Fast R-CNN is a method that improves object detection speed and accuracy over previous methods like R-CNN and SPPnet. It uses a region of interest pooling layer and multi-task loss to jointly train a convolutional neural network for classification and bounding box regression in a single stage of training. This allows the entire network to be fine-tuned end-to-end for object detection, resulting in faster training and testing compared to previous methods while achieving state-of-the-art accuracy on standard datasets. Specifically, Fast R-CNN trains 9x faster than R-CNN and runs 200x faster at test time.