SlideShare a Scribd company logo
Polar Coordinates
Polar Coordinates
The location of a point P in the plane may be given
by the following two numbers:
P
x
y
(r, )
O
Polar Coordinates
r = the distance between P and the origin O(0, 0)
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )
r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P,
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
The ordered pairs (r,  ±2nπ ) with
n = 0,1, 2, 3… give the same
geometric information hence lead to
the same location P(r, ).
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
The ordered pairs (r,  ±2nπ ) with
n = 0,1, 2, 3… give the same
geometric information hence lead to
the same location P(r, ).
We also use signed distance,
so with negative values of r,
we are to step backward for
a distance of l r l. O
y
Polar Coordinates
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
Polar Coordinates
Conversion Rules
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O
The rectangular and polar
coordinates relations
x =
y =
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
The rectangular and polar
coordinates relations
x = r*cos()
y =
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
y = r*sin()
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
y = r*sin()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
r = √ x2 + y2
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
y = r*sin()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
r = √ x2 + y2
For  we have that
tan() = y/x,
cos() = x/√x2 + y2
or if  is between 0 and π,
then  = cos–1 (x/√x2 + y2).
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
x = r*cos()
y = r*sin()
r2 = x2 + y2
tan() = y/x
For A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
x = r*cos()
y = r*sin()
A(4, 60o)P
r2 = x2 + y2
tan() = y/x
For A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
B(5, 0)P
(x, y)R = (4*cos(60⁰), 4*sin(60⁰),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
C
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
= (22, –22)
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
= (22, –22)
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
Converting rectangular positions
into polar coordinates requires
more care.
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
x
y
E(–4, 3)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
x
y
E(–4, 3)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)
r=5
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
There is no single formula that
would give .
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)
r=5

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
would be easier to use to extract .
x
y
E(–4, 3)
r=5

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?).
x
y
E(–4, 3)
r=5
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o so that E(–4, 3)R ≈ (5,143o)P
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o so that E(–4, 3)R ≈ (5,143o)P = (5,143o±n*360o)P
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
For F(3, –2)R,
x
y
F(3, –2,)
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function.

r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
the advantage of obtaining the answer directly from
the x and y coordinates.

r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
x
y
G(–3, –1)
r=√10
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
G is the 3rd quadrant. Hence  can’t
be obtained directly via the inverse–
trig functions.
x
y
G(–3, –1)
r=√10
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
G is the 3rd quadrant. Hence  can’t
be obtained directly via the inverse–
trig functions. We will find the angle
A as shown first, then  = A + 180⁰.
x
y
G(–3, –1)
r=√10
A
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o
x
y
G(–3, –1)
r=√10
A
Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o so
 = 180 + 18.3o = 198.3o
x
y
G(–3, –1)
r=√10
A

Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o so
 = 180 + 18.3o = 198.3o or
G ≈ (√10, 198.3o ± n x 360o)P
x
y
G(–3, –1)
r=√10
A


More Related Content

PDF
Pc 10.7 notes_polar
DOCX
Polar coordinates
PPTX
34 polar coordinate and equations
PPTX
36 area in polar coordinate
PPTX
18 polar coordinates x
PPTX
20 polar equations and graphs
PPT
Pc9-1 polar coordinates
PPTX
35 tangent and arc length in polar coordinates
Pc 10.7 notes_polar
Polar coordinates
34 polar coordinate and equations
36 area in polar coordinate
18 polar coordinates x
20 polar equations and graphs
Pc9-1 polar coordinates
35 tangent and arc length in polar coordinates

What's hot (20)

PPTX
t6 polar coordinates
PPT
Polar Co Ordinates
PPTX
33 parametric equations x
PPT
Introduction To Polar Coordinates And Graphs
PPTX
11. polar equations and graphs x
PPTX
t7 polar equations and graphs
PPT
2 polar graphs
PPT
1 polar coordinates
PDF
Lesson 6: Polar, Cylindrical, and Spherical coordinates
PPTX
19 polar equations and graphs x
PPTX
Polar Curves
PPT
calculus Ppt
PPT
CLASS X MATHS
PDF
07 vectors
PDF
Cylindrical and spherical coordinates
PPT
Application of Cylindrical and Spherical coordinate system in double-triple i...
DOCX
3 rd quarter projectin math
PPTX
Coordinate systems (and transformations) and vector calculus
PPT
Coordinategeometry1 1
PPT
CLASS X MATHS
t6 polar coordinates
Polar Co Ordinates
33 parametric equations x
Introduction To Polar Coordinates And Graphs
11. polar equations and graphs x
t7 polar equations and graphs
2 polar graphs
1 polar coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
19 polar equations and graphs x
Polar Curves
calculus Ppt
CLASS X MATHS
07 vectors
Cylindrical and spherical coordinates
Application of Cylindrical and Spherical coordinate system in double-triple i...
3 rd quarter projectin math
Coordinate systems (and transformations) and vector calculus
Coordinategeometry1 1
CLASS X MATHS
Ad

Similar to 10. polar coordinates x (20)

