SlideShare a Scribd company logo
5/7/2014
1
Copyright © FraudResourceNet LLC
Catch T&E and P‐Card Fraudsters 
With Data Analytic Power Tools
Special Guest Presenter:  Rich Lanza, CPA, CFE
Copyright © FraudResourceNet LLC
President and Founder of White Collar Crime 101
 Publisher of White-Collar Crime Fighter
 Developer of FraudAware® Anti-Fraud Training
 Monthly Columnist, The Fraud Examiner, ACFE
Newsletter
Member of Editorial Advisory Board, ACFE
Author of “Fraud in the Markets”
• Explains how fraud fueled the financial crisis.
About Peter Goldmann, MSc., CFE
5/7/2014
2
Copyright © FraudResourceNet LLC
About Jim Kaplan, MSc, CIA, CFE
• President and Founder of
AuditNet®, the global resource for
auditors (now available on Apple
and Android devices)
• Auditor, Web Site Guru,
• Internet for Auditors Pioneer
• Recipient of the IIA’s 2007
Bradford Cadmus Memorial
Award.
• Author of “The Auditor’s Guide to
Internet Resources” 2nd Edition
Copyright © FraudResourceNet LLC
Richard B. Lanza, CPA, CFE, CGMA
• Over two decades of ACL and Excel software usage
• Wrote the first practical ACL publication on how to
use the product in 101 ways (101 ACL
Applications)
• Has written and spoken on the use of audit data
analytics for over 15 years.
• Received the Outstanding Achievement in Business
Award by the Association of Certified Fraud
Examiners for developing the publication
Proactively Detecting Fraud Using Computer Audit
Reports as a research project for the IIA
• Recently was a contributing author of:
• Global Technology Audit Guide (GTAG #13) Fraud
in an Automated World - IIA
• Data Analytics – A Practical Approach - research
whitepaper for the Information System
Accountability Control Association.
• “Cost Recovery – Turning Your Accounts Payable
Department into a Profit Center” – Wiley & Sons.
Please see full bio at www.richlanza.com
5/7/2014
3
Copyright © FraudResourceNet LLC
The CPE certificates and link to the
recording will be sent to the email
address you registered with in GTW.
We are not responsible for delivery
problems due to spam filters,
attachment restrictions or other
controls in place for your email client.
Submit questions via the chat box on
your screen and we will answer them
either during or at the conclusion.
After the Webinar is over you will have
an opportunity to provide feedback.
Please complete the feedback
questionnaire to help us continuously
improve our Webinars
If GTW stops working you may need to
close and restart. You can always dial
in and listen and follow along with the
handout.
This webinar and its material are the
property of FraudResourceNet LLC.
Unauthorized usage or recording of
this webinar or any of its material is
strictly forbidden. We are recording the
webinar and you will be provided with a
link access to that recording as
detailed below. Downloading or
otherwise duplicating the webinar
recording is expressly prohibited.
Webinar recording link will be sent via
email within 5-7 business days.
NASBA rules require us to ask polling
questions during the Webinar and CPE
certificates will be sent via email to
those who answer ALL the polling
questions
Webinar Housekeeping
Copyright © FraudResourceNet LLC
The views expressed by the presenters do not necessarily represent the views, 
positions, or opinions of FraudResourceNet LLC (FRN) or the presenters’ 
respective organizations. These materials, and the oral presentation 
accompanying them, are for educational purposes only and do not constitute 
accounting or legal advice or create an accountant‐client relationship. 
While FRN makes every effort to ensure information is accurate and complete, 
FRN makes no representations, guarantees, or warranties as to the accuracy or 
completeness of the information provided via this presentation. FRN 
specifically disclaims all liability for any claims or damages that may result from 
the information contained in this presentation, including any websites 
maintained by third parties and linked to the FRN website
Any mention of commercial products is for information only; it does not imply 
recommendation or endorsement by FraudResourceNet LLC
6
Disclaimers
5/7/2014
4
Copyright © FraudResourceNet LLC
Today’s Agenda
 How to effectively screen for red flags of travel fraud 
 How to gather the data you need to audit for card fraud using 
data analytics 
 How to use data analytics to identify falsification of meal, hotel 
and cab receipts 
 Best ways to screen for suspicious corporate and P‐card 
transactions 
 Effective controls for minimizing your organization exposure to 
all forms of T&E and P‐card fraud 
 Essentials of proactive anti‐fraud management targeting 
expense reimbursement and card fraud 
Copyright © FraudResourceNet LLC
Key Considerations Before 
Entering Pcard and T&E Reviews
Is 3% to 5% savings in T&E worth the controls?
 It probably won’t be enough of an issue for SarbOx
 It DOES make for an embarrassing paper headline
98% of people are honest…Do you want to hound them 
for the 2%?
Is T&E a company benefit?
Will you be able to take on the executives?
