2013 OEMS Prehospital2013 OEMS Prehospital
Protocol UpdateProtocol Update
Amy Gutman MD
EMS Medical Director
prehospitalmd@gmail.com / www.teaems.com
May 2013
ObjectivesObjectives
• Inform Massachusetts
pre-hospital providers of
updates to the OEMS
Pre-hospital Treatment
protocols effective as of
June 15, 2013
• Review evidence-based
literature rationale behind
the changes
www.mass.gov/dph/oems
Medication ChangesMedication Changes
• Majority of changes are
route-related or provide
alternatives during
medication shortages
• Updated wording reflects
national standards, for
example removing “trailing
zeros” from medication
dosing in all protocols,
appendixes & drug
references
www.jointcommission.org
Rationale: Joint Commission safety recommendation, consistent with
national patient care practices
General Principles for Specific SkillsGeneral Principles for Specific Skills
• EMS crews should not begin or administer interventions that
require further medical assessment if the patient is being
transported to an environment where the intervention will not
be provided / monitored
– i.e. Giving IV narcotics to patient not being transported to a medical facility
• This principle does not apply to giving medications if the
patient is being transported to a facility where personnel are
available to assess the patient, such as a physician’s office or a
skilled nursing facility
Rationale: Clarification of role of EMS as medical providers
General Principles for Specific SkillsGeneral Principles for Specific Skills
• Recent advances in resuscitation science have increased potential for
survival in out-of-hospital cardiac arrest (OOHCA)
• Some MA EMS systems monitor their OOHCA survival rates with
excellent results comparable to national norms. Ideally every EMS
system should monitor & strive to improve their OOHCA survival rates
• For services not currently monitoring & taking steps to improve their
OOHCA outcomes the following is recommended:
– EMD instructions to provide hands-only CPR if patient unconscious & not
breathing normally
– Emphasis on continuous compressions to maintain 80% compression fraction
– Delay intubation to after 1st
8 minutes of CPR in primary cardiac arrest to avoid
interrupting compressions
– Field initiated followed by in-hospital hypothermia for ROSC
– Rapid 12-lead EKG after ROSC to determine if STEMI POE should be used
Rationale: Monitoring out-of-hospital cardiac arrest care
Ewy GA, Sanders AB. Alternative approach to improving
survival of patients with out-of-hospital primary cardiac
arrest (OOHCA). J Am Coll Cardiol. 2013. Jan 15;61(2):113-8
• Cardiocerebral resuscitation (CCR) significantly improved survival of
OOHCA patients in 2 Wisconsin counties from 15% to 39%, and in 60
Arizona EMS departments to 38% over one year. Using CCR, over a
five year period, survival from primary cardiac arrest in Arizona
increased from 18% to 33%
• Conclusions: Advocating bystander compression only CPR for
patients with primary OOHCA, and encouraging EMS CCR vs prior
CPR guidelines which included emphasis on ventilations and early
airway management
Ewy GA, Kern KB. Recent advances in cardiopulmonary
resuscitation: cardiocerebral resuscitation. J Am Coll
Cardiol. 2009 Jan 13;53(2):149-57
• CCR advocates continuous compressions without mouth-to-mouth
ventilations for witnessed cardiac arrest
• For bystanders with AED access & EMS arriving in electrical (1st
4-5
minutes) phase of VF, prompt defibrillation recommended
• For EMS arriving in circulatory phase of VF arrest (>5 minutes) when
fibrillating myocardium has used up energy stores, compressions
mandatory prior to & immediately after defibrillation
• Recommendations: delayed endotracheal intubation, avoid excessive
ventilations, & utilize early epinephrine
Clemmensen P, et al. Diversion of STEMI patients for primary
angioplasty (pPCI) based on wireless prehospital 12-lead ECG
transmission directly to cardiologist's handheld computer: a
progress report. J Electrocardiol. 2005 Oct;38:194-8
• Time to reperfusion critical in STEMI patients. Transfer from receiving
hospital to a catheterization center can cause unacceptable delays
• Prehospital ECGs transmitted for 408 CP patients (success 93%).
Cardiologists receiving ECG recommended 113 patients (28%)
diverted for pPCI
• Results: EMS scene time increased by 7 minutes when ECG
transmitted to cardiologist compared to control group. Time from ECG
to ED arrival 25 minutes. Hospital treatment time significantly reduced
for diverted patients - ED arrival to pPCI 40 minutes vs. 94 minutes in
control group
Wenzel V, et al. Comments on the 2010 guidelines on
cardiopulmonary resuscitation of the European
Resuscitation Council. Anaesthesist. 2010 Dec;59(12):1105-23
• Chest compressions minimum 100/min, 5 cm depth at ratio of 30:2
with ventilation. Avoid interruptions in compressions to ventilate
• After every defibrillation attempt (initially biphasic 120-200J,
monophasic 360J, subsequently with respective highest energy),
compressions immediately reinitiated for 2 minutes independent of
rhythm
• ETI performed only by experienced providers during ongoing
compressions with a maximum interruption of 10 sec to pass ETT
through vocal cords. Supraglottic airways are alternatives to ETI
• Active compression-decompression & inspiratory threshold valve are
not superior to good standard CPR
Wenzel V, et al. Comments on the 2010 guidelines on
cardiopulmonary resuscitation of the European
Resuscitation Council. Anaesthesist. 2010 Dec;59(12):1105-23
• Pediatric BLS:
– Initially 5 rescue breaths, followed by compressions (100-
120/min depth 1/3chest diameter), compression-ventilation
ratio 15:2
– Foreign body airway obstruction with insufficient cough:
alternate back blows & compressions (infants), or
abdominal compressions (>1 yo)
• Pediatric ALS:
– Epinephrine 10 ug/kg IV or IO every 3-5 minutes.
Defibrillation (4 J/kg) followed by 2 minutes CPR, then ECG
& pulse check
1.5 ACS, 1.6 ROSC, 3.11 Acute Stroke1.5 ACS, 1.6 ROSC, 3.11 Acute Stroke
• Added: Avoid hyperoxygenation, administer
oxygen using the appropriate delivery device
as clinically indicated
• If pulse oximetry available, give
supplemental oxygen only if oxygen
saturation level <94% on room air
Rationale: Hyperoxygenation causes coronary & systemic
vasoconstriction, resulting in decreased coronary blood flow, increased
coronary vascular resistance & free radical formation
Ranchord AM, et al. High-concentration versus titrated
oxygen therapy in STEMI: a pilot randomized controlled
trial. Am Heart J. 2012 Feb;163(2):168-75
• Methods: 136 STEMI patients uncomplicated by cardiogenic shock or
hypoxia randomized to receive high-concentration (>6 L/min) or titrated
O2 (to achieve O2 saturation 93%-96%) for 6 hrs. Outcomes were 30-day
mortality & infarct size assessed by troponin level at 72 hrs. Secondary
outcomes: meta-analysis of mortality data from previous trials, &
infarct size assessed by MRI at 4 - 6 weeks
• Conclusions: No benefit or harm from high-concentration O2 compared
with titrated O2 in uncomplicated STEMI. Because meta-analysis data
had a large confidence interval (meaning, data uncertainty) larger
randomized studies required to resolve any clinical uncertainty
Shi J, et al. A new idea about reducing reperfusion injury
in ischemic stroke: Gradual reperfusion. Med Hypotheses.
