SlideShare a Scribd company logo
ARTIFICIAL INTELIGENCE in Nuclear Medicine
The latest trend of statistical approach for ‘Big Data’ in medicine
R3, Choi Hongyoon
CONTENTS
INTRODUCTION
Why A.I. for medicine?
New Statistical Approach
REVIEWS
Multivariate analysis for
‘prediction’
ACTUAL PRACTICE
Real Application
New Design for PET/MR studies
ARTIFICIAL INTELIGENCE
in Nuclear Medicine
INTRODUCTION
푸딩얼굴인식
Face
Pattern
Database
Results
INTRODUCTION
SoundHound
Music & Discovery
흥얼거림
Pattern
Database
Results
INTRODUCTION
GOOGLE Image
INTRODUCTION
INTRODUCTION
주식예측프로그램
Economic Variables
Pattern
Database
Results
INTRODUCTION
WHY We…?
INTRODUCTION
Image Variables
Pattern
Database
Results
SUV, Clinical Factors, Texture, etc.
Diagnosis (CAD)
 Survival / Morbidity / Prediction of Tx response
Previous Data : EMR, PACS , …
INTRODUCTION
TREND of medical statistics
Chance 2012;25(3):31-34
INTRODUCTION
Benign vs. Malignancy
SUV : p = 0.23
Size : p = 0.43
TLG : p = 0.17
MTV : p = 0.22
CEA : p = 0.44
Prediction From Big DATA
Statistical methods and Clinical ideas
REVIEW
Application of machine learning in medicine
Lung nodule characteristics/ Clinical factors
Logistic Regression (Training 7008 nodules/ Validation 5021 nodules)
Malignancy Prediction : ROC 0.90
McWilliams et al. NEJM, 2013.
REVIEW
Application of machine learning in medicine
Malignancy Prediction : ROC 0.90
McWilliams et al. NEJM, 2013.
Logistic
Lung
nodules
Size
Age, Sex
Location
Character
Predicting
Lung
Cancer
REVIEW
Application of machine learning in medicine
• Images
• Genetic Data (SNPs, Sequencing,…)
• Clinical Features
Ingredient
• Regression (e.g. Logistic)
• Kernel (e.g.)Support Vector Machine
• Artificial Neural Network
• Ensamble (e.g. Random Forest)
Methods
• Diagnosis
• Survival
• Treatment Prediction
• Imaging : Segmentation / Registration
Results
REVIEW
Arsanjani R. et al. Improved Accuracy of Myocardial Perfusion SPECT for the
Detection of Coronary Artery Disease Using a Support Vector Machine
Algorithm. J Nucl Med 2013.
Prels O. et al. Neural Network Evaluation of PET Scans of the Liver:
A Potentially Useful Adjunct in Clinical Interpretation. Radiology 2011.
SVM
REVIEW
Myocardial SPECT for Dx. of CAD
Automatic Softwares
No diagnostic score based on multiple quantitative features
Support Vector Machine (SVM)
Kernel-based machine learning algorithm
SVM for Myocardial SPECT
Functional
MPS
Variables
(EF, SDS, …)
Predicting
Severe
Stenosis
REVIEW
Support Vector Machine
Non-linear classification (High-dimensional Kernel based)
Hyperplane (Decision-plane)
SVM for Myocardial SPECT
EF
Thikcening
High-
Risk
Low-
Risk
Training
Test Patient is
High-Risk Group
Simulated on Libsvm, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
REVIEW
Support Vector Machine
SVM for Myocardial SPECT
Nonlinear Hyperplane
Kernel Based (Higher Dimension)
Logistic Regrssion
Error ~40%
SVM
Error ~7%
Simulated on Libsvm, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
REVIEW
METHODS
957 Myocardial SPECT studies
Training Group (n=125) :
25 LLk, 25 0-vessel, 25 1-vessel, 25 2-vessel, 25 3-vessel