5/7/2014
5
Copyright © FraudResourceNet LLC
Asset Misappropriation
Tops The Charts
Copyright © FraudResourceNet LLC
Top Fraud Schemes By 
Department
5/7/2014
6
Copyright © FraudResourceNet LLC
Making $20K Extra This Year
(assume 20 trips a year)
Meals ($30 a day * 4 days * 20 trips) = $2,400
Gas/Mileage ($20 per trip * 20 trips) = $400
Airline ($100 per trip * 20 trips)  = $2,000
Hotel ($10 per day * 4 days * 20 trips) = $800
Entertainment ($50 per trip * 20 trips) = $1,000
Other ($50 per trip * 20 trips) = $1,000
Airline/Other miles for free tickets = $7,000
Total of $14,600 after tax or $20,000 before tax
Copyright © FraudResourceNet LLC
Types of  T&E Fraud (in order of 
occurrence per ACFE Study Report to the Nations ‐ 2006)
 Miscategorized – personal expenses that are 
submitted as business.
 Overstated – inappropriate overstatement of 
submitted expenses.
 Fictitious Receipt – phony receipt used as 
support.
 Over‐purchase – purchase more than needed and 
keep the rest.
 Collusion – manager and employee scheme 
against the company
5/7/2014
7
Copyright © FraudResourceNet LLC
Polling Question 1
What is not one of the top occurring fraud types per the 
ACFE study?
A. Asset Misappropriation
B. Corruption
C. Other Document Fraud
D. All of the Above
Copyright © FraudResourceNet LLC
Key Steps to Committing 
T&E Fraud (Tasks )
 Submit claims for personal expenses labeled as business expenses
 Bypass review by approving own claims
 Create fictitious vendor to vouch for purchases
 Avoid approval limits by splitting purchases
 Submit claims for non‐existent expenses on behalf of other 
employees who also submit directly
 Submit altered claims for legitimate expenses that are larger than 
actuals, pocket difference in cash
 Purchase legitimate item twice or more, secure refund(s)
 Submit invented claims using blank receipts or other forms from 
vendor
 Organize legitimate expenses to secure a cash discount or other 
benefit from vendor that should go to the employer
 Create additional expense cards / accounts that are outside the 
normal reporting system
5/7/2014
8
Copyright © FraudResourceNet LLC
Playing The T&E Game 
Can Be Addictive
 The extra cash always helps
 It’s tax‐free!
 The “getting back” at the company 
feeling
 Managers never check anyway
 What are they going to do…fire me 
over $20?
 The slippery slope to go for more
Copyright © FraudResourceNet LLC
The Basic Tests
 Review the business purpose of each 
expense for reasonableness.
 Validate expenses with proper receipts 
(when applicable).
 Recalculate the total reimbursable amount 
to test accuracy.
 Review each report for proper approval 
 Trace and agree the total reimbursable 
amount on the T&E report to the 
disbursement(s). 
5/7/2014
9
Copyright © FraudResourceNet LLC
Remember the Tips
(Not the Dinner Kind)
 Tip Line is Still the #1 Way to 
Find Fraud
 Analytics play a role
 Most frauds are detected 
based on a pattern of past 
frauds within the entity
Copyright © FraudResourceNet LLC
Airline Schemes and Tests
 Book a personal trip as a business 
one:
Match dates of travel to airline dates
 Book an expensive refundable ticket  
and a cheaper ticket, cancel the 
refundable ticket, and then submit it 
for payment
 Obtain payment receipt (i.e., Visa 
bill for the month) and airline 
support
See “How To Pad Your Expense Report…..and Get Away With It”  by 
Employee X
5/7/2014
10
Copyright © FraudResourceNet LLC
Airline Schemes and Tests
Edit the E‐mail on an E‐Ticket
Obtain payment receipt (i.e., Visa bill 
for the month) and airline support
Use one airline to get mileage points 
(even if not the best)
Get a general sense of flight costs and 
airlines for key company locations
See “How To Pad Your Expense Report…..and Get Away With It”  by 
Employee X
Copyright © FraudResourceNet LLC
Hotel Schemes and Tests
 Scan invoice and increase amounts
 Get extra invoice paper from hotel and type phony 
bill
 Complain to reverse charges and submit the original 
invoice
 Ask for a discount (i.e., AAA) after the bill is printed
Obtain payment receipt (i.e., Visa bill for the month) 
and hotel support
See “How To Pad Your Expense Report…..and Get Away With It”  by 
Employee X
5/7/2014
11
Copyright © FraudResourceNet LLC
Meal Schemes and Tests
 Buy tear off receipts at office supply store and 
submit phony receipts
 Eat cheap meals or have someone else pay for 
them and then submit thrown away receipts
Check dates are within travel period
Obtain payment receipt (i.e., Visa bill for the 
month) and hotel support
See “How To Pad Your Expense Report…..and Get Away With It”  by 
Employee X
Copyright © FraudResourceNet LLC
Taxi / Mileage
 Put through phony taxi receipt and have 
someone drive you to the airport
Obtain payment receipt (i.e., Visa bill for the 
month)
 Add more mileage to the mileage allowance
Get a general sense of mileage between 
company locations or use Mapquest
See “How To Pad Your Expense Report…..and Get Away With It”  by 
Employee X
5/7/2014
12
Copyright © FraudResourceNet LLC
Little More Advanced Tests
 Submit altered claims for legitimate expenses that are larger 
than actuals, pocket difference in cash
 Create fictitious vendor to vouch for purchases
 Use a “Square” to become a vendor yourself
 Change the vendor’s name between the P‐Card and T&E system
 Avoid approval limits by splitting purchases
 Organize legitimate expenses to secure a cash discount or 
other benefit from vendor that should go to the employer
 Submit same expense to multiple authorities or multiple 
general ledger accounts
Copyright © FraudResourceNet LLC
Polling Question 2
What is the number one way to detect fraud per past 
studies?