2013 Feb;80(2):134-6
• Occlusion of intracranial arteries leads to direct cell death with cell
functional impairment surrounding dead core (ischemic penumbra).
Opening the occluded artery to limit ischemic penumbra size is aim of
thrombolysis therapy, but reperfusion induced injury counteracts
potential benefits of thrombolysis
• Conclusions: Gradual reperfusion reduces reperfusion injury by
reducing free radical production; free radicals come from reperfusion
penumbra & respiration cycle which is unregulated during ischemia.
Once reperfusion occurs, respiratory chain enzymes need only normal
amount of O2 & glucose to avoid producing free radical intermediates.
Gradual reperfusion reduces free radical production by limiting O2 &
glucose provided to the respiratory chain
3.4 Bronchospasm/ Respiratory Distress3.4 Bronchospasm/ Respiratory Distress
• Added to ALS-P Standing Orders:
In patient with known asthma or COPD,
without history or findings significant for
CHF give Hydrocortisone 100 mg IV, IM, IO
or Methylprednisolone 125 mg IV, IM or IO
• In patients <40 yo Epinephrine 0.15-0.3 mg
IM* by autoinjector only as 1 time dose,
contact medical control for additional
dosing
• Added to MCO: “BY AUTOINJECTOR
ONLY” for additional dosing
Rationale: Therapy for severe distress by reducing inflammation
associated with bronchospasm; Effective treatment to patients <40 yo
in treatment of bronchospasm/respiratory distress due to asthma;
safety reminder regarding dosing device
www.hubpages.com
4.2 Burns / Inhalation Injuries4.2 Burns / Inhalation Injuries
• Added to ALS-P Standing
Orders:
In patient with hypotension,
AMS, or indications of
cyanide toxicity who may
have experienced smoke
inhalation, consider
Hydroxocobalamin 5gm IV
over 15 minutes (adult), or 70
mg/kg (to max 5 gm) IV over
15 minutes (pediatric)
Rationale: Effective treatment for acute cyanide poisoning
sanatate.bzi.ro
O’Brien DJ, et al. Empiric management of cyanide
toxicity associated with smoke inhalation. Prehosp
Disaster Med. 2011. Oct;26(5):374-82
• Closed-space smoke inhalation 5th
most common cause of US
unintentional injury deaths. Cyanide is a toxin in many cases of smoke
inhalation but it’s presence cannot be rapidly confirmed
• Findings suggesting cyanide toxicity include: closed-space fire with
likely smoke inhalation; oropharyngeal soot or carbonaceous
expectorations; altered LOC, otherwise inexplicable hypotension
• Prehospital studies demonstrate feasibility & safety of empiric
treatment with FDA-approved hydroxocobalamin for patients with
suspected smoke inhalation cyanide toxicity. Based on literature
review & on-site observation of the Paris Fire Brigade, prehospital
protocols to guide empiric & early hydroxocobalamin administration in
smoke inhalation victims with high-risk presentations recommended
4.3 Head Trauma &4.3 Head Trauma &
4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries
4.3 Head Trauma
• Removed: “Hyperventilation may help
brain injury by reducing intracranial
pressure. Hyperventilate patient in
suspected cases of herniation
syndrome (e.g. decorticate posturing,
decerebrate posturing, fixed, dilated
pupils, etc.)”
• Removed: “Consider hyperventilation
if clinically appropriate with a
significant closed head injury & signs
of herniation syndrome”
4.7 Spinal Column / Cord Injuries
• Removed: “Consider hyperventilation
with 100% oxygen with BVM if
associated with a significant closed
head injury & signs of herniation
syndrome”
Rationale: Hyperventilation causes increased ICP & decreased
peripheral blood flow, worsening patient outcomes
Dumont TM, et al. Inappropriate prehospital ventilation in
severe traumatic brain injury increases in-hospital
mortality. J Neurotrauma. 2010. Jul;27(7):123-41
• In traumatic brain injury (TBI), hyperventilation to reduce ICP may be life-
saving. However, undue use of hyperventilation may increase incidence of
secondary brain injury through direct reduction of cerebral blood flow
• Methods: TBI patients with GCS <8 (n = 65) sorted into hypocarbic (Pco2
<35 mmHg), normocarbic (Pco2 35-45 mmHg), & hypercarbic (Pco2 >45
mmHg). Survival related to admission Pco2 in TBI patients requiring ETI.
Patients with normocarbia had in-hospital mortality of 15%, significantly
improved over patients presenting with hypocarbia (77% mortality) or
hypercarbia (61% mortality).
• Conclusions: Abnormal Pco2 on presentation after TBI correlated with
increased in-hospital mortality and advocate prehospital normoventilation
4.6 Soft Tissue / Crush Injury4.6 Soft Tissue / Crush Injury
• Removed: under Basic Procedures words
“direct pressure”, “pressure points”
• Added: “If suspect severe crushing injury /
compartment syndrome, if injury permits”
Rationale: To avoid contradicting new changes for hemorrhage control
(direct pressure followed by tourniquet). Allows use of tourniquet if no
other way to stop hemorrhage
4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries
• Added: “Evidence of non-penetrating trauma
above the clavicles” when considering spinal
immobilization
Note: Patients with penetrating trauma who
were immobilized had worse overall
outcomes
Rationale: Immobilized patients with penetrating trauma have worse
outcomes than non-immobilized patients
Paiva WS, et al. Spinal cord injury and its association with
blunt head trauma. Int J Gen Med. 2011;4:613-5
• What are risk factors for spine trauma plus traumatic brain injury (TBI)?
• Results: 180 pts with moderate or severe TBI had cervical spine x-ray
and CT. Most common causes of TBI were pedestrians struck by
vehicles (31%), MVC (28%) & falls (25%). Systemic injuries found in 80
(44%) patients. 53% had severe , & 47% had moderate head trauma. 14
patients (8%) had a spinal cord injury (12 cervical, 1 lumbar, 1 thoracic).
