--Multiplication and Sub...
PPT
Sequences & Patterns
PPT
Function tables
PPTX
5 7applications of factoring
PPTX
4 1exponents
PPTX
4 6multiplication formulas
PPTX
3 1 the real line and linear inequalities-x
PPTX
Function Tables
PPTX
2 4 solving rational equations
PPTX
1 s3 multiplication and division of signed numbers
PPTX
1 4 cancellation
PPTX
1 0 exponents (optional)
PPTX
4 2scientific notation
PPT
Functions and function tables 6th grade
2 2 addition and subtraction ii
2 3 proportions
1 6 the least common multiple
2 5 rational equations word-problems
Addition and subtraction expressions
1.3 rational expressions
Tutorials--The Language of Math--Variable Expressions--Multiplication and Sub...
Sequences & Patterns
Function tables
5 7applications of factoring
4 1exponents
4 6multiplication formulas
3 1 the real line and linear inequalities-x
Function Tables
2 4 solving rational equations
1 s3 multiplication and division of signed numbers
1 4 cancellation
1 0 exponents (optional)
4 2scientific notation
Functions and function tables 6th grade
Ad

Similar to 2 1 addition and subtraction i (20)

PPTX
Adding and subtracting rational expressions
PPT
Special topics about stocks and bonds using algebra
PDF
0.5 Rational Expressions
PPT
PDF
Rational Expressions Module
PPTX
1.2 algebraic expressions t
PPTX
11.4
PPTX
1.2 algebraic expressions t
PPT
Algebraic fractions
PPT
31 algebraic fractions (1)
PPT
SRWColAlg6_0P_07.ppt
DOCX
Adding and subtracting rational expressions with different denominator
PPTX
4_Rational_Equations_and_Inequalities.pptx
PPTX
Section 14.4 adding and subtracting rational expressions
PDF
rational expressions
PDF
1.6 Rational Expressions
DOCX
Rational Expressions
PPTX
EPCA_MODULE-2.pptx
PPTX
PC - Sample 1.pptx
DOCX
Adding Similar Rational Expressions
Adding and subtracting rational expressions
Special topics about stocks and bonds using algebra
0.5 Rational Expressions
Rational Expressions Module
1.2 algebraic expressions t
11.4
1.2 algebraic expressions t
Algebraic fractions
31 algebraic fractions (1)
SRWColAlg6_0P_07.ppt
Adding and subtracting rational expressions with different denominator
4_Rational_Equations_and_Inequalities.pptx
Section 14.4 adding and subtracting rational expressions
rational expressions
1.6 Rational Expressions
Rational Expressions
EPCA_MODULE-2.pptx
PC - Sample 1.pptx
Adding Similar Rational Expressions

More from math123b (20)

PPTX
4 multiplication and division of rational expressions
PPTX
2 the least common multiple and clearing the denominators
PPTX
5.1 hw sequences and summation notation x
PPTX
5 4 equations that may be reduced to quadratics-x
PPTX
5 3 the graphs of quadratic equations-x
PPTX
5 2 solving 2nd degree equations-x
PPTX
5 1 complex numbers-x
PPTX
4 6 radical equations-x
PPTX
4 5 fractional exponents-x
PPTX
4 4 more on algebra of radicals-x
PPTX
4 3 algebra of radicals-x
PPTX
4 2 rules of radicals-x
PPTX
4 1 radicals and pythagorean theorem-x
PPTX
3 6 2 d linear inequalities-x
PPTX
3 5 rectangular system and lines-x
PPTX
3 4 absolute inequalities-algebraic-x
PPTX
3 3 absolute inequalities-geom-x
PPTX
3 2 absolute value equations-x
PPTX
2 8 variations-xy
PPTX
4 5 fractional exponents-x
4 multiplication and division of rational expressions
2 the least common multiple and clearing the denominators
5.1 hw sequences and summation notation x
5 4 equations that may be reduced to quadratics-x
5 3 the graphs of quadratic equations-x
5 2 solving 2nd degree equations-x
5 1 complex numbers-x
4 6 radical equations-x
4 5 fractional exponents-x
4 4 more on algebra of radicals-x
4 3 algebra of radicals-x
4 2 rules of radicals-x
4 1 radicals and pythagorean theorem-x
3 6 2 d linear inequalities-x
3 5 rectangular system and lines-x
3 4 absolute inequalities-algebraic-x
3 3 absolute inequalities-geom-x
3 2 absolute value equations-x
2 8 variations-xy
4 5 fractional exponents-x

Recently uploaded (20)

PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Mushroom cultivation and it's methods.pdf
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
Tartificialntelligence_presentation.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
August Patch Tuesday
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
1. Introduction to Computer Programming.pptx
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Hybrid model detection and classification of lung cancer
Web App vs Mobile App What Should You Build First.pdf
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Univ-Connecticut-ChatGPT-Presentaion.pdf
Mushroom cultivation and it's methods.pdf
Heart disease approach using modified random forest and particle swarm optimi...
SOPHOS-XG Firewall Administrator PPT.pptx
Tartificialntelligence_presentation.pptx
Hindi spoken digit analysis for native and non-native speakers
August Patch Tuesday
Unlocking AI with Model Context Protocol (MCP)
Chapter 5: Probability Theory and Statistics
Programs and apps: productivity, graphics, security and other tools
1. Introduction to Computer Programming.pptx
Accuracy of neural networks in brain wave diagnosis of schizophrenia
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Assigned Numbers - 2025 - Bluetooth® Document
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Hybrid model detection and classification of lung cancer

