SlideShare a Scribd company logo
MATRIKS
Disusun oleh : Tri Rahajoeningroem, MT
DAFTAR SLIDE
Operasi Matriks
Jenis-Jenis Matriks
Determinan Matriks
Inverse Matriks
Definisi Matriks
• Matriks adalah susunan segi empat siku-siku
dari bilangan yang diatur berdasarkan baris
(row) dan kolom (column).
• Bilangan-bilangan dalam susunan tersebut
dinamakan entri dalam matriks atau disebut
juga elemen atau unsur.
• Ukuran (ordo) matriks menyatakan banyaknya
baris dan kolom pada matriks tersebut
Ordo Matriks
Ordo Matriks A : 3 X 2
Ordo Matriks B : 1 X 4
Ordo Matriks C : ……..
Ordo Matriks D : …….
1 2
3 0
1 4
 
 
  
 

 
A  
2 3 1 6
  
B
2 1 3 4
0 1 7 6
3 2 1 5
0 1 0 4

 
 
 

 

 
 
C
1
2
 
  
 
D
Notasi Matriks
• Matriks dinotasikan dengan huruf besar.
• Jika A adalah sebuah matriks, kita dapat juga
menggunakan aij untuk menyatakan entri/unsur yang
terdapat di dalam baris i dan kolom j dari A sehinga
A = [aij]
• Contoh
1 1 2 9
2 4 3 1
3 6 5 0
 
 
 
 
 

 
A
11 12 1
21 22 2
1 2
n
n
m n
m m mn
a a a
a a a
a a a

 
 
 

 
 
 
A
Jenis-Jenis Matriks
1. Matriks Nol
2. Matriks Satu
3. Matriks Baris
4. Matriks Kolom
5. Matriks Persegi
6. Matriks Segitiga Atas
7. Matriks Segitiga Bawah
8. Matriks Diagonal
9. Matriks Identitas
10.Matriks Tranpose
JENIS –JENIS MATRIKS
 Matriks bujursangkar (persegi) adalah matriks yang
berukuran n x n
 Matriks nol adalah matriks yang setiap entri atau elemennya
adalah bilangan nol
Sifat-sifat dari matriks nol :
-A+0=A, jika ukuran matriks A = ukuran matriks 0
-A*0=0, begitu juga 0*A=0.







1
3
4
1
A











0
0
0
0
0
0
2
3x
O
JENIS –JENIS MATRIKS
 Matriks Diagonal adalah matriks persegi yang semua elemen
diatas dan dibawah diagonalnya adalah nol. Dinotasikan
sebagai D.
Contoh :
 Matriks Skalar adalah matriks diagonal yang semua elemen
pada diagonalnya sama











5
0
0
0
2
0
0
0
1
3
3x
D











5
0
0
0
5
0
0
0
5
3
3x
D
JENIS –JENIS MATRIKS
 Matriks Identitas adalah matriks skalar yang elemen-elemen
pada diagonal utamanya bernilai 1.
Sifat-sifat matriks identitas :
A*I=A
I*A=A
 Matriks Segitiga Atas adalah matriks persegi yang elemen di
bawah diagonal utamanya bernilai nol
 Matriks Segitiga Bawah adalah matriks persegi yang elemen
di atas diagonal utamanya bernilai nol











1
0
0
0
1
0
0
0
1
D











6
0
0
2
1
0
5
4
2
A











1
5
2
0
4
3
0
0
1
B
Operasi Pada Matriks
• Penjumlahan (addition)
Jika A dan B adalah sembarang dua matriks yang
ukurannya sama maka jumlah A + B adalah matriks
yang diperoleh dengan menambahkan entri-entri
yang bersesuaian dalam kedua matriks tersebut
Berlaku juga untuk Operasi Pengurangan pada
Matriks
11 12 13 11 12 13 11 11 12 12 13 13
21 22 23 21 22 23 21 21 22 22 23 23
31 32 33 31 32 33 31 31 32 32 33 33
; +
a a a b b b a b a b a b
a a a b b b a b a b a b
a a a b b b a b a b a b
  
     
     
      
     
     
  
     
A B A B
Soal dan Penyelesaian
Jika
Maka:

   
 
   

   
3 2 5 4 6 7
dan
1 6 4 0 8 2
A B
7 4 12
1 2 6
A B

 
   
 
1 8 2
1 14 2
A B
 
 
   

 
Operasi Pada Matriks
• Perkalian Skalar Pada Matriks
Jika A adalah suatu matriks dan c suatu skalar,
maka hasil kali cA adalah matriks yang
diperoleh dengan mengalikan masing-masing
entri dari A oleh c.
11 12 13 11 12 13
21 22 23 21 22 23
31 32 33 31 32 33
a a a ca ca ca
a a a c ca ca ca
a a a ca ca ca
   