In the elderly, presence of systemic injuries & GCS <9 were significant
risk factors for spine injury
• Conclusions: Spinal cord injury related to moderate & severe brain
trauma usually affects the cervical spine
4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries
• Deleted: “including adult fall from standing”
from the high risk factors for determining
possible spinal injury
• Age <8 years or >65 years still considered
“high risk mechanisms”
Rationale: Fall from standing only a risk in patients >65 years of age
Lomoschitz FM, et al. Cervical spine injuries in patients 65
years old & older: epidemiologic analysis regarding the effects
of age & injury mechanism on distribution, type, & stability of
injuries. Am J Roentgenol. 2002 Mar;178(3):573-7
• Methods & Results: 225 cervical spine injuries in 149 patients >65 yo
retrospectively assessed. Mechanism (falls from standing or seated
height vs higher energy mechanisms) & initial neurologic status
recorded. 95 (64%) patients had upper cervical injuries. 59 (40%)
patients had multilevel injuries. Main causes for cervical injuries were
MVCs in "young elderly" (65-75 yo; 61%) & falls from standing or
seated height in "old elderly" (>75yo; 40%). Patients >75 yo
(independent of mechanism), & patients falling from standing height
(independent of age), more likely to injure the upper cervical spine
• Conclusions: Elderly patients in general including those falling from
standing height are more prone to injuries of the cervical spine
4.10 Traumatic Amputations4.10 Traumatic Amputations
• Language Added to Basic
Procedures:
– Control/stop any life
threatening hemorrhage
– If other methods cannot
control bleeding apply
appropriate tourniquet
– Document exact time of
tourniquet application
Rationale: ITLS recommends use of tourniquets to control life
threatening bleeding; pressure points & elevation have been removed
www.thefreedictionary.com
Kragh JF, et al. Survey of the indications for use of
emergency tourniquets. J Spec Oper Med. 2011
Winter;11(1):30-8
• Optimal tourniquet use in trauma appears to depend on device,
doctrine, training, speedy evacuation, & performance improvement.
Challenges remain in estimation of blood loss & injury lethality
• Methods: Data on emergency tourniquet use analyzed from a clinical
study of 728 casualties with 953 tourniqueted limbs. Authors compared
known prior datasets to this clinical study
• Recommendations: Current indication for emergency tourniquet use is
any compressible limb wound that provider assesses as having
possibly lethal hemorrhage. This indication has shown good outcomes
only when devices, training, doctrine, evacuation & research optimized
Appendix D Emergent AirwayAppendix D Emergent Airway
• Appendix renamed “Difficult Airway Protocol”
Rationale: More representative of when process should be utilized
Appendix T Nerve Agent Dosing &Appendix T Nerve Agent Dosing &
Reference TableReference Table
• Added: Duodote to Appendix T
• Mark I kits & Duodote not approved
for routine pediatric use, however
should be used as initial therapy for
children with life-threatening nerve
agent toxicity (in extremis) when IV
therapy not available
• “Assumes” 0.8 inch needle insertion
depth
Rationale: Accepted treatment for children with severe life-threatening
nerve agent toxicity
www.myfirefighternation.com
1.1 Asystole1.1 Asystole
• Added to ALS-P Standing
Orders:
if Epinephrine 1:10,000
unavailable due to drug
shortage,
Vasopressin 40 units may be
substituted & given every 20
minutes IV or IO
Rationale: Handle epinephrine shortages
www.drugline.org
Wenzel V, et al. A comparison of vasopressin & epinephrine
for out-of-hospital cardiopulmonary resuscitation. NEJM.
2004 Jan 8;350(2):105-13
• Background: Vasopressin is an alternative to epinephrine for
vasopressor therapy during CPR
• Study Methods: Adults with OOHCA received 2 injections of either 40
IU of vasopressin or 1 mg of epinephrine, followed by additional
treatment with epinephrine if needed. Primary end point was survival
to admission; secondary end point was survival to discharge
• Study Conclusions: Effects of vasopressin similar to those of
epinephrine in management of VF and PEA, but vasopressin superior
to epinephrine in patients with asystole. Vasopressin followed by
epinephrine may be more effective than epinephrine alone in
refractory cardiac arrest
Protocols / References Involving Morphine andProtocols / References Involving Morphine and
FentanylFentanyl
(1.2, 1.3, 1.4, 1.5, 1.9, 1.11, 3.7, 3.14, 4.2, 5.13)(1.2, 1.3, 1.4, 1.5, 1.9, 1.11, 3.7, 3.14, 4.2, 5.13)
• Standing Orders:
– Deleted “This is a one time dose option”; Replaced with
“Medication dose may be given in divided doses up to the
maximum”
– This includes titrating to pain control for ACS (Protocol 1.5)
• Added:
– Fentanyl linked to drug reference page
– IM route added for Fentanyl
Rationale: Allow pain control titration of under standing orders,
technical fix to text, added administration route
Protocols & References InvolvingProtocols & References Involving
Epinephrine (1.4,1.6, 3.2, 5.1, 5.2, 5.3, 5.5)Epinephrine (1.4,1.6, 3.2, 5.1, 5.2, 5.3, 5.5)
• Infusion:
– Administer 1 mcg to 10 mcg /
min IV or IO
– For example: mix 1 mg of
1:1000 Epinephrine in 250 ml
NS
– 15 micro drops/min = 1 mcg /
min
Rationale: Standardized language, administration routes clarified by
adding IV & IO routes
commons.wikimedia.org
1.5 ACS1.5 ACS
• NTG 0.3mg removed
from MCO section
• Standardized dosing
remains the same of
0.4mg under standing
order
Rationale: Standardized language
www.webmed.com
Protocols Involving Amiodarone (1.6 & 1.11Protocols Involving Amiodarone (1.6 & 1.11))
• Added: “for example” to
drip information
– Amiodarone 1 mg/min
IV drip for example:
100mg/100ml - 1mg/min
Rationale: Standardize dosing option in ALS-P & MCO
www.rxprescriptionguide.org
Allergic Reaction/AnaphylaxisAllergic Reaction/Anaphylaxis
3.2 Adult
• Added:
– IO route to diphenhydramine
• Added to ALS-P Standing Orders:
– Hydrocortisone 100 mg IV, IM, IO
or
– Methylprednisolone 125 mg IV, IM
or IO
• Added to MCO Section:
– Epinephrine “by autoinjector
only” 1:1,000: 0.15-0.3mg IM
5.2 Pediatric
• Added:
– IO route to diphenhydramine
• Added to ALS-P Standing Orders:
– Hydrocortisone 2 mg/k. to
maximum 100 mg IV, IM, IO or
– Methylprednisolone 2 mg/kg to
maximum125 mg IV, IM or IO
Rationale: Appropriate administration & therapy route to rapidly reduce
inflammation; safety reminder
3.13 Toxicology / Poisoning / SA / OD3.13 Toxicology / Poisoning / SA / OD
• Deleted:
– EMT-B procedures
naloxone 0.4mg
– Protocol now reads
“Administer naloxone
2.0mg nasal via atomizer”
Rationale: Correct dosing as under special project waivers
store.airwaycam.com
Merlin MA, et al. Intranasal naloxone delivery is an
alternative to intravenous naloxone for opioid overdoses.