Testing Group (n=832)
Myocardial SPECT : Tc-99m sestamibi rest/stress
Stress Total Perfusion Deficit (TPD)
Ischemic Changes (ISCHs)
Poststress EF changes (EFCs)
Motion and thickening changes (MTC)
SVM for Myocardial SPECT
REVIEW
METHODS
Visual Scoring :
2 Board NM physicians / SDS scoring
Support Vector Machine
Training : TPD, ISCHs, EFC or MTC combination
Polynomial kernel
Testing : Probability / CAD vs. non-CAD prediction
Gold Standard :
LMA >50% or Other Coronary a. >70% stenosis
SVM for Myocardial SPECT
REVIEW
RESULTS
SVM for Myocardial SPECT
Combination Methods >> Single Feature
REVIEW
SVM for Myocardial SPECT
RESULTS
Combination Machine Learning > or = Boardman’s Reading
REVIEW
SVM for Myocardial SPECT
CONCLUSION
Improvement of diagnostic performance using
multiple functional & perfusion parameters
Full automated risk evaluation
REVIEW
Arsanjani R. et al. Improved Accuracy of Myocardial Perfusion SPECT for the
Detection of Coronary Artery Disease Using a Support Vector Machine
Algorithm. J Nucl Med 2013.
Prels O. et al. Neural Network Evaluation of PET Scans of the Liver:
A Potentially Useful Adjunct in Clinical Interpretation. Radiology 2011.
REVIEW
FDG PET for hepatic metastasis
Sensitivity : 86% MR vs. 71% FDG-PET
Variability of hepatic metastases &
heterogeneous liver parenchymal uptake
ANN for FDG PET of the Liver
ANN
FDG PET
Variables
(SUVs, Clinical
Factors)
Predicting
Liver
Metastasis
/Compared
with MR
REVIEW
Artificial neural network
ANN for FDG PET of the Liver
Neuron  Perceptron
SUV
> 2.5
Size
>
1cm
g(x)
Liver
SUV
< 3.0
(x30)
(x10)
(x-10)
>35 : 1
<35 : 0
Benign
Node Hidden Layer Output
REVIEW
Artificial neural network
ANN for FDG PET of the Liver
SUV
> 2.5
Size
>
1cm
Liver
SUV
< 3.0
A
…
g(x)
g(x)
g(x)
g(x)
g(x)
Metast
asis
Training Set 
Weighting Factors
Maximize correct output
Testing Set
Range 0 - 1
REVIEW
METHODS
Patients: 98 FDG PET scans and liver MR
Input Nodes
Lesion indepdent : Ages, Liver SUV&SD, spleen SUV SD, gluteus
maximus SUV SD, BMI, glucose level (9 nodes)
Lesion specific: lesion SUV & SD (2 nodes)
Neural Network
11 nodes  Hidden layer 5 (arbitrarily)  1 Output
ANN for FDG PET of the Liver
REVIEW
METHODS
Physician Performance
Two NM/abdominal imaging experties
Blind to NN data / Unblind to NN data
Reference Standard
Biopsy + followup MR
ANN for FDG PET of the Liver
REVIEW
RESULTS
ANN for FDG PET of the Liver
Lesion Depedent
newtork (AUC 0.905)
Observer 1 (0.786  0.924)
Blind
unblind
Observer 2 (0.796  0.881)
Blind
unblind
REVIEW
ANN for FDG PET of the Liver
RESULTS
May 2008
ANN score 0.70
August 2008
ANN score 0.88
December 2008
ANN score 1.00
REVIEW
CONCLUSION
Lesion independent nodes
10 cases : absent of visually apparent lesions  mets
Interpretation of systemic / global abnormalities
Reinterpretation after NN
Significantly improved visual reading
ANN for FDG PET of the Liver
REVIEW
Applications
Thyroid nodule : Indeterminate nodule
Applications
NEJM, 2012
REVIEW
Applications
49 Clinical sites, 4812 FNAB 
577 Indeterminate nodules