2 1 addition and subtraction i

  • 1. Addition and Subtraction of Rational Expressions
  • 2. Addition and Subtraction of Rational Expressions Only fractions with the same denominator may be added or subtracted directly. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 3. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 4. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 5. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 6. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 7. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 8. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3
  • 9. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3
  • 10. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3
  • 11. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3
  • 12. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3 = 2
  • 13. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. Addition and Subtraction of Rational Expressions
  • 14. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions
  • 15. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. N D
  • 16. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 17. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 18. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 = Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 19. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 5 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 20. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 35 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 21. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = Example B. a. Convert to a fraction with denominator 12. A B A B * D. 5 4 5 4 * 12 3 15 12 In practice, we write that A B => A B * D D. 5 4 = 12 = new numerator N the new numerator with the new denominator 12. N D
  • 22. b. Convert into an expression with denominator 12xy2. Addition and Subtraction of Rational Expressions 3x 4y
  • 23. Addition and Subtraction of Rational Expressions 3x 4y 3x 4y b. Convert into an expression with denominator 12xy2.
  • 24. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 the new numerator b. Convert into an expression with denominator 12xy2.
  • 25. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 26. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 27. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 28. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) new numerator b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 29. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 30. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 31. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 32. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 c. Convert into an expression denominator 4x2 – 9. x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) = 2x2 – x – 3 4x2 – 9 b. Convert into an expression with denominator 12xy2.
  • 33. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below.
  • 34. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 35. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 36. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 37. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 38. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( ) The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 39. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 40. Addition and Subtraction of Rational Expressions Example C. Calculate 6 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 41. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 42. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 43. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 55 = The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later. 72
  • 44. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y Example E. Combine 5 x– 2 – 3 x + 4
  • 45. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Example E. Combine 5 x– 2 – 3 x + 4
  • 46. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Example E. Combine 5 x– 2 – 3 x + 4
  • 47. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 Example E. Combine 5 x– 2 – 3 x + 4
  • 48. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy Example E. Combine 5 x– 2 – 3 x + 4
  • 49. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4
  • 50. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
  • 51. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4)
  • 52. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 53. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 54. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2) 2x + 26 (x – 2)(x + 4) = 2(x + 13) (x – 2)(x + 4) or
  • 55. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4
  • 56. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD.
  • 57. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2)
  • 58. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2)
  • 59. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2).
  • 60. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2)x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 61. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 62. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD
  • 63. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2)
  • 64. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2) = 3 (x – 2)(x + 2)
  • 65. Addition and Subtraction of Rational Expressions Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 66. Example G. Combine Addition and Subtraction of Rational Expressions Traditional Method (Optional) 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 67. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 68. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 69. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 70. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 71. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 72. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 This is simplified because the numerator is not factorable. 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 73. Example H. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1
  • 74. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2x2 + x – 2 = Example H. Combine
  • 75. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = Example H. Combine
  • 76. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Example H. Combine
  • 77. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Example H. Combine
  • 78. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD Example H. Combine
  • 79. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) Example H. Combine
  • 80. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 81. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 82. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) LCD Example H. Combine
  • 83. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD Example H. Combine
  • 84. Example D. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) Example H. Combine
  • 85. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 86. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 87. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) LCD Example H. Combine
  • 88. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Example H. Combine
  • 89. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Hence x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD Example H. Combine
  • 90. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 91. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 92. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD
  • 93. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD = x2 – x + 2 2(2x – 1)(x + 1) Self–Check: Do it by the multiplier method to see which way you prefer. x 2(2x – 1) – x – 1 ( x + 1)(2x – 1) [ ]* 2(2x – 1)(x + 1) / LCD
  • 94. Ex. A. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x x – 2 – 2 x – 2 1. 2x x – 2 + 4 x – 2 2. 3x x + 3 + 6 x + 3 3. – 2x x – 4 + 8 x – 4 4. x + 2 2x – 1 – 2x – 1 5. 2x + 5 x – 2 – 4 – 3x 2 – x 6. x2 – 2 x – 2 – x x – 27. 9x2 3x – 2 – 4 3x – 28. Ex. B. Combine and simplify the answers. 3 12 + 5 6 – 2 3 9. 11 12 + 5 8 – 7 6 10. –5 6 + 3 8 – 311. 12. 6 5xy2 – x 6y13. 3 4xy2 – 5x 6y 15. 7 12xy – 5x 8y316. 5 4xy – 7x 6y214. 3 4xy2 – 5y 12x217. –5 6 – 7 12+ 2 + 1 – 7x 9y2 4 – 3x
  • 95. Ex. C. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x 2x – 4 – 2 3x – 6 18. 2x 3x + 9 – 4 2x + 6 19. –3 2x + 1 + 2x 4x + 2 20. 2x – 3 x – 2 – 3x + 4 5 – 10x 21. 3x + 1 6x – 4 – 2x + 3 2 – 3x22. –5x + 7 3x – 12+ 4x – 3 –2x + 823. x x – 2 – 2 x – 3 24. 2x 3x + 1 + 4 x – 6 25. –3 2x + 1 + 2x 3x + 2 26. 2x – 3 x – 2 + 3x + 4 x – 5 27. 3x + 1 + x + 3 x2 – 428. x2 – 4x + 4 x – 4 – x + 5 x2 – x – 2 29. x2 – 5x + 6 3x + 1 + 2x + 3 9 – x230. x2 – x – 6 3x – 4 – 2x + 5 x2 + x – 6 31. x2 + 5x + 6 3x + 4 + 2x – 3 –x2 – 2x + 3 32. x2 – x 5x – 4 – 3x – 5 1 – x233. x2 + 2x – 3