   
  
   
   
   
A A
• Perkalian Matriks dengan Matriks
Matriks Amxn dapat dikalikan dengan matriks Bpxq
jika dan hanya jika banyaknya kolom pada
matriks A sama dengan banyaknya baris pada
matriks B. (n = p)
AmxnBnxq = Cmxq
A=[aij] mxn dan B= [bij]nxq
maka
C = [cij]mxq dengan
1
n
ij ij ij
j
c a b

 
Operasi Pada Matriks
Soal dan Penyelesaian
Jika
Maka:
7 4 12
1 2 6
A

 
  
 
 
7 4 12 14 8 24
2. 2.
1 2 6 2 4 12
A
  
   
   
   
  
   
Soal dan Penyelesaian
Tentukan AB jika:
Jawab:
Apakah AB = BA???
2 1 4
1 3 2
 
  

 
A ,
1 2
1 3
4 1
 
 
 
 
 

 
B
1 2
2 1 4
1 3
1 3 2
4 1
2(1) 1( 1) 4(4) 2(2) 1(3) 4( 1) 17 3
1(1) 3( 1) 2(4) 1(2) 3(3) 2( 1) 4 5
 
   
 
   

   

 
     
   
 
   
       
   
AB
Matriks Transpose
 Jika A adalah suatu matriks m x n, maka transpose A
dinyatakan oleh Aͭ dan didefinisikan dengan matriks n x
m yang kolom pertamanya adalah baris pertama dari A,
kolom keduanya adalah baris kedua dari A, demikian juga
dengan kolom ketiga adalah baris ketiga dari A dan
seterusnya.
 Contoh :
matriks A : berordo 2 x 3
transposenya : berordo 3 x 2







3
1
4
1
3
1
A











3
1
1
3
4
1
t
A
Matriks Transpose
Beberapa Sifat Matriks Transpose :
T
T
T
T
T
T
T
T
T
T
kA
kA
A
B
AB
A
A
B
A
B
A






)
.(
4
)
.(
3
)
.(
2
)
.(
1
Matriks Transpose
Pembuktian aturan no1 :




























23
23
22
22
21
21
13
13
12
12
11
11
23
22
21
13
12
11
23
22
21
13
12
11
b
a
b
a
b
a
b
a
b
a
b
a
b
b
b
b
b
b
a
a
a
a
a
a
B
A







23
22
21
13
12
11
b
b
b
b
b
b
B







23
22
21
13
12
11
a
a
a
a
a
a
A











23
13
22
12
21
11
b
b
b
b
b
b
BT








































23
23
13
13
22
22
12
12
21
21
11
11
23
13
22
12
21
11
23
13
22
12
21
11
b
a
b
a
b
a
b
a
b
a
b
a
b
b
b
b
b
b
a
a
a
a
a
a
B
A T
T
TERBUKTI
Matriks Transpose







23
22
21
13
12
11
a
a
a
a
a
a
A











23
13
22
12
21
11
a
a
a
a
a
a
AT


















23
22
21
13
12
11
23
13
22
12
21
11
)
(
a
a
a
a
a
a
a
a
a
a
a
a
A
T
T
T
TERBUKTI
Pembuktian aturan no 2 :
Buktikan aturan no. 3 dan no. 4 !
Matriks Simetri
Sebuah matriks dikatakan simetri apabila hasil dari transpose matriks A
sama dengan matriks A itu sendiri.
Contoh :
1. 2.






















0
0
2
0
0
3
2
3
1
0
0
2
0
0
3
2
3
1
T
A
A














2
1
1
2
2
1
1
2
T
B
B
A
AT

1. Jika
1 2 0
3 5 1
1 2 0
A

 
 
 
 
 

 
dan
2 1 4
1 5 3
1 2 5
B

 
 
 
 
 
 
 
tentukanlah:
a. 2A + B
b. -3B + A
c. A – 2BT
Latihan Soal
Latihan Soal
2. Diberikan matriks :
Jika mungkin, hitunglah :
a. (AB)T c. ATBT e. (BT + A)C
b. BTAT d. BTC + A
2 1 2
3 2 5
A

 
  
 
2 1
3 4
1 2
B

 
 
  
 

 
2 1 3
1 2 4
3 1 0
C
 
 
 
 
 
 
Determinan Matriks
• JIka maka:
• det(A)= a11 a22 a33 + a12 a23 a31 + a13 a21 a23 –
a13a22 a13 – a11 a23 a32 - a12 a21 a33
atau