Gene-expression Classifier (167 genes, SVM-based)
Chudova D, et al. J Clin Endo Metab 2010.
Applications
NEJM, 2012
92% sensitivity
52% specificity
REVIEW
Applications
Applications
J Clin Oncol 2009
SVM
Several
Biomarkers
for Lung
Cancer
Survival
REVIEW
Applications
148 Stage IB NSCLC, IHC results
73 training set + 75 validation set
5Yr survival 1 ; death 0
Different Classifier : SVM1, 2, 3
different IHC features
Applications
J Clin Oncol 2009
REVIEW
Applications
Applications
J Clin Oncol 2009
Validation Set
REVIEW
Benign vs. Malignancy
SUV : p = 0.23
Size : p = 0.43
TLG : p = 0.17
MTV : p = 0.22
CEA : p = 0.44
Applications
REVIEW
Applications
Brain Studies
Applications
Zhang D, et al. NeuroImage 2012.
SVM
PET
MRI
CSF
AD vs.
Normal
Template –
based multiple
VOIs
REVIEW
Applications
Brain Studies
Applications
Gray KR, et al. NeuroImage 2013.
Random
-Forest
PET
MRI
CSF
AD vs.
Normal
Random Forest
REVIEW
Applications
Brain Studies
Applications
Important Areas
Gray KR, et al. NeuroImage 2013.
Combined Random Forest : Se 87.9% ; Sp 90.0%
Actual data – Simple Experience
Difficult, but we can do it.
ACTUAL DATA
Simple Experience
Pre-CCRT locally advanced
rectal cancer
From NCC
CCRT Or
ACTUAL DATA
J Nucl Med 2011.
J Nucl Med 2012.
Lung
cancer
Esop
cancer
ACTUAL DATA
Simple Experience
Pre-CCRT locally advanced rectal cancer
From NCC
Tumor Segmentation
(SUV threshold, Isocontour)
Image-based Features
SUVmax, SUVmean, Kurtosis, Skewness
Textural Features: Contrast, Correlation, Entropy,
Homogeneity, Energy
Prediction for
Dworak Tumor
regression grade
ACTUAL DATA
Simple Experience
Pre-CCRT locally advanced rectal cancer
From NCC
Hypothesis : Different Textural Features in Good responders
T-tests for each of features b/w good and poor responders
SUVmax 8.2
SUVmean 7.5
Kurtosis 1.3
…
ACTUAL DATA
Simple Experience
ACTUAL DATA
Simple Experience
52 Training set + 20 Test set
Image Features – SVM  Prediction for CCRT response
Features
Subjects
Response
ACTUAL DATA
Simple Experience
>> svmStruct=svmtrain(trainingData,response,’kernel_function’,’rbf’);
>> PredictResponse=svmclassify(svmStruct,testData);
Test DATA (n=20)
Results : 17/20  Accurate Prediction for Response
Summary
MULTIPLE Data
Random or nonrandom
(pattern?)
‘Arrival Time of E-mails’
Non-random variables 
Rule of specific output
Benign vs. Malignancy
SUV : p = 0.23
Size : p = 0.43
TLG : p = 0.17
MTV : p = 0.22
CEA : p = 0.44
SUV, Size, TLG , …
: Unknown Rule
: Find Rule!
SUMMARY
Image Variables
Pattern
Database
Results
SUV, Clinical Factors, Texture, etc.
Diagnosis (CAD)
 Survival / Morbidity / Prediction of Tx response
Previous Data : EMR, PACS , …
SUMMARY
PET/MR studies
PET variables and MR variables
Not competitive
e.g.> SUVmax, SUVmean, TLG, MTV
ADC, perfusion MR parameters, Size, …
Combination Studies  Big Data analysis
Take Home Message
Multiple variables based prediction.
State-of-the-art statistical approach
PET/MR  Image ‘big data’
Integration using new methods for better
diagnostic performance
A wide range for application / Not so difficult
ANOVA, T-tests, nonparametric tests, …