Am J EM. 2010. Mar;28(3):296-303
• Proposal that EMS intranasal (IN) naloxone administration preferable
to intravenous (IV) naloxone without risk of needle exposure
• Methods: retrospective chart review of ALS patients performed on
confirmed opioid overdose patients. Initial and final unassisted
respiratory rates & GCS used as indicators of naloxone effectiveness
• Conclusion: IN naloxone statistically as effective as IV naloxone in
reversing effects of opioid overdose with similar average increases in
RR and GCS. IN naloxone is a viable alternative to IV naloxone while
posing less risk of needle stick injury
3.14 Adult Pain & Nausea Management3.14 Adult Pain & Nausea Management
5.13 Pediatric Pain & Nausea Management5.13 Pediatric Pain & Nausea Management
• Added: PO and ODT routes
for Odansetron as a
standing order & treatment
option
Rationale: Reasonable treatment route & formulation without threat of
needlestick injury
www.finlandpharmacyonline.com
SeizuresSeizures
3.9 Adult
• Added To ALS-P Standing Orders:
– Midazolam 2.5-5mg slow IV
push or IM
5.7 Pediatric
• Added To ALS-P Standing Orders:
– Midazolam 0.05 mg/kg IV, IO, IM
to max single dose of 4 mg
Rationale: An option for benzodiazepine therapy shown to work faster
in some studies; addresses medication shortages
5.4 Pediatric Bronchospasm / Respiratory5.4 Pediatric Bronchospasm / Respiratory
DistressDistress
• Added to ALS-P Standing Orders :
– For >2 yo with known diagnosis of asthma;
Hydrocortisone 2 mg/kg to maximum 100 mg IV,
IM, IO or
– Methylprednisolone 2 mg/kg to maximum 125 mg
IV, IM, IO
Rationale: Therapy reduces inflammation associated with bronchospasm
Knapp B, Wood C. The prehospital administration of IV
methylprednisolone lowers hospital admission rates for
moderate to severe asthma. PEC. 2003 Oct-Dec;7(4):423-6
• Compare hospital admission rates for patients with moderate to severe
asthma who receive prehospital vs ED methylprednisolone
• Results: 31 moderate to severe asthmatics received prehospital
methylprednisolone. 33 asthmatics transported by EMS & later received
IV methylprednisolone in the ED. Only 13% (4) of patients receiving
prehospital solumedrol were admitted to the hospital vs 33% (11)
receiving solumedrol in the ED
• Conclusions: Patients with moderate to severe asthma receiving
prehospital methylprednisolone have 3 times fewer hospital admissions
Summary of Medication ChangesSummary of Medication Changes
• Vasopressin 40 units every 20
minutes IV or IO if Epinephrine
1:10,000 shortage
• Morphine & Fentanyl may be given
in divided doses to the maximum
• IM route added for Fentanyl
Summary of Medication ChangesSummary of Medication Changes
• NTG 0.3mg removed from MCO
• IO route added for
Diphenhydramine
• Added Hydrocortisone 100 mg IV,
IM, or IO or Methylprednisolone
125 mg IV, IM or IO
Summary of Medication ChangesSummary of Medication Changes
• “By autoinjector only” added to
MCO for Epinephrine 1:1,000, 0.15-
0.3mg IM
• Midazolam 2.5-5mg slow IVP or IM
• Midazolam 0.05 mg/kg IV, IO or IM
to max single dose of 4 mg
(pediatrics)
Summary of Medication ChangesSummary of Medication Changes
• PO / ODT as Odansetron
route as a standing order &
a treatment option
SummarySummaryprehospitalmd@gmail.com
• This review serves as notification of
the changes to the MA Pre-hospital
Treatment Protocols effective June 15,
2013
• Provide evidence-based information
regarding why changes occurred

More Related Content

PPTX
Preoperative pulmoanary evaluation other than lung resection surgeries
PPT
CPR with ECLS vs conventional CPR in IHCA
PPTX
PDF
Preoperative pulmonary evaluation and management
PPTX
Strategies to reduce postoperative pulmonary complications
PDF
Mvss part v weaning & liberation from mechanical ventilation
PDF
Controversies in ARDS Management
PDF
ACLS 2015 Updates - The Malaysian Perspective
Preoperative pulmoanary evaluation other than lung resection surgeries
CPR with ECLS vs conventional CPR in IHCA
Preoperative pulmonary evaluation and management
Strategies to reduce postoperative pulmonary complications
Mvss part v weaning & liberation from mechanical ventilation
Controversies in ARDS Management
ACLS 2015 Updates - The Malaysian Perspective

What's hot (20)

PDF
A New Horizon in Pulmonary Hypertension Management
PPTX
Preop pulmonary evaluation 4 16-15
PPTX
Evaluation of preoperative pulmonary risk
PPT
Weaning From Mechanical Ventilation
PPTX
Gupta indices for postop pulmonary complications
PPTX
Exercise electrocardiography
PPTX
Sicu presentation
PPT
Ventilator Management In Different Disease Entities
PPTX
HEALTH SCREENING SERVICES
PPT
PPTX
Weaning And Discontinuing Ventilatory Support
PPT
IABP for MI with cardiogenic shock
PPT
Effect of_continuous_positive_airway_pressure_(cpap)_and_non-invasive_positi...
PPTX
Procedure related risk factors for postop pulmonary complications
PPT
preoperative evaluation for residents of anesthesia part 2
PPTX
sabari krishnan
PPTX
Mechanical ventilation in obstructive airway diseases
PDF
art%3A10.1007%2Fs12471-011-0223-0
PDF
Mike Winters - Don’t Forget A and B!
A New Horizon in Pulmonary Hypertension Management
Preop pulmonary evaluation 4 16-15
Evaluation of preoperative pulmonary risk
Weaning From Mechanical Ventilation
Gupta indices for postop pulmonary complications
Exercise electrocardiography
Sicu presentation
Ventilator Management In Different Disease Entities
HEALTH SCREENING SERVICES
Weaning And Discontinuing Ventilatory Support
IABP for MI with cardiogenic shock
Effect of_continuous_positive_airway_pressure_(cpap)_and_non-invasive_positi...
Procedure related risk factors for postop pulmonary complications
preoperative evaluation for residents of anesthesia part 2
sabari krishnan
Mechanical ventilation in obstructive airway diseases
art%3A10.1007%2Fs12471-011-0223-0
Mike Winters - Don’t Forget A and B!
Ad

Viewers also liked (10)

PDF
Apnoea and pre oxygenation
PDF
Apnoeic Oxygenation: Essential in Prehospital RSI
PPTX
PPT
CVAD Management, Care and Maintenance (Radiology Nursing)
PPT
03 capnography
PPTX
Pre hospital rapid sequence intubation
PPT
Beliefs versus Knowledge
PDF
The Wrong Stuff: Prehospital Dogma - Cliff Reid
PPTX
2. central venous access devices (cvads)
PPT
Central Venous Access Devices Made Incredibly Easy!
Apnoea and pre oxygenation
Apnoeic Oxygenation: Essential in Prehospital RSI
CVAD Management, Care and Maintenance (Radiology Nursing)
03 capnography
Pre hospital rapid sequence intubation
Beliefs versus Knowledge
The Wrong Stuff: Prehospital Dogma - Cliff Reid
2. central venous access devices (cvads)
Central Venous Access Devices Made Incredibly Easy!
