SlideShare a Scribd company logo
Data Centric
Art, Science, and Humanities
김홍기
서울대학교 의생명지식공학연구실
Biomedical Knowledge Engineering Laboratory
Why Data Centric?
∎ Big Data(?)
∎ 개방, 공유, 융합, 협력은 시대정신
∎ 창조경제(?), 집단지성, 집단창의성
∎ 데이터는 쉽게, 그리고 순식간에 이동
∎ Pervasive, real-time data everywhere
∎ 데이터는 손쉽게 가공처리 가능
∎ 데이터의 부가가치는 매우 높을 수 있음
∎ So many computational tools and methodologies
 Analytics & Visualization
Source: Pacific Northwest
How Science Works
∎ “Philosophies of
Funding”, Cell, 2009.
∎ 가설중심의 과학적 연
구 데이터 중심의 대
규모 융합연구
∎ Fragmentation 
Integration
∎ 빅데이터 기반의 새로
운 가설의 발견과 집단
지성 기반의 데이터 분
석과 피드백의 중요성
강조됨
∎ 현실적 문제의 정의와
연구결과물의 공유에
있어 사회구성원의 참
여가 강조됨
Key Challenges of Data Centric Science
Source: Pacific Northwest
Big Data (Large Volumes)?
 Fast Data
Processing
 Big Analytics
 Deep insight
Open Data Space in Biology
데이터의 다양성(Heterogeneity, Diversity)
Data Silos
Source: BioPax
Relating and Linking
Linked Open Data
Layers of Biological Research (Vertical Liking)
System Science
Interrelationships,
Dynamics
Reductionism
Time
Space
Context
Components
System Biology
Structural Biology
Complexity Analysis (Network Biology)
Source: Barabasi(Nature Reviews, 2004)
Assortative vs. Disassortative Networks
Social Network Biological or Technological
Network
Governmental Open Data in Healthcare
Collaborative and Multi-disciplinary Research
neuroscientists
physicians
statisticians
computer
scientists
Scientific Investigation with Transdisciplinarity
Disciplinay
Xxx xxx
Adapted from: www.hent.org/transdisciplinary.htm
Interdisciplinary Transdisciplinary
Multidisciplinary
Association vs. Bisociation
∎ Association is most commonly used in ICT
technologies to discover new information relevant to
the evidence already known to the user.
∎ BISOCIATION occurs when two seemingly unrelated
things are shown to have unanticipated connections.
∎ Context-crossing “associations” that are often
needed in innovative domains
∎ The history of engineering and science is full of
serendipitous discoveries, which are based on
bisociative processes.
Bisociation의 예: Swanson Linik
A CB
Articles about an AB relationship.
Articles about a BC relationship.
AB BC
AB and BC are complementary but disjoint :
They can reveal an implicit relationship between A and C in the absence of
any explicit relation.
suggest a novel hypothesis that connects A with C, an implicit but not explicit
connection.
To call attention to possible implicit links between the various text passages that are
selected.
Source: Swanson. 2003. A literature based Approach to Scientific Discovery. http://hdl.handle.net/10027/41
Magnesium-deficient rat
as a model of epilepsy.
Lab Animal Sci 28:680-5, 1978
The relation of migraine
and epilepsy.
Brain 92: 285-300, 1969
A magnesium
8011
C migraine
2756
An unintended link
Venn diagram: sets of Medline records; A,C are disjoint.
22 45
B epilepsy
An example based on title words in Medline
인문학의 분야
» Korean Studies
» English Literature
» European Studies
» Cultural Studies
» Linguistics
» Other Languages and Literatures
» Philosophy
» History and Philosophy of Science
» History of Ideas
» History
» Environmental Studies
» Multicultural Studies
» Classics and Ancient History
» Archeology
» History of Art, Architecture, Design
» Law
» Theology and Religious Studies
» Communication and Media Studies
» Music and History of Music
» Film Studies
» Drama and Theatre Studies
» Studies of other Performing Arts
» Medical Humanities
» Women’s Studies
Semantic Data for Historical Informatics
독일의 변천과정 Source: Bykau et.al. (J Data Semantics, 2012)
Data Journalism
∎ Data-driven journalism
as process
∎ Raw data needs to be
(1) available, (2)
filtered for patterns, (3)
visualized to help
people understand the
meaning and (4) the
data needs to be
turned into stories
∎ Mostly use open data
with open source tools
∎ Can help a journalist
tell a complex story
through engaging
infographics
Source: Wikipedia
Example (Data Journalism)
Musicology as a ‘data-rich’ discipline
∎ A computer program can take as input a
representation of a score and produces as output an
analysis of that music.
 ‘what is the cause of emotion in music?’
∎ Music Information Retrieval
∎ Music Recognition
∎ Data driven research on music history
∎ Multi-modal research (Music + Image)
Data Art
∎ Data artists paint a picture with data to construct
imaginative representations of the world in their own
way
∎ Creative visualizations can translate terabytes of data
into meaningful business information
∎ Touch will be the next generation user interface for
data, spanning to every screen and every surface
around you
∎ Everybody will be able to create his or her own data
art with data painting tools
26 / 10
Example: Glowing landscape shows river history
(Daniel E. Coe)
Data Centric Art, Science, and Humanities
Example: The family tree for All in the family
(James Grady)
Bach Cello Suites visualized
Art & Science
∎ 미래의 산업과 과학기술에서의 예술가의 역할은 더욱 중
요해질 것 같다. 예술에 대한 내 나름의 정의는 "chaos와
order" 사이에 긴장감(tension)을 창조해 내는 것이다.
지나친 복잡함과 혼돈의 상태는 정보의 엔트로피
(Claude Shannon의 개념)가 높고, 불확실성이 높으며,
인지적 과부하로 인해 이해를 힘들게 된다. 지나친 질서
와 당연하게 받아들여진 규칙성(regularity)은 지루함을
느끼게 만든다. 과학의 발견은 자연 혹은 사회 현상으로
부터 규칙성을 찾아내는 과정이다. 예술가의 역할은
chaos에서 motif(일종의 미적 패턴)를 창조하고, 일반인
들에게 익숙한 현상에서 질서를 깨는 혼돈을 창조하는
것이 아닐까? 이런 점에서 예술가의 직관은 현상을 바라
보는 초월적(meta 수준의) 관점을 제공해 줌으로써 과학
에 창조적 긴장감을 줄 수 있지 않을까?
- 김홍기
Collective Creativity
32 / 10
∎ No more Einstein or too many Einsteins
Collective Creativity