PPTX
20 polar equations and graphs x
PDF
duj28udehj82uh3duujd83uijdj3Relations lecture-1 (11th JEE
PPT
1 polar coordinates
PPT
27 triple integrals in spherical and cylindrical coordinates
PDF
Section 11 1-notes_2
KEY
0801 ch 8 day 1
PPT
Curve tracing
PPTX
23 Double Integral over Polar Coordinate.pptx
PDF
Chapter 12 vectors and the geometry of space merged
PPT
Math14 lesson 1
PPTX
56 the rectangular coordinate system
PPTX
3 rectangular coordinate system
PPTX
1 rectangular coordinate system x
PDF
planes and distances
PPT
6869212.ppt
PPT
parabola class 12
PPTX
54 the rectangular coordinate system
PDF
Polar co
PPTX
5 volumes and solids of revolution i x
PPTX
Binary Relation-1 ssssssssssssssssssssssss
20 polar equations and graphs x
duj28udehj82uh3duujd83uijdj3Relations lecture-1 (11th JEE
1 polar coordinates
27 triple integrals in spherical and cylindrical coordinates
Section 11 1-notes_2
0801 ch 8 day 1
Curve tracing
23 Double Integral over Polar Coordinate.pptx
Chapter 12 vectors and the geometry of space merged
Math14 lesson 1
56 the rectangular coordinate system
3 rectangular coordinate system
1 rectangular coordinate system x
planes and distances
6869212.ppt
parabola class 12
54 the rectangular coordinate system
Polar co
5 volumes and solids of revolution i x
Binary Relation-1 ssssssssssssssssssssssss
Ad

Recently uploaded (20)

PPTX
Cell Structure & Organelles in detailed.
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Classroom Observation Tools for Teachers
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
Cell Structure & Organelles in detailed.
STATICS OF THE RIGID BODIES Hibbelers.pdf
Microbial disease of the cardiovascular and lymphatic systems
FourierSeries-QuestionsWithAnswers(Part-A).pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Supply Chain Operations Speaking Notes -ICLT Program
VCE English Exam - Section C Student Revision Booklet
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Computing-Curriculum for Schools in Ghana
GDM (1) (1).pptx small presentation for students
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
human mycosis Human fungal infections are called human mycosis..pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Classroom Observation Tools for Teachers
Orientation - ARALprogram of Deped to the Parents.pptx

10. polar coordinates x

  • 2. Polar Coordinates The location of a point P in the plane may be given by the following two numbers: P x y (r, ) O
  • 3. Polar Coordinates r = the distance between P and the origin O(0, 0) The location of a point P in the plane may be given by the following two numbers: P x (r, ) r O y
  • 4. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, The location of a point P in the plane may be given by the following two numbers: P x (r, )  r O y
  • 5. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: P x (r, )  r O y
  • 6. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r O y
  • 7. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r The ordered pairs (r,  ±2nπ ) with n = 0,1, 2, 3… give the same geometric information hence lead to the same location P(r, ). O y
  • 8. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r The ordered pairs (r,  ±2nπ ) with n = 0,1, 2, 3… give the same geometric information hence lead to the same location P(r, ). We also use signed distance, so with negative values of r, we are to step backward for a distance of l r l. O y
  • 9. Polar Coordinates If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair.
  • 10. Polar Coordinates Conversion Rules If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair.
  • 11. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O The rectangular and polar coordinates relations x = y = r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 12. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() The rectangular and polar coordinates relations x = r*cos() y = r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 13. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() The rectangular and polar coordinates relations x = r*cos() y = r*sin() y = r*sin() r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 14. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() y = r*sin() The rectangular and polar coordinates relations x = r*cos() y = r*sin() r = √ x2 + y2 If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 15. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() y = r*sin() The rectangular and polar coordinates relations x = r*cos() y = r*sin() r = √ x2 + y2 For  we have that tan() = y/x, cos() = x/√x2 + y2 or if  is between 0 and π, then  = cos–1 (x/√x2 + y2). If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 16. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates.
  • 17. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y x = r*cos() y = r*sin() r2 = x2 + y2 tan() = y/x For A(4, 60o)P
  • 18. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 x = r*cos() y = r*sin() A(4, 60o)P r2 = x2 + y2 tan() = y/x For A(4, 60o)P
  • 19. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P
  • 20. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23) r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P
  • 21. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P B(5, 0)P (x, y)R = (4*cos(60⁰), 4*sin(60⁰), = (2, 23)
  • 22. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o C (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 23. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 24. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 25. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 26. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 27. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) = (22, –22) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 28. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) = (22, –22) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 Converting rectangular positions into polar coordinates requires more care. r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 29. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
  • 30. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. x y E(–4, 3)
  • 31. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, x y E(–4, 3)
  • 32. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3) r=5
  • 33. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. There is no single formula that would give . We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3) r=5 
  • 34. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. would be easier to use to extract . x y E(–4, 3) r=5 
  • 35. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). x y E(–4, 3) r=5 There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function 
  • 36. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 37. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o so that E(–4, 3)R ≈ (5,143o)P There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 38. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o so that E(–4, 3)R ≈ (5,143o)P = (5,143o±n*360o)P There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 39. Polar Coordinates For F(3, –2)R, x y F(3, –2,)
  • 40. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) r=√13
  • 41. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function.  r=√13
  • 42. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has the advantage of obtaining the answer directly from the x and y coordinates.  r=√13
  • 43. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
  • 44. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 45. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. x y G(–3, –1) r=√10 the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 46. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. G is the 3rd quadrant. Hence  can’t be obtained directly via the inverse– trig functions. x y G(–3, –1) r=√10 the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 47. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. G is the 3rd quadrant. Hence  can’t be obtained directly via the inverse– trig functions. We will find the angle A as shown first, then  = A + 180⁰. x y G(–3, –1) r=√10 A the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 48. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o x y G(–3, –1) r=√10 A
  • 49. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o so  = 180 + 18.3o = 198.3o x y G(–3, –1) r=√10 A 
  • 50. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o so  = 180 + 18.3o = 198.3o or G ≈ (√10, 198.3o ± n x 360o)P x y G(–3, –1) r=√10 A 