Ad

Similar to 2013 oems protocol_changes_gutman (20)

PPTX
Neuromuscular Blocker In Ards
PPTX
Weaning from mechanical ventilation
PPTX
Journal club
PPTX
refactory hypoxemia and status Asthmaticus.pptx
PPTX
weaningfrommechanicalventilation-190603155516.pptx
PDF
Weaning, extubation and decannulation
PPTX
The initial resuscitation of the burn patient in icu
PPTX
Effect of Dexem on AKI incidences in LDLT.pptx
PPTX
Management of cardiac arrest
PPT
Enhanced external counterpulsation (eecp) role in
PPTX
Mechanical Ventilator Problem solving.pptx
PPTX
mechanical ventilation weaning
PPTX
anaesthesia for Lung resection surgeries
PPTX
We have ROSC. What next? by Professor Rinaldo Bellomo
PPTX
RSI in kids update and pitfalls
PPTX
Bronchial thermoplasty
PPTX
Journal Presentation on article Comparative efficacy of different combination...
PPTX
Updates in resuscitation.pptx ( hpp )
PPTX
Salon 2 13 kasim 14.00 15.00 john albaran
PPTX
ECMO part 2 by Dr.Tinku Joseph
Neuromuscular Blocker In Ards
Weaning from mechanical ventilation
Journal club
refactory hypoxemia and status Asthmaticus.pptx
weaningfrommechanicalventilation-190603155516.pptx
Weaning, extubation and decannulation
The initial resuscitation of the burn patient in icu
Effect of Dexem on AKI incidences in LDLT.pptx
Management of cardiac arrest
Enhanced external counterpulsation (eecp) role in
Mechanical Ventilator Problem solving.pptx
mechanical ventilation weaning
anaesthesia for Lung resection surgeries
We have ROSC. What next? by Professor Rinaldo Bellomo
RSI in kids update and pitfalls
Bronchial thermoplasty
Journal Presentation on article Comparative efficacy of different combination...
Updates in resuscitation.pptx ( hpp )
Salon 2 13 kasim 14.00 15.00 john albaran
ECMO part 2 by Dr.Tinku Joseph

Recently uploaded (20)

PPT
Infections Member of Royal College of Physicians.ppt
PPTX
Reading between the Rings: Imaging in Brain Infections
PDF
Copy of OB - Exam #2 Study Guide. pdf
PPTX
preoerative assessment in anesthesia and critical care medicine
PDF
OSCE Series ( Questions & Answers ) - Set 6.pdf
PDF
Comparison of Swim-Up and Microfluidic Sperm Sorting.pdf
PDF
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
PDF
SEMEN PREPARATION TECHNIGUES FOR INTRAUTERINE INSEMINATION.pdf
PDF
Lecture 8- Cornea and Sclera .pdf 5tg year
PPT
neurology Member of Royal College of Physicians (MRCP).ppt
PPT
Rheumatology Member of Royal College of Physicians.ppt
PDF
OSCE SERIES ( Questions & Answers ) - Set 5.pdf
PPTX
09. Diabetes in Pregnancy/ gestational.pptx
PDF
focused on the development and application of glycoHILIC, pepHILIC, and comm...
PDF
OSCE SERIES ( Questions & Answers ) - Set 3.pdf
PPTX
Wheat allergies and Disease in gastroenterology
PPT
Dermatology for member of royalcollege.ppt
PPTX
Neoplasia III.pptxjhghgjhfj fjfhgfgdfdfsrbvhv
PPTX
thio and propofol mechanism and uses.pptx
PDF
The_EHRA_Book_of_Interventional Electrophysiology.pdf
Infections Member of Royal College of Physicians.ppt
Reading between the Rings: Imaging in Brain Infections
Copy of OB - Exam #2 Study Guide. pdf
preoerative assessment in anesthesia and critical care medicine
OSCE Series ( Questions & Answers ) - Set 6.pdf
Comparison of Swim-Up and Microfluidic Sperm Sorting.pdf
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
SEMEN PREPARATION TECHNIGUES FOR INTRAUTERINE INSEMINATION.pdf
Lecture 8- Cornea and Sclera .pdf 5tg year
neurology Member of Royal College of Physicians (MRCP).ppt
Rheumatology Member of Royal College of Physicians.ppt
OSCE SERIES ( Questions & Answers ) - Set 5.pdf
09. Diabetes in Pregnancy/ gestational.pptx
focused on the development and application of glycoHILIC, pepHILIC, and comm...
OSCE SERIES ( Questions & Answers ) - Set 3.pdf
Wheat allergies and Disease in gastroenterology
Dermatology for member of royalcollege.ppt
Neoplasia III.pptxjhghgjhfj fjfhgfgdfdfsrbvhv
thio and propofol mechanism and uses.pptx
The_EHRA_Book_of_Interventional Electrophysiology.pdf

2013 oems protocol_changes_gutman

  • 1. 2013 OEMS Prehospital2013 OEMS Prehospital Protocol UpdateProtocol Update Amy Gutman MD EMS Medical Director prehospitalmd@gmail.com / www.teaems.com May 2013
  • 2. ObjectivesObjectives • Inform Massachusetts pre-hospital providers of updates to the OEMS Pre-hospital Treatment protocols effective as of June 15, 2013 • Review evidence-based literature rationale behind the changes www.mass.gov/dph/oems
  • 3. Medication ChangesMedication Changes • Majority of changes are route-related or provide alternatives during medication shortages • Updated wording reflects national standards, for example removing “trailing zeros” from medication dosing in all protocols, appendixes & drug references www.jointcommission.org Rationale: Joint Commission safety recommendation, consistent with national patient care practices
  • 4. General Principles for Specific SkillsGeneral Principles for Specific Skills • EMS crews should not begin or administer interventions that require further medical assessment if the patient is being transported to an environment where the intervention will not be provided / monitored – i.e. Giving IV narcotics to patient not being transported to a medical facility • This principle does not apply to giving medications if the patient is being transported to a facility where personnel are available to assess the patient, such as a physician’s office or a skilled nursing facility Rationale: Clarification of role of EMS as medical providers
  • 5. General Principles for Specific SkillsGeneral Principles for Specific Skills • Recent advances in resuscitation science have increased potential for survival in out-of-hospital cardiac arrest (OOHCA) • Some MA EMS systems monitor their OOHCA survival rates with excellent results comparable to national norms. Ideally every EMS system should monitor & strive to improve their OOHCA survival rates • For services not currently monitoring & taking steps to improve their OOHCA outcomes the following is recommended: – EMD instructions to provide hands-only CPR if patient unconscious & not breathing normally – Emphasis on continuous compressions to maintain 80% compression fraction – Delay intubation to after 1st 8 minutes of CPR in primary cardiac arrest to avoid interrupting compressions – Field initiated followed by in-hospital hypothermia for ROSC – Rapid 12-lead EKG after ROSC to determine if STEMI POE should be used Rationale: Monitoring out-of-hospital cardiac arrest care
  • 6. Ewy GA, Sanders AB. Alternative approach to improving survival of patients with out-of-hospital primary cardiac arrest (OOHCA). J Am Coll Cardiol. 2013. Jan 15;61(2):113-8 • Cardiocerebral resuscitation (CCR) significantly improved survival of OOHCA patients in 2 Wisconsin counties from 15% to 39%, and in 60 Arizona EMS departments to 38% over one year. Using CCR, over a five year period, survival from primary cardiac arrest in Arizona increased from 18% to 33% • Conclusions: Advocating bystander compression only CPR for patients with primary OOHCA, and encouraging EMS CCR vs prior CPR guidelines which included emphasis on ventilations and early airway management