More Related Content

PPT
De Andrade PB - AIMRADIAL 2015 - Angio-Seal vs radial approach
PPTX
Flex Registry
PPTX
Grand Rounds: Univ of Chicago Cardiology
PPTX
Montalescot G - AIMRADIAL 2013 - Prasugrel and radial
PPT
Sciahbasi A - AIMRADIAL 2013 - Heparin vs bivalirudin
PPT
Poster vienne ecr
PPTX
Gabric ID - AIMRADIAL 2014 - Primary PCI and left radial approach
De Andrade PB - AIMRADIAL 2015 - Angio-Seal vs radial approach
Flex Registry
Grand Rounds: Univ of Chicago Cardiology
Montalescot G - AIMRADIAL 2013 - Prasugrel and radial
Sciahbasi A - AIMRADIAL 2013 - Heparin vs bivalirudin
Poster vienne ecr
Gabric ID - AIMRADIAL 2014 - Primary PCI and left radial approach

What's hot (19)

PPTX
Sciahbasi A - AIMRADIAL 2015 - Hand grip test and transradial approach
PDF
Igrt For Prostate Cancer
PPT
02 suh srs hyderabad 2013 (cancer ci 2013) john h. suh
PPTX
17:05 Goicolea - Changes after CTO Recanilization
PDF
Plourde G - AIMRADIAL 2013 - Radiation exposure
PDF
Cbct is not the imaging technique of choice for comprehensive orthodontic ass...
PDF
CT Colonography for Osteoporosis Assessment
PPTX
Kirtane AJ - AIMRADIAL 2014 - Bivalirudin anticoagulation
PPTX
Guo J - AIMRADIAL 2014 - Single guiding catheter in STEMI
PPTX
PPTX
Clinical Database
PPTX
14:35 Yamane - Update Japanese Multicenter Registry
PDF
Kedev S - AIMRADIAL 2014 Endovascular - Carotid stenting development
PDF
Ở BẸNH NHÂN NGUY CƠ CAO CÁC CẢI TIẾN VỀ CÔNG NGHỆ VÀ THUỐC CÓ GIÚP CÁC STENT ...
 
PPT
Nolan J - AIMRADIAL 2014 - Radialists and femoral access
PPTX
Technical aspects of dental CBCT - Dr. Kavan Gandhi
PPTX
Jolly S - AIMRADIAL 2014 - Radiation protection
PDF
Radiosurgery in brain tumours
Sciahbasi A - AIMRADIAL 2015 - Hand grip test and transradial approach
Igrt For Prostate Cancer
02 suh srs hyderabad 2013 (cancer ci 2013) john h. suh
17:05 Goicolea - Changes after CTO Recanilization
Plourde G - AIMRADIAL 2013 - Radiation exposure
Cbct is not the imaging technique of choice for comprehensive orthodontic ass...
CT Colonography for Osteoporosis Assessment
Kirtane AJ - AIMRADIAL 2014 - Bivalirudin anticoagulation
Guo J - AIMRADIAL 2014 - Single guiding catheter in STEMI
Clinical Database
14:35 Yamane - Update Japanese Multicenter Registry
Kedev S - AIMRADIAL 2014 Endovascular - Carotid stenting development
Ở BẸNH NHÂN NGUY CƠ CAO CÁC CẢI TIẾN VỀ CÔNG NGHỆ VÀ THUỐC CÓ GIÚP CÁC STENT ...
 
Nolan J - AIMRADIAL 2014 - Radialists and femoral access
Technical aspects of dental CBCT - Dr. Kavan Gandhi
Jolly S - AIMRADIAL 2014 - Radiation protection
Radiosurgery in brain tumours
Ad

Viewers also liked (7)

PPTX
Neurobiology - Synthetic biology (2014)
PPTX
2014 2nd neuralactivityimaging_pe_tand_cal2
PPTX
텐서플로우 기초 이해하기
PPTX
AI in healthcare disruption or hype HealthSlam Dec 2nd 2016
PPTX
AI Is Accelerating Healthcare Transformation
PDF
Deep Learning - The Past, Present and Future of Artificial Intelligence
PPTX
의료빅데이터 컨테스트 결과 보고서
Neurobiology - Synthetic biology (2014)
2014 2nd neuralactivityimaging_pe_tand_cal2
텐서플로우 기초 이해하기
AI in healthcare disruption or hype HealthSlam Dec 2nd 2016
AI Is Accelerating Healthcare Transformation
Deep Learning - The Past, Present and Future of Artificial Intelligence
의료빅데이터 컨테스트 결과 보고서
Ad