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
23
31
22
21
12
11
33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A 














1
2
2
0
1
1
1
2
3
B
Tentukan determinan matriks
Jawab :
 
1
2
2
0
1
1
1
2
3
det




B
)
1
)(
1
)(
2
(
)
2
)(
0
)(
3
(
)
2
)(
1
)(
1
(
)
2
)(
1
)(
1
(
)
2
)(
0
)(
2
(
)
1
)(
1
)(
3
( 











2
0
2
2
0
3 





1

2
2
1
1
2
3


Contoh
Misalkan
Beberapa definisi yang perlu diketahui :
• Mij disebut Minor- ij yaitu determinan matriks A
dengan menghilangkan baris ke_i dan kolom ke-j
matriks A.
Contoh :















nn
n
n
n
n
a
a
a
a
a
a
a
a
a
A
...
:
:
:
...
...
2
1
2
22
21
1
12
11











2
1
0
1
2
1
0
1
2
A 13
1 2
maka 1
0 1
M  
Determinan Matriks dengan
Ekspansi Kofaktor
• Cij Matrik dinamakan kofaktor - ij yaitu (-1)i+j Mij
Contoh :
maka
= (– 1)3 (2 – 0)
= – 2
 1 2
12
1 1
1
0 2
C

 
2
1
0
1
2
1
0
1
2











A
• Menghitung det (A) dengan ekspansi kofaktor
sepanjang baris ke-i
det (A) = ai1 Ci1 + ai2 Ci2 + . . . + ainCin=
• Menghitung det (A) dengan ekspansi kofaktor
sepanjang kolom ke-j
det (A) = a1j C1j + a2j C2j + . . . + anj Cnj =
1
n
ij ij
j
a c


1
n
ij ij
i
a c


Rumus Determinan Matriks dengan
Ekspansi Kofaktor
Hitunglah Det(A) dengan ekspansi kofaktor :
Jawab :
Misalkan, kita akan menghitung det (A)
dengan ekspansi kofaktor sepanjang baris
ke-3











2
1
0
1
2
1
0
1
2
A
Contoh
2 1 0
1 2 1
0 1 2
 
 
  
 
 
A
3
3 3 31 31 32 32 33 33
1
det( ) j j
j
A a c a c a c a c

   

 
3 1 4
31 31
1 0
( 1) ( 1) 1 (1)(1) (0)(2) 1 0 1
2 1
c M

        
 
3 2 5
32 32
2 0
( 1) ( 1) 1 (2)(1) (0)(1) 1(2 0) 2
1 1
c M

           
 
3 3 6
33 33
2 1
( 1) ( 1) 1 (2)(2) (1)(1) 4 1 3
1 2
c M

        
det( ) 0(1) 1( 2) 2(3) 0 2 6 4
A        
Invers Matriks
 Matriks invers dari suatu matriks A adalah matriks B
yang apabila dikalikan dengan matriks A memberikan
satuan I
 AB = I
 Notasi matriks invers :
 Sebuah matriks yang dikalikan matriks inversenya
akan menghasilkan matrik satuan
 Jika
Maka
1

A
I
A
A 
1







d
c
b
a
A











a
c
b
d
bc
ad
A
1
1
Invers Matriks
 Langkah-langkah untuk mencari invers matriks M
yang berordo 3x3 adalah :
- Cari determinan dari M
- Transpose matriks M sehingga menjadi
- Cari adjoin matriks
- Gunakan rumus
T
M
))
(
(
)
det(
1
1
M
adjoin
M
M 

Invers Matriks
 Contoh Soal :
- Cari Determinannya :
det(M) = 1(0-24)-2(0-20)+3(0-5) = 1
- Transpose matriks M











0
6
5
4
1
0
3
2
1
M











0
4
3
6
1
2
5
0
1
T
M
Invers Matriks
- Temukan matriks kofaktor dengan menghitung minor-
minor matriksnya
- Hasilnya :
==> ==>
















1
4
5
4
15
20
5
18
24

































1
4
5
4
15
20
5
18
24
Invers Matriks
 Hasil Adjoinnya :
 Hasil akhir














1
4
5
4
15
20
5
18
24































1
4
5
4
15
20
5
18
24
1
4
5
4
15
20
5
18
24
1
1
1
M
Latihan Soal
1. Tentukan determinan matriks dengan ekspansi kofaktor dan
dengan cara hitung langsung lalu bandingkan hasilnya
2 1 1
1 2 1
1 1 2
C
 
 
  
 
 
3 2 0
0 1 0
4 4 1
D

 
 
  
 

 