  • 7. Ewy GA, Kern KB. Recent advances in cardiopulmonary resuscitation: cardiocerebral resuscitation. J Am Coll Cardiol. 2009 Jan 13;53(2):149-57 • CCR advocates continuous compressions without mouth-to-mouth ventilations for witnessed cardiac arrest • For bystanders with AED access & EMS arriving in electrical (1st 4-5 minutes) phase of VF, prompt defibrillation recommended • For EMS arriving in circulatory phase of VF arrest (>5 minutes) when fibrillating myocardium has used up energy stores, compressions mandatory prior to & immediately after defibrillation • Recommendations: delayed endotracheal intubation, avoid excessive ventilations, & utilize early epinephrine
  • 8. Clemmensen P, et al. Diversion of STEMI patients for primary angioplasty (pPCI) based on wireless prehospital 12-lead ECG transmission directly to cardiologist's handheld computer: a progress report. J Electrocardiol. 2005 Oct;38:194-8 • Time to reperfusion critical in STEMI patients. Transfer from receiving hospital to a catheterization center can cause unacceptable delays • Prehospital ECGs transmitted for 408 CP patients (success 93%). Cardiologists receiving ECG recommended 113 patients (28%) diverted for pPCI • Results: EMS scene time increased by 7 minutes when ECG transmitted to cardiologist compared to control group. Time from ECG to ED arrival 25 minutes. Hospital treatment time significantly reduced for diverted patients - ED arrival to pPCI 40 minutes vs. 94 minutes in control group
  • 9. Wenzel V, et al. Comments on the 2010 guidelines on cardiopulmonary resuscitation of the European Resuscitation Council. Anaesthesist. 2010 Dec;59(12):1105-23 • Chest compressions minimum 100/min, 5 cm depth at ratio of 30:2 with ventilation. Avoid interruptions in compressions to ventilate • After every defibrillation attempt (initially biphasic 120-200J, monophasic 360J, subsequently with respective highest energy), compressions immediately reinitiated for 2 minutes independent of rhythm • ETI performed only by experienced providers during ongoing compressions with a maximum interruption of 10 sec to pass ETT through vocal cords. Supraglottic airways are alternatives to ETI • Active compression-decompression & inspiratory threshold valve are not superior to good standard CPR
  • 10. Wenzel V, et al. Comments on the 2010 guidelines on cardiopulmonary resuscitation of the European Resuscitation Council. Anaesthesist. 2010 Dec;59(12):1105-23 • Pediatric BLS: – Initially 5 rescue breaths, followed by compressions (100- 120/min depth 1/3chest diameter), compression-ventilation ratio 15:2 – Foreign body airway obstruction with insufficient cough: alternate back blows & compressions (infants), or abdominal compressions (>1 yo) • Pediatric ALS: – Epinephrine 10 ug/kg IV or IO every 3-5 minutes. Defibrillation (4 J/kg) followed by 2 minutes CPR, then ECG & pulse check
  • 11. 1.5 ACS, 1.6 ROSC, 3.11 Acute Stroke1.5 ACS, 1.6 ROSC, 3.11 Acute Stroke • Added: Avoid hyperoxygenation, administer oxygen using the appropriate delivery device as clinically indicated • If pulse oximetry available, give supplemental oxygen only if oxygen saturation level <94% on room air Rationale: Hyperoxygenation causes coronary & systemic vasoconstriction, resulting in decreased coronary blood flow, increased coronary vascular resistance & free radical formation
  • 12. Ranchord AM, et al. High-concentration versus titrated oxygen therapy in STEMI: a pilot randomized controlled trial. Am Heart J. 2012 Feb;163(2):168-75 • Methods: 136 STEMI patients uncomplicated by cardiogenic shock or hypoxia randomized to receive high-concentration (>6 L/min) or titrated O2 (to achieve O2 saturation 93%-96%) for 6 hrs. Outcomes were 30-day mortality & infarct size assessed by troponin level at 72 hrs. Secondary outcomes: meta-analysis of mortality data from previous trials, & infarct size assessed by MRI at 4 - 6 weeks • Conclusions: No benefit or harm from high-concentration O2 compared with titrated O2 in uncomplicated STEMI. Because meta-analysis data had a large confidence interval (meaning, data uncertainty) larger randomized studies required to resolve any clinical uncertainty
  • 13. Shi J, et al. A new idea about reducing reperfusion injury in ischemic stroke: Gradual reperfusion. Med Hypotheses. 2013 Feb;80(2):134-6 • Occlusion of intracranial arteries leads to direct cell death with cell functional impairment surrounding dead core (ischemic penumbra). Opening the occluded artery to limit ischemic penumbra size is aim of thrombolysis therapy, but reperfusion induced injury counteracts potential benefits of thrombolysis • Conclusions: Gradual reperfusion reduces reperfusion injury by reducing free radical production; free radicals come from reperfusion penumbra & respiration cycle which is unregulated during ischemia. Once reperfusion occurs, respiratory chain enzymes need only normal amount of O2 & glucose to avoid producing free radical intermediates. Gradual reperfusion reduces free radical production by limiting O2 & glucose provided to the respiratory chain
  • 14. 3.4 Bronchospasm/ Respiratory Distress3.4 Bronchospasm/ Respiratory Distress • Added to ALS-P Standing Orders: In patient with known asthma or COPD, without history or findings significant for CHF give Hydrocortisone 100 mg IV, IM, IO or Methylprednisolone 125 mg IV, IM or IO • In patients <40 yo Epinephrine 0.15-0.3 mg IM* by autoinjector only as 1 time dose, contact medical control for additional dosing • Added to MCO: “BY AUTOINJECTOR ONLY” for additional dosing Rationale: Therapy for severe distress by reducing inflammation associated with bronchospasm; Effective treatment to patients <40 yo in treatment of bronchospasm/respiratory distress due to asthma; safety reminder regarding dosing device www.hubpages.com
  • 15. 4.2 Burns / Inhalation Injuries4.2 Burns / Inhalation Injuries • Added to ALS-P Standing Orders: In patient with hypotension, AMS, or indications of cyanide toxicity who may have experienced smoke inhalation, consider Hydroxocobalamin 5gm IV over 15 minutes (adult), or 70 mg/kg (to max 5 gm) IV over 15 minutes (pediatric) Rationale: Effective treatment for acute cyanide poisoning sanatate.bzi.ro
  • 16. O’Brien DJ, et al. Empiric management of cyanide toxicity associated with smoke inhalation. Prehosp Disaster Med. 2011. Oct;26(5):374-82 • Closed-space smoke inhalation 5th most common cause of US unintentional injury deaths. Cyanide is a toxin in many cases of smoke inhalation but it’s presence cannot be rapidly confirmed • Findings suggesting cyanide toxicity include: closed-space fire with likely smoke inhalation; oropharyngeal soot or carbonaceous expectorations; altered LOC, otherwise inexplicable hypotension • Prehospital studies demonstrate feasibility & safety of empiric treatment with FDA-approved hydroxocobalamin for patients with suspected smoke inhalation cyanide toxicity. Based on literature review & on-site observation of the Paris Fire Brigade, prehospital protocols to guide empiric & early hydroxocobalamin administration in smoke inhalation victims with high-risk presentations recommended