Similar to 2013 machine learning_choih (20)

PDF
Lung Cancer Detection with Flask Integration
PPTX
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
PPTX
Lung nodule diagnosis from CT images based on ensemble learning
PDF
IRJET - Lung Disease Prediction using Image Processing and CNN Algorithm
PDF
Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...
PPTX
Quantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
PPTX
ppt of lung cancer classification using CT/MRI images.pptx
PPTX
P.Surendar - VIVA PPT.pptx
PPTX
Fundamentals and Innovations in medical imaging.pptx
PPTX
Deep learning application to medical imaging: Perspectives as a physician
PDF
IRJET- Intelligent Prediction of Lung Cancer Via MRI Images using Morphologic...
PPTX
How deep learning reshapes medicine
PDF
IRJET- Classifying Chest Pathology Images using Deep Learning Techniques
PDF
Artificial Intelligence in Radiation Oncology
PPTX
Quantitative image analysis for cancer diagnosis and radiation therapy
PPTX
Lung cancer classification using CT/MRI images.pptx
PPTX
Artificial Intelligence in Radiation Oncology
PDF
Lung Cancer Detection using Machine Learning
PPTX
Image processing in lung cancer screening and treatment
PPTX
Why does data matter? Professor Stephen Keevil, Head of Medical Physics, Guy’...
Lung Cancer Detection with Flask Integration
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
Lung nodule diagnosis from CT images based on ensemble learning
IRJET - Lung Disease Prediction using Image Processing and CNN Algorithm
Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...
Quantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
ppt of lung cancer classification using CT/MRI images.pptx
P.Surendar - VIVA PPT.pptx
Fundamentals and Innovations in medical imaging.pptx
Deep learning application to medical imaging: Perspectives as a physician
IRJET- Intelligent Prediction of Lung Cancer Via MRI Images using Morphologic...
How deep learning reshapes medicine
IRJET- Classifying Chest Pathology Images using Deep Learning Techniques
Artificial Intelligence in Radiation Oncology
Quantitative image analysis for cancer diagnosis and radiation therapy
Lung cancer classification using CT/MRI images.pptx
Artificial Intelligence in Radiation Oncology
Lung Cancer Detection using Machine Learning
Image processing in lung cancer screening and treatment
Why does data matter? Professor Stephen Keevil, Head of Medical Physics, Guy’...

Recently uploaded (20)

DOCX
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
PPTX
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
PPT
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
PPTX
SKIN Anatomy and physiology and associated diseases
PPTX
surgery guide for USMLE step 2-part 1.pptx
PPTX
History and examination of abdomen, & pelvis .pptx
PPT
1b - INTRODUCTION TO EPIDEMIOLOGY (comm med).ppt
PDF
Human Health And Disease hggyutgghg .pdf
PPTX
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
PPTX
Cardiovascular - antihypertensive medical backgrounds
PPTX
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
PPT
OPIOID ANALGESICS AND THEIR IMPLICATIONS
PPTX
DENTAL CARIES FOR DENTISTRY STUDENT.pptx
PDF
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
PPTX
Clinical approach and Radiotherapy principles.pptx
PPTX
Respiratory drugs, drugs acting on the respi system
PPTX
anal canal anatomy with illustrations...
PPTX
Transforming Regulatory Affairs with ChatGPT-5.pptx
PPTX
Neuropathic pain.ppt treatment managment
PPTX
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
POLYCYSTIC OVARIAN SYNDROME.pptx by Dr( med) Charles Amoateng
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
SKIN Anatomy and physiology and associated diseases
surgery guide for USMLE step 2-part 1.pptx
History and examination of abdomen, & pelvis .pptx
1b - INTRODUCTION TO EPIDEMIOLOGY (comm med).ppt
Human Health And Disease hggyutgghg .pdf
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
Cardiovascular - antihypertensive medical backgrounds
Stimulation Protocols for IUI | Dr. Laxmi Shrikhande
OPIOID ANALGESICS AND THEIR IMPLICATIONS
DENTAL CARIES FOR DENTISTRY STUDENT.pptx
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
Clinical approach and Radiotherapy principles.pptx
Respiratory drugs, drugs acting on the respi system
anal canal anatomy with illustrations...
Transforming Regulatory Affairs with ChatGPT-5.pptx
Neuropathic pain.ppt treatment managment
15.MENINGITIS AND ENCEPHALITIS-elias.pptx