2
0
0
0
4
3
0
1
2
A









 

1
0
5
2
1
7
3
1
1
B
1 0 2
2 1 3
4 1 8
E
 
 
 
 
 
 
4 1 8
2 1 3
1 0 2
F
 
 
 
 
 
 
1 0 2
3 1 3
4 1 8
G
 
 
 
 
 
 
1 0 2
6 1 3
4 1 8
H
 
 
 
 
 
 
Latihan Soal
2. Tentukan invers matriks dari masing-masing matriks di
bawah ini
2 1 1
1 2 1
1 1 2
C
 
 
  
 
 
3 2 0
0 1 0
4 4 1
D

 
 
  
 

 











2
0
0
0
4
3
0
1
2
A









 

1
0
5
2
1
7
3
1
1
B
1 0 2
2 1 3
4 1 8
E
 
 
 
 
 
 
4 1 8
2 1 3
1 0 2
F
 
 
 
 
 
 
1 0 2
3 1 3
4 1 8
G
 
 
 
 
 
 
1 0 2
6 1 3
4 1 8
H
 
 
 
 
 
 

More Related Content

PPTX
PPT Matriks
DOCX
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
PPTX
Template PPT Skripsi.pptx
PPT
DETERMINAN DAN INVERS MATRIKS 22.ppt
PPTX
Fungsi Invers
PPTX
ppt lingkaran
PPTX
Bioenergitika
PPTX
SPLDV dan SPLTV
PPT Matriks
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
Template PPT Skripsi.pptx
DETERMINAN DAN INVERS MATRIKS 22.ppt
Fungsi Invers
ppt lingkaran
Bioenergitika
SPLDV dan SPLTV

What's hot (20)

PDF
PENELITIAN OPERASIONAL - PROGRAMA LINIER - METODE PRIMAL DUAL
DOCX
Peubah acak diskrit dan kontinu
PPTX
Bunga Tunggal dan Bunga Majemuk
PPT
Bilangan kompleks
PDF
Geometri analitik ruang
PPS
Barisan dan Deret ( Kalkulus 2 )
PDF
Rangkuman materi Isometri
PDF
Basis dan Dimensi
PDF
Aplikasi integral
PPTX
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
PPTX
Fungsi linear
PPTX
Matematika Diskrit Relasi Rekursif
PPTX
Pertemuan 3 turunan dan aturan rantai
PPT
Penjumlahan dan pengurangan matriks
PDF
Persamaandifferensial
PPTX
PPT Matriks kelas 11 sma kurikulum merdeka
PPTX
Operasi himpunan
PDF
Turunan Fungsi Kompleks
PDF
1 Bilangan Kompleks
PENELITIAN OPERASIONAL - PROGRAMA LINIER - METODE PRIMAL DUAL
Peubah acak diskrit dan kontinu
Bunga Tunggal dan Bunga Majemuk
Bilangan kompleks
Geometri analitik ruang
Barisan dan Deret ( Kalkulus 2 )
Rangkuman materi Isometri
Basis dan Dimensi
Aplikasi integral
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
Fungsi linear
Matematika Diskrit Relasi Rekursif
Pertemuan 3 turunan dan aturan rantai
Penjumlahan dan pengurangan matriks
Persamaandifferensial
PPT Matriks kelas 11 sma kurikulum merdeka
Operasi himpunan
Turunan Fungsi Kompleks
1 Bilangan Kompleks
Ad

Similar to 1. Matriks.ppt (20)

PPT
1. Matriks.ppt
PPTX
Materi matriks dan determinan matriks.pptx
PPTX
Matriks invers mata kuliah ekonomi syariah.pptx
PPTX
Tugas sejarah Moh Nurahmat Hidayatul Karim.pdf
PPT
1. Matriks.ppt
PPT
1. Matriks.pptkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT
MATRIKS KELAS XI SMK DAN SMA FASE F GANJIL
PPT
Perkenalan Matriks dan perhitungan operasinya
PPT
1. Matriks.ppt...............................
PPT
matriks dalam matematika terbaru dan terkini
PPT
Matriks (untuk belajar tingkat S(MA).ppt
PPT
Materi Matrix pada pembelajaran Matematika wajib kelas XI MA?SMA
PPT
MATERI MATRIKS LENGKAP FASE F UNTUK SMK.
PPT
Pengertian matriks, jenis, operasi, determinan, invers matriks
PPTX
Matematika untuk belajar (matriks) .pptx
PPT
ppt-matriks.ppt
PPT
PPT
ppt-matriks (2).ppt
PPT
Kelas xii bab 3
PPT
Kelas xii bab 3
1. Matriks.ppt
Materi matriks dan determinan matriks.pptx
Matriks invers mata kuliah ekonomi syariah.pptx
Tugas sejarah Moh Nurahmat Hidayatul Karim.pdf
1. Matriks.ppt
1. Matriks.pptkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
MATRIKS KELAS XI SMK DAN SMA FASE F GANJIL
Perkenalan Matriks dan perhitungan operasinya
1. Matriks.ppt...............................
matriks dalam matematika terbaru dan terkini
Matriks (untuk belajar tingkat S(MA).ppt
Materi Matrix pada pembelajaran Matematika wajib kelas XI MA?SMA
MATERI MATRIKS LENGKAP FASE F UNTUK SMK.
Pengertian matriks, jenis, operasi, determinan, invers matriks
Matematika untuk belajar (matriks) .pptx
ppt-matriks.ppt
ppt-matriks (2).ppt
Kelas xii bab 3
Kelas xii bab 3
Ad