More Related Content

PDF
International Collaboration Networks in the Emerging (Big) Data Science
PDF
The Fourth Paradigm Book
PPTX
The Challenge of Deeper Knowledge Graphs for Science
PPTX
Thinking About the Making of Data
PPTX
Data Communities - reusable data in and outside your organization.
PPTX
End-to-End Learning for Answering Structured Queries Directly over Text
PPTX
Minimal viable-datareuse-czi
PPTX
Thoughts on Knowledge Graphs & Deeper Provenance
International Collaboration Networks in the Emerging (Big) Data Science
The Fourth Paradigm Book
The Challenge of Deeper Knowledge Graphs for Science
Thinking About the Making of Data
Data Communities - reusable data in and outside your organization.
End-to-End Learning for Answering Structured Queries Directly over Text
Minimal viable-datareuse-czi
Thoughts on Knowledge Graphs & Deeper Provenance

Viewers also liked (20)

PDF
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
PPTX
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
PDF
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
PDF
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
PDF
DATA CENTRIC EDUCATION & LEARNING
PDF
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
PDF
Analyzing Big Data to Discover Honest Signals of Innovation
PDF
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
PPTX
빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원
PDF
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
PPTX
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
PPTX
농업 빅데이터를 활용한 병해충 발생 예측 모형
PDF
Studying Social Selection vs Social Influence in Virtual Financial Communities
PPTX
텍스톰을 이용한 SNA 분석 -전채남
PDF
도시의 마음, 그 발현 - Emergent Mind of City
PDF
Data-driven biomedical science: implications for human disease and public health
PDF
R의 이해와 활용_데이터사이언스학회
PPTX
데이터시장의 트렌드와 예측 - 이영환
PDF
소셜미디어 분석방법론과 사례
PDF
데이터 시각화의 글로벌 동향 20140819 - 고영혁
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
DATA CENTRIC EDUCATION & LEARNING
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
Analyzing Big Data to Discover Honest Signals of Innovation
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
농업 빅데이터를 활용한 병해충 발생 예측 모형
Studying Social Selection vs Social Influence in Virtual Financial Communities
텍스톰을 이용한 SNA 분석 -전채남
도시의 마음, 그 발현 - Emergent Mind of City
Data-driven biomedical science: implications for human disease and public health
R의 이해와 활용_데이터사이언스학회
데이터시장의 트렌드와 예측 - 이영환
소셜미디어 분석방법론과 사례
데이터 시각화의 글로벌 동향 20140819 - 고영혁
Ad

Similar to Data Centric Art, Science, and Humanities (20)