  • 17. 4.3 Head Trauma &4.3 Head Trauma & 4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries 4.3 Head Trauma • Removed: “Hyperventilation may help brain injury by reducing intracranial pressure. Hyperventilate patient in suspected cases of herniation syndrome (e.g. decorticate posturing, decerebrate posturing, fixed, dilated pupils, etc.)” • Removed: “Consider hyperventilation if clinically appropriate with a significant closed head injury & signs of herniation syndrome” 4.7 Spinal Column / Cord Injuries • Removed: “Consider hyperventilation with 100% oxygen with BVM if associated with a significant closed head injury & signs of herniation syndrome” Rationale: Hyperventilation causes increased ICP & decreased peripheral blood flow, worsening patient outcomes
  • 18. Dumont TM, et al. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma. 2010. Jul;27(7):123-41 • In traumatic brain injury (TBI), hyperventilation to reduce ICP may be life- saving. However, undue use of hyperventilation may increase incidence of secondary brain injury through direct reduction of cerebral blood flow • Methods: TBI patients with GCS <8 (n = 65) sorted into hypocarbic (Pco2 <35 mmHg), normocarbic (Pco2 35-45 mmHg), & hypercarbic (Pco2 >45 mmHg). Survival related to admission Pco2 in TBI patients requiring ETI. Patients with normocarbia had in-hospital mortality of 15%, significantly improved over patients presenting with hypocarbia (77% mortality) or hypercarbia (61% mortality). • Conclusions: Abnormal Pco2 on presentation after TBI correlated with increased in-hospital mortality and advocate prehospital normoventilation
  • 19. 4.6 Soft Tissue / Crush Injury4.6 Soft Tissue / Crush Injury • Removed: under Basic Procedures words “direct pressure”, “pressure points” • Added: “If suspect severe crushing injury / compartment syndrome, if injury permits” Rationale: To avoid contradicting new changes for hemorrhage control (direct pressure followed by tourniquet). Allows use of tourniquet if no other way to stop hemorrhage
  • 20. 4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries • Added: “Evidence of non-penetrating trauma above the clavicles” when considering spinal immobilization Note: Patients with penetrating trauma who were immobilized had worse overall outcomes Rationale: Immobilized patients with penetrating trauma have worse outcomes than non-immobilized patients
  • 21. Paiva WS, et al. Spinal cord injury and its association with blunt head trauma. Int J Gen Med. 2011;4:613-5 • What are risk factors for spine trauma plus traumatic brain injury (TBI)? • Results: 180 pts with moderate or severe TBI had cervical spine x-ray and CT. Most common causes of TBI were pedestrians struck by vehicles (31%), MVC (28%) & falls (25%). Systemic injuries found in 80 (44%) patients. 53% had severe , & 47% had moderate head trauma. 14 patients (8%) had a spinal cord injury (12 cervical, 1 lumbar, 1 thoracic). In the elderly, presence of systemic injuries & GCS <9 were significant risk factors for spine injury • Conclusions: Spinal cord injury related to moderate & severe brain trauma usually affects the cervical spine
  • 22. 4.7 Spinal Column / Cord Injuries4.7 Spinal Column / Cord Injuries • Deleted: “including adult fall from standing” from the high risk factors for determining possible spinal injury • Age <8 years or >65 years still considered “high risk mechanisms” Rationale: Fall from standing only a risk in patients >65 years of age
  • 23. Lomoschitz FM, et al. Cervical spine injuries in patients 65 years old & older: epidemiologic analysis regarding the effects of age & injury mechanism on distribution, type, & stability of injuries. Am J Roentgenol. 2002 Mar;178(3):573-7 • Methods & Results: 225 cervical spine injuries in 149 patients >65 yo retrospectively assessed. Mechanism (falls from standing or seated height vs higher energy mechanisms) & initial neurologic status recorded. 95 (64%) patients had upper cervical injuries. 59 (40%) patients had multilevel injuries. Main causes for cervical injuries were MVCs in "young elderly" (65-75 yo; 61%) & falls from standing or seated height in "old elderly" (>75yo; 40%). Patients >75 yo (independent of mechanism), & patients falling from standing height (independent of age), more likely to injure the upper cervical spine • Conclusions: Elderly patients in general including those falling from standing height are more prone to injuries of the cervical spine
  • 24. 4.10 Traumatic Amputations4.10 Traumatic Amputations • Language Added to Basic Procedures: – Control/stop any life threatening hemorrhage – If other methods cannot control bleeding apply appropriate tourniquet – Document exact time of tourniquet application Rationale: ITLS recommends use of tourniquets to control life threatening bleeding; pressure points & elevation have been removed www.thefreedictionary.com
  • 25. Kragh JF, et al. Survey of the indications for use of emergency tourniquets. J Spec Oper Med. 2011 Winter;11(1):30-8 • Optimal tourniquet use in trauma appears to depend on device, doctrine, training, speedy evacuation, & performance improvement. Challenges remain in estimation of blood loss & injury lethality • Methods: Data on emergency tourniquet use analyzed from a clinical study of 728 casualties with 953 tourniqueted limbs. Authors compared known prior datasets to this clinical study • Recommendations: Current indication for emergency tourniquet use is any compressible limb wound that provider assesses as having possibly lethal hemorrhage. This indication has shown good outcomes only when devices, training, doctrine, evacuation & research optimized
  • 26. Appendix D Emergent AirwayAppendix D Emergent Airway • Appendix renamed “Difficult Airway Protocol” Rationale: More representative of when process should be utilized
  • 27. Appendix T Nerve Agent Dosing &Appendix T Nerve Agent Dosing & Reference TableReference Table • Added: Duodote to Appendix T • Mark I kits & Duodote not approved for routine pediatric use, however should be used as initial therapy for children with life-threatening nerve agent toxicity (in extremis) when IV therapy not available • “Assumes” 0.8 inch needle insertion depth Rationale: Accepted treatment for children with severe life-threatening nerve agent toxicity www.myfirefighternation.com
  • 28. 1.1 Asystole1.1 Asystole • Added to ALS-P Standing Orders: if Epinephrine 1:10,000 unavailable due to drug shortage, Vasopressin 40 units may be substituted & given every 20 minutes IV or IO Rationale: Handle epinephrine shortages www.drugline.org