Recently uploaded (20)

PDF
KKA-Kelas X-BAB 1- Pemecahan Masalah Kompleks dalam Kehidupan.pdf
PPTX
Ekspresi_dan_Operasi_Logika informatika smp kelas 9
DOCX
Modul Ajar Pembelajaran Mendalam PKWU Kerajinan Kelas XII SMA Terbaru 2025
PPTX
Materi-Geografi-Pendekatan-Konsep-dan-Prinsip-Geografi-Kelas-10.pptx
PPTX
SISTEM POLITIK DAN PEMERINTAHAN INDONESIA.pptx
PPTX
Presentasi Al-Quran Hadits Kelompok XI.1
PPTX
!!!!Bahan Tayang Kompetensi Manajerial-AKUNTABILITAS KINERJA-DR Asep Iwa.pptx
PDF
RPP PEMBELAJARAN MENDALAM BAHASA INDONESIA _SariIndah_DEWI SINTA (1).pdf
PDF
[1]_120325_Penyamaan Persepsi Kepmen 63_M_KEP_2025.pdf
DOCX
Modul Ajar Pembelajaran Mendalam PAI & BP Kelas X Terbaru 2025
DOCX
Modul Ajar Pembelajaran Mendalam PKWU Budidaya Kelas XII SMA Terbaru 2025
PDF
2021 KREATIFITAS DNA INOVASI DALAM BERWIRAUSAHA.pdf
DOCX
Modul Ajar Pembelajaran Mendalam Bahasa Inggris Kelas XII SMA Terbaru 2025
PDF
Laporan On The Job TRaining PM KS Siti Hikmah.pdf
PPTX
! Keterampilan Digital dalam orgnasisasi.pptx
PPTX
Slide_Berpikir_Komputasional_Pola_Algoritma_Kelas5SD.pptx
PPTX
MODUL 2 LK 2.1.pptx MODUL 2 LK 2.1.pptx MODUL 2 LK 2.1.pptx
PPTX
Pedoman & Kewajiban Penggunaan Produksi Dalam Negeri _Pelatihan "Ketentuan T...
PPTX
Pengantar pembelajaran_Koding_dan kecerdasan artifisial
PDF
Ilmu tentang pengembangan teknologi pembelajaran
KKA-Kelas X-BAB 1- Pemecahan Masalah Kompleks dalam Kehidupan.pdf
Ekspresi_dan_Operasi_Logika informatika smp kelas 9
Modul Ajar Pembelajaran Mendalam PKWU Kerajinan Kelas XII SMA Terbaru 2025
Materi-Geografi-Pendekatan-Konsep-dan-Prinsip-Geografi-Kelas-10.pptx
SISTEM POLITIK DAN PEMERINTAHAN INDONESIA.pptx
Presentasi Al-Quran Hadits Kelompok XI.1
!!!!Bahan Tayang Kompetensi Manajerial-AKUNTABILITAS KINERJA-DR Asep Iwa.pptx
RPP PEMBELAJARAN MENDALAM BAHASA INDONESIA _SariIndah_DEWI SINTA (1).pdf
[1]_120325_Penyamaan Persepsi Kepmen 63_M_KEP_2025.pdf
Modul Ajar Pembelajaran Mendalam PAI & BP Kelas X Terbaru 2025
Modul Ajar Pembelajaran Mendalam PKWU Budidaya Kelas XII SMA Terbaru 2025
2021 KREATIFITAS DNA INOVASI DALAM BERWIRAUSAHA.pdf
Modul Ajar Pembelajaran Mendalam Bahasa Inggris Kelas XII SMA Terbaru 2025
Laporan On The Job TRaining PM KS Siti Hikmah.pdf
! Keterampilan Digital dalam orgnasisasi.pptx
Slide_Berpikir_Komputasional_Pola_Algoritma_Kelas5SD.pptx
MODUL 2 LK 2.1.pptx MODUL 2 LK 2.1.pptx MODUL 2 LK 2.1.pptx
Pedoman & Kewajiban Penggunaan Produksi Dalam Negeri _Pelatihan "Ketentuan T...
Pengantar pembelajaran_Koding_dan kecerdasan artifisial
Ilmu tentang pengembangan teknologi pembelajaran