PPTX
How to use science maps to navigate large information spaces? What is the lin...
PPTX
Rare (and emergent) disciplines in the light of science studies
PDF
Big Data in the Arts and Humanities
PDF
Keynote: Conflicting Cultures of Knowledge - D. Oldman - ESWC SS 2014
PDF
Sticky Data and Superstitious Patterns: Visualization beyond Cognitivism
PDF
BoF Bellamy et al 2010
PDF
Digital Scholarship Intersection Scale Social Machines
PPTX
Why do we need to model the science system?
PDF
Big Data in the Arts and Humanities: Stirling presentation
PPT
How and why study big cultural data
DOCX
Turn stem to steam
PDF
Giving Bodies Back To Data Image Makers Bricolage And Reinvention In Magnetic...
PDF
ENP_Dutch_Infoday_PHuijnen
PDF
Data, Science, Society - Claudio Gutierrez, University of Chile
PPTX
Prof. Michael Raupach "Synthesis in science and society" ACEAS Grand 2014 part B
PPT
Oulu-e-Science Methods in Arts and Humanities
PPTX
Neuro-diversity and software development
PPT
Roger Malina isea keynote 2012
PDF
Archives of a Future Commons: Seeds and/as Data
PPT
Esad 12may2010
How to use science maps to navigate large information spaces? What is the lin...
Rare (and emergent) disciplines in the light of science studies
Big Data in the Arts and Humanities
Keynote: Conflicting Cultures of Knowledge - D. Oldman - ESWC SS 2014
Sticky Data and Superstitious Patterns: Visualization beyond Cognitivism
BoF Bellamy et al 2010
Digital Scholarship Intersection Scale Social Machines
Why do we need to model the science system?
Big Data in the Arts and Humanities: Stirling presentation
How and why study big cultural data
Turn stem to steam
Giving Bodies Back To Data Image Makers Bricolage And Reinvention In Magnetic...
ENP_Dutch_Infoday_PHuijnen
Data, Science, Society - Claudio Gutierrez, University of Chile
Prof. Michael Raupach "Synthesis in science and society" ACEAS Grand 2014 part B
Oulu-e-Science Methods in Arts and Humanities
Neuro-diversity and software development
Roger Malina isea keynote 2012
Archives of a Future Commons: Seeds and/as Data
Esad 12may2010
Ad

More from datasciencekorea (6)

PPTX
스마트 시티의 빅데이터 분석론 - 최준영
PPTX
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁
PDF
Bayesian Network 을 활용한 예측 분석
PDF
온라인 물가지수 분석을 위한 빅데이터 융합분석 방법
PPT
Use of Big Data Technology in the area of Video Analytics
PDF
빅 데이터 비즈니스 모델
스마트 시티의 빅데이터 분석론 - 최준영
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁
Bayesian Network 을 활용한 예측 분석
온라인 물가지수 분석을 위한 빅데이터 융합분석 방법
Use of Big Data Technology in the area of Video Analytics
빅 데이터 비즈니스 모델