2013 machine learning_choih

Editor's Notes

  • #12: 조금 더 가까이 와닿게 말씀드릴 수 있는 주제라고 한다면…..
  • #16: 우선 두 개의 우리 과와 관련된 논문을 Review하고 쓰임새나 활용범위에 대해 다른 논문들도 간단하게 소개하도록 하겠다..
  • #17: Cedars Sinai에서 나온 논문..
  • #20: EF, Thickness라면 이 둘의 vector 곱을 통해 2차원을 3차원으로 만들어준다..
  • #26: From MGH
  • #40: 조금 더 가까이 와닿게 말씀드릴 수 있는 주제라고 한다면…..
  • #41: Out of 관심… 이겠으나, Brain 을 다음과 같이 분석하는 방법도 행해지고 있다. Network 분석에도 적용할 수 있고, 기존의 Raw data로도 적용할 수 있는 Tool로서 neuroImage등에서 다변화되어 나오고 있음.
  • #42: Out of 관심… 이겠으나, Brain 을 다음과 같이 분석하는 방법도 행해지고 있다. Network 분석에도 적용할 수 있고, 기존의 Raw data로도 적용할 수 있는 Tool로서 neuroImage등에서 다변화되어 나오고 있음.
  • #43: ‘문항에 들어갈 수 있는 영역들’
  • #51: Kernel 조정을 어떻게 하는가와 향후 Cross-validation이라 하여 Training set 내에서의 변수를 어떻게 조정하는가 등의 절차로 최적화하는 방법이 남아있지만, 대략적으로 다음과 같은 흐름으로 결과를 얻을 수는 있다는 것 !!!
  • #52: 과연 Email의 도착시간은 랜덤할까? ; 나에게 어떤 행동반경이 있을 것이며 multiple 한 factor의 영향을 받는다. 역으로 그를 추적한다면, 내가 어디사는지 (시차로부터), 내 직업이 무엇인지 (Database로부터..), …. 저 Data들은 결코 랜덤하지 않다. 어떤 규칙이있을 것이며 그를 역으로 추적한다면 원인을 파악할 수 있다. 우리가 가진 Data가 하나가 아닌 여러 개일 때 그를 만들어낸 Core를 찾아내기 위한 노력을 한다면 얼마든지 가능하며 앞의 통계적인, 컴퓨터적인 기법을 통해 충분히 가능할 것이다.
  • #53: 지극히 Computation 된 방법으로 이렇게 진단에 도움을 받는 것이 꼭 기술을 극단적으로 이용하는 것은 아닐 것이다. 오히려 이러한 것들이 신뢰할 수 있을 정도로 환자의 Mortality를 반영하고 Morbidity를 반영하여 어떤 조언을 해줄 수 있다고 한다면, 이는 Computer를 활용하였지만 어떤 것보다도 더 Humanized된 기술이 될 수 있을 것이다. 환자에게 SUV를 설명하고 borderline malignancy하다는 것을 알려주는 것이 무슨 의미가 있는가를 다시 곱씹어 볼때가 아닌가 한다.
  • #55: ANOVA, T-Tests 등등 원리를 완벽히 이해하고 통계를 돌리는 MD 가 몇 명이나 될 것인가..