1. Matriks.ppt

  • 1. MATRIKS Disusun oleh : Tri Rahajoeningroem, MT
  • 2. DAFTAR SLIDE Operasi Matriks Jenis-Jenis Matriks Determinan Matriks Inverse Matriks
  • 3. Definisi Matriks • Matriks adalah susunan segi empat siku-siku dari bilangan yang diatur berdasarkan baris (row) dan kolom (column). • Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen atau unsur. • Ukuran (ordo) matriks menyatakan banyaknya baris dan kolom pada matriks tersebut
  • 4. Ordo Matriks Ordo Matriks A : 3 X 2 Ordo Matriks B : 1 X 4 Ordo Matriks C : …….. Ordo Matriks D : ……. 1 2 3 0 1 4             A   2 3 1 6    B 2 1 3 4 0 1 7 6 3 2 1 5 0 1 0 4                C 1 2        D
  • 5. Notasi Matriks • Matriks dinotasikan dengan huruf besar. • Jika A adalah sebuah matriks, kita dapat juga menggunakan aij untuk menyatakan entri/unsur yang terdapat di dalam baris i dan kolom j dari A sehinga A = [aij] • Contoh 1 1 2 9 2 4 3 1 3 6 5 0              A 11 12 1 21 22 2 1 2 n n m n m m mn a a a a a a a a a               A
  • 6. Jenis-Jenis Matriks 1. Matriks Nol 2. Matriks Satu 3. Matriks Baris 4. Matriks Kolom 5. Matriks Persegi 6. Matriks Segitiga Atas 7. Matriks Segitiga Bawah 8. Matriks Diagonal 9. Matriks Identitas 10.Matriks Tranpose
  • 7. JENIS –JENIS MATRIKS  Matriks bujursangkar (persegi) adalah matriks yang berukuran n x n  Matriks nol adalah matriks yang setiap entri atau elemennya adalah bilangan nol Sifat-sifat dari matriks nol : -A+0=A, jika ukuran matriks A = ukuran matriks 0 -A*0=0, begitu juga 0*A=0.        1 3 4 1 A            0 0 0 0 0 0 2 3x O
  • 8. JENIS –JENIS MATRIKS  Matriks Diagonal adalah matriks persegi yang semua elemen diatas dan dibawah diagonalnya adalah nol. Dinotasikan sebagai D. Contoh :  Matriks Skalar adalah matriks diagonal yang semua elemen pada diagonalnya sama            5 0 0 0 2 0 0 0 1 3 3x D            5 0 0 0 5 0 0 0 5 3 3x D
  • 9. JENIS –JENIS MATRIKS  Matriks Identitas adalah matriks skalar yang elemen-elemen pada diagonal utamanya bernilai 1. Sifat-sifat matriks identitas : A*I=A I*A=A  Matriks Segitiga Atas adalah matriks persegi yang elemen di bawah diagonal utamanya bernilai nol  Matriks Segitiga Bawah adalah matriks persegi yang elemen di atas diagonal utamanya bernilai nol            1 0 0 0 1 0 0 0 1 D            6 0 0 2 1 0 5 4 2 A            1 5 2 0 4 3 0 0 1 B
  • 10. Operasi Pada Matriks • Penjumlahan (addition) Jika A dan B adalah sembarang dua matriks yang ukurannya sama maka jumlah A + B adalah matriks yang diperoleh dengan menambahkan entri-entri yang bersesuaian dalam kedua matriks tersebut Berlaku juga untuk Operasi Pengurangan pada Matriks 11 12 13 11 12 13 11 11 12 12 13 13 21 22 23 21 22 23 21 21 22 22 23 23 31 32 33 31 32 33 31 31 32 32 33 33 ; + a a a b b b a b a b a b a a a b b b a b a b a b a a a b b b a b a b a b                                            A B A B
  • 11. Soal dan Penyelesaian Jika Maka:                 3 2 5 4 6 7 dan 1 6 4 0 8 2 A B 7 4 12 1 2 6 A B          1 8 2 1 14 2 A B           