  • 29. Wenzel V, et al. A comparison of vasopressin & epinephrine for out-of-hospital cardiopulmonary resuscitation. NEJM. 2004 Jan 8;350(2):105-13 • Background: Vasopressin is an alternative to epinephrine for vasopressor therapy during CPR • Study Methods: Adults with OOHCA received 2 injections of either 40 IU of vasopressin or 1 mg of epinephrine, followed by additional treatment with epinephrine if needed. Primary end point was survival to admission; secondary end point was survival to discharge • Study Conclusions: Effects of vasopressin similar to those of epinephrine in management of VF and PEA, but vasopressin superior to epinephrine in patients with asystole. Vasopressin followed by epinephrine may be more effective than epinephrine alone in refractory cardiac arrest
  • 30. Protocols / References Involving Morphine andProtocols / References Involving Morphine and FentanylFentanyl (1.2, 1.3, 1.4, 1.5, 1.9, 1.11, 3.7, 3.14, 4.2, 5.13)(1.2, 1.3, 1.4, 1.5, 1.9, 1.11, 3.7, 3.14, 4.2, 5.13) • Standing Orders: – Deleted “This is a one time dose option”; Replaced with “Medication dose may be given in divided doses up to the maximum” – This includes titrating to pain control for ACS (Protocol 1.5) • Added: – Fentanyl linked to drug reference page – IM route added for Fentanyl Rationale: Allow pain control titration of under standing orders, technical fix to text, added administration route
  • 31. Protocols & References InvolvingProtocols & References Involving Epinephrine (1.4,1.6, 3.2, 5.1, 5.2, 5.3, 5.5)Epinephrine (1.4,1.6, 3.2, 5.1, 5.2, 5.3, 5.5) • Infusion: – Administer 1 mcg to 10 mcg / min IV or IO – For example: mix 1 mg of 1:1000 Epinephrine in 250 ml NS – 15 micro drops/min = 1 mcg / min Rationale: Standardized language, administration routes clarified by adding IV & IO routes commons.wikimedia.org
  • 32. 1.5 ACS1.5 ACS • NTG 0.3mg removed from MCO section • Standardized dosing remains the same of 0.4mg under standing order Rationale: Standardized language www.webmed.com
  • 33. Protocols Involving Amiodarone (1.6 & 1.11Protocols Involving Amiodarone (1.6 & 1.11)) • Added: “for example” to drip information – Amiodarone 1 mg/min IV drip for example: 100mg/100ml - 1mg/min Rationale: Standardize dosing option in ALS-P & MCO www.rxprescriptionguide.org
  • 34. Allergic Reaction/AnaphylaxisAllergic Reaction/Anaphylaxis 3.2 Adult • Added: – IO route to diphenhydramine • Added to ALS-P Standing Orders: – Hydrocortisone 100 mg IV, IM, IO or – Methylprednisolone 125 mg IV, IM or IO • Added to MCO Section: – Epinephrine “by autoinjector only” 1:1,000: 0.15-0.3mg IM 5.2 Pediatric • Added: – IO route to diphenhydramine • Added to ALS-P Standing Orders: – Hydrocortisone 2 mg/k. to maximum 100 mg IV, IM, IO or – Methylprednisolone 2 mg/kg to maximum125 mg IV, IM or IO Rationale: Appropriate administration & therapy route to rapidly reduce inflammation; safety reminder
  • 35. 3.13 Toxicology / Poisoning / SA / OD3.13 Toxicology / Poisoning / SA / OD • Deleted: – EMT-B procedures naloxone 0.4mg – Protocol now reads “Administer naloxone 2.0mg nasal via atomizer” Rationale: Correct dosing as under special project waivers store.airwaycam.com
  • 36. Merlin MA, et al. Intranasal naloxone delivery is an alternative to intravenous naloxone for opioid overdoses. Am J EM. 2010. Mar;28(3):296-303 • Proposal that EMS intranasal (IN) naloxone administration preferable to intravenous (IV) naloxone without risk of needle exposure • Methods: retrospective chart review of ALS patients performed on confirmed opioid overdose patients. Initial and final unassisted respiratory rates & GCS used as indicators of naloxone effectiveness • Conclusion: IN naloxone statistically as effective as IV naloxone in reversing effects of opioid overdose with similar average increases in RR and GCS. IN naloxone is a viable alternative to IV naloxone while posing less risk of needle stick injury
  • 37. 3.14 Adult Pain & Nausea Management3.14 Adult Pain & Nausea Management 5.13 Pediatric Pain & Nausea Management5.13 Pediatric Pain & Nausea Management • Added: PO and ODT routes for Odansetron as a standing order & treatment option Rationale: Reasonable treatment route & formulation without threat of needlestick injury www.finlandpharmacyonline.com
  • 38. SeizuresSeizures 3.9 Adult • Added To ALS-P Standing Orders: – Midazolam 2.5-5mg slow IV push or IM 5.7 Pediatric • Added To ALS-P Standing Orders: – Midazolam 0.05 mg/kg IV, IO, IM to max single dose of 4 mg Rationale: An option for benzodiazepine therapy shown to work faster in some studies; addresses medication shortages
  • 39. 5.4 Pediatric Bronchospasm / Respiratory5.4 Pediatric Bronchospasm / Respiratory DistressDistress • Added to ALS-P Standing Orders : – For >2 yo with known diagnosis of asthma; Hydrocortisone 2 mg/kg to maximum 100 mg IV, IM, IO or – Methylprednisolone 2 mg/kg to maximum 125 mg IV, IM, IO Rationale: Therapy reduces inflammation associated with bronchospasm
  • 40. Knapp B, Wood C. The prehospital administration of IV methylprednisolone lowers hospital admission rates for moderate to severe asthma. PEC. 2003 Oct-Dec;7(4):423-6 • Compare hospital admission rates for patients with moderate to severe asthma who receive prehospital vs ED methylprednisolone • Results: 31 moderate to severe asthmatics received prehospital methylprednisolone. 33 asthmatics transported by EMS & later received IV methylprednisolone in the ED. Only 13% (4) of patients receiving prehospital solumedrol were admitted to the hospital vs 33% (11) receiving solumedrol in the ED • Conclusions: Patients with moderate to severe asthma receiving prehospital methylprednisolone have 3 times fewer hospital admissions
  • 41. Summary of Medication ChangesSummary of Medication Changes • Vasopressin 40 units every 20 minutes IV or IO if Epinephrine 1:10,000 shortage • Morphine & Fentanyl may be given in divided doses to the maximum • IM route added for Fentanyl
  • 42. Summary of Medication ChangesSummary of Medication Changes • NTG 0.3mg removed from MCO • IO route added for Diphenhydramine • Added Hydrocortisone 100 mg IV, IM, or IO or Methylprednisolone 125 mg IV, IM or IO
  • 43. Summary of Medication ChangesSummary of Medication Changes • “By autoinjector only” added to MCO for Epinephrine 1:1,000, 0.15- 0.3mg IM • Midazolam 2.5-5mg slow IVP or IM • Midazolam 0.05 mg/kg IV, IO or IM to max single dose of 4 mg (pediatrics)
  • 44. Summary of Medication ChangesSummary of Medication Changes • PO / ODT as Odansetron route as a standing order & a treatment option
  • 45. SummarySummaryprehospitalmd@gmail.com • This review serves as notification of the changes to the MA Pre-hospital Treatment Protocols effective June 15, 2013 • Provide evidence-based information regarding why changes occurred