Data Centric Art, Science, and Humanities

  • 1. Data Centric Art, Science, and Humanities 김홍기 서울대학교 의생명지식공학연구실 Biomedical Knowledge Engineering Laboratory
  • 2. Why Data Centric? ∎ Big Data(?) ∎ 개방, 공유, 융합, 협력은 시대정신 ∎ 창조경제(?), 집단지성, 집단창의성 ∎ 데이터는 쉽게, 그리고 순식간에 이동 ∎ Pervasive, real-time data everywhere ∎ 데이터는 손쉽게 가공처리 가능 ∎ 데이터의 부가가치는 매우 높을 수 있음 ∎ So many computational tools and methodologies  Analytics & Visualization
  • 4. How Science Works ∎ “Philosophies of Funding”, Cell, 2009. ∎ 가설중심의 과학적 연 구 데이터 중심의 대 규모 융합연구 ∎ Fragmentation  Integration ∎ 빅데이터 기반의 새로 운 가설의 발견과 집단 지성 기반의 데이터 분 석과 피드백의 중요성 강조됨 ∎ 현실적 문제의 정의와 연구결과물의 공유에 있어 사회구성원의 참 여가 강조됨
  • 5. Key Challenges of Data Centric Science Source: Pacific Northwest
  • 6. Big Data (Large Volumes)?  Fast Data Processing  Big Analytics  Deep insight
  • 7. Open Data Space in Biology
  • 12. Layers of Biological Research (Vertical Liking) System Science Interrelationships, Dynamics Reductionism Time Space Context Components System Biology Structural Biology
  • 13. Complexity Analysis (Network Biology) Source: Barabasi(Nature Reviews, 2004)
  • 14. Assortative vs. Disassortative Networks Social Network Biological or Technological Network
  • 15. Governmental Open Data in Healthcare
  • 16. Collaborative and Multi-disciplinary Research neuroscientists physicians statisticians computer scientists
  • 17. Scientific Investigation with Transdisciplinarity Disciplinay Xxx xxx Adapted from: www.hent.org/transdisciplinary.htm Interdisciplinary Transdisciplinary Multidisciplinary
  • 18. Association vs. Bisociation ∎ Association is most commonly used in ICT technologies to discover new information relevant to the evidence already known to the user. ∎ BISOCIATION occurs when two seemingly unrelated things are shown to have unanticipated connections. ∎ Context-crossing “associations” that are often needed in innovative domains ∎ The history of engineering and science is full of serendipitous discoveries, which are based on bisociative processes.
  • 19. Bisociation의 예: Swanson Linik A CB Articles about an AB relationship. Articles about a BC relationship. AB BC AB and BC are complementary but disjoint : They can reveal an implicit relationship between A and C in the absence of any explicit relation. suggest a novel hypothesis that connects A with C, an implicit but not explicit connection. To call attention to possible implicit links between the various text passages that are selected. Source: Swanson. 2003. A literature based Approach to Scientific Discovery. http://hdl.handle.net/10027/41
  • 20. Magnesium-deficient rat as a model of epilepsy. Lab Animal Sci 28:680-5, 1978 The relation of migraine and epilepsy. Brain 92: 285-300, 1969 A magnesium 8011 C migraine 2756 An unintended link Venn diagram: sets of Medline records; A,C are disjoint. 22 45 B epilepsy An example based on title words in Medline
  • 21. 인문학의 분야 » Korean Studies » English Literature » European Studies » Cultural Studies » Linguistics » Other Languages and Literatures » Philosophy » History and Philosophy of Science » History of Ideas » History » Environmental Studies » Multicultural Studies » Classics and Ancient History » Archeology » History of Art, Architecture, Design » Law » Theology and Religious Studies » Communication and Media Studies » Music and History of Music » Film Studies » Drama and Theatre Studies » Studies of other Performing Arts » Medical Humanities » Women’s Studies
  • 22. Semantic Data for Historical Informatics 독일의 변천과정 Source: Bykau et.al. (J Data Semantics, 2012)
  • 23. Data Journalism ∎ Data-driven journalism as process ∎ Raw data needs to be (1) available, (2) filtered for patterns, (3) visualized to help people understand the meaning and (4) the data needs to be turned into stories ∎ Mostly use open data with open source tools ∎ Can help a journalist tell a complex story through engaging infographics Source: Wikipedia
  • 25. Musicology as a ‘data-rich’ discipline ∎ A computer program can take as input a representation of a score and produces as output an analysis of that music.  ‘what is the cause of emotion in music?’ ∎ Music Information Retrieval ∎ Music Recognition ∎ Data driven research on music history ∎ Multi-modal research (Music + Image)
  • 26. Data Art ∎ Data artists paint a picture with data to construct imaginative representations of the world in their own way ∎ Creative visualizations can translate terabytes of data into meaningful business information ∎ Touch will be the next generation user interface for data, spanning to every screen and every surface around you ∎ Everybody will be able to create his or her own data art with data painting tools 26 / 10
  • 27. Example: Glowing landscape shows river history (Daniel E. Coe)
  • 29. Example: The family tree for All in the family (James Grady)
  • 30. Bach Cello Suites visualized
  • 31. Art & Science ∎ 미래의 산업과 과학기술에서의 예술가의 역할은 더욱 중 요해질 것 같다. 예술에 대한 내 나름의 정의는 "chaos와 order" 사이에 긴장감(tension)을 창조해 내는 것이다. 지나친 복잡함과 혼돈의 상태는 정보의 엔트로피 (Claude Shannon의 개념)가 높고, 불확실성이 높으며, 인지적 과부하로 인해 이해를 힘들게 된다. 지나친 질서 와 당연하게 받아들여진 규칙성(regularity)은 지루함을 느끼게 만든다. 과학의 발견은 자연 혹은 사회 현상으로 부터 규칙성을 찾아내는 과정이다. 예술가의 역할은 chaos에서 motif(일종의 미적 패턴)를 창조하고, 일반인 들에게 익숙한 현상에서 질서를 깨는 혼돈을 창조하는 것이 아닐까? 이런 점에서 예술가의 직관은 현상을 바라 보는 초월적(meta 수준의) 관점을 제공해 줌으로써 과학 에 창조적 긴장감을 줄 수 있지 않을까? - 김홍기
  • 32. Collective Creativity 32 / 10 ∎ No more Einstein or too many Einsteins