  • 12. Operasi Pada Matriks • Perkalian Skalar Pada Matriks Jika A adalah suatu matriks dan c suatu skalar, maka hasil kali cA adalah matriks yang diperoleh dengan mengalikan masing-masing entri dari A oleh c. 11 12 13 11 12 13 21 22 23 21 22 23 31 32 33 31 32 33 a a a ca ca ca a a a c ca ca ca a a a ca ca ca                        A A
  • 13. • Perkalian Matriks dengan Matriks Matriks Amxn dapat dikalikan dengan matriks Bpxq jika dan hanya jika banyaknya kolom pada matriks A sama dengan banyaknya baris pada matriks B. (n = p) AmxnBnxq = Cmxq A=[aij] mxn dan B= [bij]nxq maka C = [cij]mxq dengan 1 n ij ij ij j c a b    Operasi Pada Matriks
  • 14. Soal dan Penyelesaian Jika Maka: 7 4 12 1 2 6 A           7 4 12 14 8 24 2. 2. 1 2 6 2 4 12 A                      
  • 15. Soal dan Penyelesaian Tentukan AB jika: Jawab: Apakah AB = BA??? 2 1 4 1 3 2         A , 1 2 1 3 4 1              B 1 2 2 1 4 1 3 1 3 2 4 1 2(1) 1( 1) 4(4) 2(2) 1(3) 4( 1) 17 3 1(1) 3( 1) 2(4) 1(2) 3(3) 2( 1) 4 5                                                 AB
  • 16. Matriks Transpose  Jika A adalah suatu matriks m x n, maka transpose A dinyatakan oleh Aͭ dan didefinisikan dengan matriks n x m yang kolom pertamanya adalah baris pertama dari A, kolom keduanya adalah baris kedua dari A, demikian juga dengan kolom ketiga adalah baris ketiga dari A dan seterusnya.  Contoh : matriks A : berordo 2 x 3 transposenya : berordo 3 x 2        3 1 4 1 3 1 A            3 1 1 3 4 1 t A
  • 17. Matriks Transpose Beberapa Sifat Matriks Transpose : T T T T T T T T T T kA kA A B AB A A B A B A       ) .( 4 ) .( 3 ) .( 2 ) .( 1
  • 18. Matriks Transpose Pembuktian aturan no1 :                             23 23 22 22 21 21 13 13 12 12 11 11 23 22 21 13 12 11 23 22 21 13 12 11 b a b a b a b a b a b a b b b b b b a a a a a a B A        23 22 21 13 12 11 b b b b b b B        23 22 21 13 12 11 a a a a a a A            23 13 22 12 21 11 b b b b b b BT                                         23 23 13 13 22 22 12 12 21 21 11 11 23 13 22 12 21 11 23 13 22 12 21 11 b a b a b a b a b a b a b b b b b b a a a a a a B A T T TERBUKTI
  • 20. Matriks Simetri Sebuah matriks dikatakan simetri apabila hasil dari transpose matriks A sama dengan matriks A itu sendiri. Contoh : 1. 2.                       0 0 2 0 0 3 2 3 1 0 0 2 0 0 3 2 3 1 T A A               2 1 1 2 2 1 1 2 T B B A AT 
  • 21. 1. Jika 1 2 0 3 5 1 1 2 0 A               dan 2 1 4 1 5 3 1 2 5 B                tentukanlah: a. 2A + B b. -3B + A c. A – 2BT Latihan Soal
  • 22. Latihan Soal 2. Diberikan matriks : Jika mungkin, hitunglah : a. (AB)T c. ATBT e. (BT + A)C b. BTAT d. BTC + A 2 1 2 3 2 5 A         2 1 3 4 1 2 B              2 1 3 1 2 4 3 1 0 C            
  • 23. Determinan Matriks • JIka maka: • det(A)= a11 a22 a33 + a12 a23 a31 + a13 a21 a23 – a13a22 a13 – a11 a23 a32 - a12 a21 a33 atau            33 32 31 23 22 21 13 12 11 a a a a a a a a a A 23 31 22 21 12 11 33 32 31 23 22 21 13 12 11 a a a a a a a a a a a a a a a A 
  • 24.               1 2 2 0 1 1 1 2 3 B Tentukan determinan matriks Jawab :   1 2 2 0 1 1 1 2 3 det     B ) 1 )( 1 )( 2 ( ) 2 )( 0 )( 3 ( ) 2 )( 1 )( 1 ( ) 2 )( 1 )( 1 ( ) 2 )( 0 )( 2 ( ) 1 )( 1 )( 3 (             2 0 2 2 0 3       1  2 2 1 1 2 3   Contoh
  • 25. Misalkan Beberapa definisi yang perlu diketahui : • Mij disebut Minor- ij yaitu determinan matriks A dengan menghilangkan baris ke_i dan kolom ke-j matriks A. Contoh :                nn n n n n a a a a a a a a a A ... : : : ... ... 2 1 2 22 21 1 12 11            2 1 0 1 2 1 0 1 2 A 13 1 2 maka 1 0 1 M   Determinan Matriks dengan Ekspansi Kofaktor
  • 26. • Cij Matrik dinamakan kofaktor - ij yaitu (-1)i+j Mij Contoh : maka = (– 1)3 (2 – 0) = – 2  1 2 12 1 1 1 0 2 C    2 1 0 1 2 1 0 1 2            A
  • 27. • Menghitung det (A) dengan ekspansi kofaktor sepanjang baris ke-i det (A) = ai1 Ci1 + ai2 Ci2 + . . . + ainCin= • Menghitung det (A) dengan ekspansi kofaktor sepanjang kolom ke-j det (A) = a1j C1j + a2j C2j + . . . + anj Cnj = 1 n ij ij j a c   1 n ij ij i a c   Rumus Determinan Matriks dengan Ekspansi Kofaktor
  • 28. Hitunglah Det(A) dengan ekspansi kofaktor : Jawab : Misalkan, kita akan menghitung det (A) dengan ekspansi kofaktor sepanjang baris ke-3            2 1 0 1 2 1 0 1 2 A Contoh
  • 29. 2 1 0 1 2 1 0 1 2            A 3 3 3 31 31 32 32 33 33 1 det( ) j j j A a c a c a c a c         3 1 4 31 31 1 0 ( 1) ( 1) 1 (1)(1) (0)(2) 1 0 1 2 1 c M             3 2 5 32 32 2 0 ( 1) ( 1) 1 (2)(1) (0)(1) 1(2 0) 2 1 1 c M                3 3 6 33 33 2 1 ( 1) ( 1) 1 (2)(2) (1)(1) 4 1 3 1 2 c M           det( ) 0(1) 1( 2) 2(3) 0 2 6 4 A        
  • 30. Invers Matriks  Matriks invers dari suatu matriks A adalah matriks B yang apabila dikalikan dengan matriks A memberikan satuan I  AB = I  Notasi matriks invers :  Sebuah matriks yang dikalikan matriks inversenya akan menghasilkan matrik satuan  Jika Maka 1  A I A A  1        d c b a A            a c b d bc ad A 1 1
  • 31. Invers Matriks  Langkah-langkah untuk mencari invers matriks M yang berordo 3x3 adalah : - Cari determinan dari M - Transpose matriks M sehingga menjadi - Cari adjoin matriks - Gunakan rumus T M )) ( ( ) det( 1 1 M adjoin M M  
  • 32. Invers Matriks  Contoh Soal : - Cari Determinannya : det(M) = 1(0-24)-2(0-20)+3(0-5) = 1 - Transpose matriks M            0 6 5 4 1 0 3 2 1 M            0 4 3 6 1 2 5 0 1 T M
  • 33. Invers Matriks - Temukan matriks kofaktor dengan menghitung minor- minor matriksnya - Hasilnya : ==> ==>                 1 4 5 4 15 20 5 18 24                                  1 4 5 4 15 20 5 18 24
  • 34. Invers Matriks  Hasil Adjoinnya :  Hasil akhir               1 4 5 4 15 20 5 18 24                                1 4 5 4 15 20 5 18 24 1 4 5 4 15 20 5 18 24 1 1 1 M
  • 35. Latihan Soal 1. Tentukan determinan matriks dengan ekspansi kofaktor dan dengan cara hitung langsung lalu bandingkan hasilnya 2 1 1 1 2 1 1 1 2 C            3 2 0 0 1 0 4 4 1 D                         2 0 0 0 4 3 0 1 2 A             1 0 5 2 1 7 3 1 1 B 1 0 2 2 1 3 4 1 8 E             4 1 8 2 1 3 1 0 2 F             1 0 2 3 1 3 4 1 8 G             1 0 2 6 1 3 4 1 8 H            
  • 36. Latihan Soal 2. Tentukan invers matriks dari masing-masing matriks di bawah ini 2 1 1 1 2 1 1 1 2 C            3 2 0 0 1 0 4 4 1 D                         2 0 0 0 4 3 0 1 2 A             1 0 5 2 1 7 3 1 1 B 1 0 2 2 1 3 4 1 8 E             4 1 8 2 1 3 1 0 2 F             1 0 2 3 1 3 4 1 8 G             1 0 2 6 1 3 4 1 8 H            