A. Strong Pcard policy
B. Management tip (hotline)
C. Employee training
D. Fraud policy
5/7/2014
13
Copyright © FraudResourceNet LLC
Book It For Them
 Travel agency to process hotel, 
car, and air
 Use a car service
 Ensure that payment is made by 
company directly to the vendor 
Copyright © FraudResourceNet LLC
Benefits of Automation
 Enforce company financial policy
 Established system of approvals
 Increased visibility
 Sound internal controls
 Heightened accountability
 Reduced audit fees
 Peace of mind
5/7/2014
14
Copyright © 2013 FraudResourceNet™ LLC
Data Tables and Fields – P-Card
Cardholder:
Card Number
Cardholder Address
City
Post Code
Limit
MCC Description:
MCC
MCC Description
Transactions:
Name
Card Number
Merchant
Merchant City
Merchant State
Merchant Cntry
Merchant PostCode
MCC
Amount
Curr ency
Post Date
Trans Date
Copyright © FraudResourceNet LLC
Data Tables and Fields 
T&E Considerations
 Business Purpose
 Who Entertained
 Flight/Hotel Information (from 
Travel Company)
Days before the flight booking made
Type of airline and ticket
5/7/2014
15
Copyright © FraudResourceNet LLC
The Data Aggregators
 Online T&E system
 Travel company / Car Service 
company
 Vendor System (i.e., Office 
Supplies)
 Procurement card
 Access database / Excel 
spreadsheet
Copyright © FraudResourceNet LLC
Data Marts and 
Server Benefits
 Centralized data and backups
 Audit knowledge is saved in one place
 Security and user management
 Better data than the business units
 Faster processing for large data sets
Page 30
5/7/2014
16
Copyright © FraudResourceNet LLC
Polling Question 3
What is not one of the key tables for P‐Card analysis?
A. Cardholder
B. Travel Information
C. MCC Code Description
D. Transactions
Copyright © FraudResourceNet LLC
The Overall Fraud
Analytic Process
 Get the Most Useful Data for Analysis
 Develop Fraud Query Viewpoints
The 5 Dimensions
Brainstorm report ideas
 Analytically Trend
Benford’s Law
Statistical averages and simple trending by day, month, day of week
Post dated changes
 Use Visualization Techniques
5/7/2014
17
Copyright © FraudResourceNet LLC
Our Viewpoints or
Data Dimensions
Copyright © FraudResourceNet LLC
It’s The Trends….Right?
• Trend categories (meals, hotel, airfare, other)
• Trend mileage
• Trend departments
• Trend in the type of receipts
• Trend under limits (company policy)
• Trend by person 
• By location 
• By vendor
5/7/2014
18
Copyright © FraudResourceNet LLC
Another Way of Presenting  
Data Mining Approaches
Personnel Analysis
 Adjustments by employee
 Processing by employee
Contextual Summarizations
 Transaction types
Time Trending
 Month, week, and day / Also by department
 Last month to first 11 months 
 Transactions at the end of and start of a fiscal year
Copyright © FraudResourceNet LLC
Top Reports
 Unmatched query of cardholders to an active employee masterfile
 Cards used in multiple states in the same day
 Cards processing in multiple currencies in the same day
 Identify cards that have not had activity in the last six months
 Cardholders that have more than one card (Duplicates on card holder)
 Extract any cash back credits processed through the card
 Extract declined card transactions and determine if they are frequent 
for certain cards
 Summary of card usage by merchant to find newly added merchants 
and most active
5/7/2014
19
Copyright © FraudResourceNet LLC
Top Reports (continued)
 Duplicates on card number, amount, and transaction date
 Duplicates on merchant, amount, and transaction date 
(regardless of card)
 Duplicates on merchant and amount
 Duplicates on cardholder and amount
 A multitude of transactions under the card purchase limit or 
MCC amount limit to identify split purchases on the card to 
purchase higher amount items using multiple charges.
 Postings to unusual MCC codes
 Align the P‐card to T&E system to ensure merchant and 
amounts line up for each transactions
Copyright © FraudResourceNet LLC
Violating Statistical Patterns to the Norm
• Supplier values that are deemed exceptional after applying regression and standard 
deviation calculations
• Invoice amount values themselves that appear unusual based on the number's digits and 
past patterns
• Suppliers who have a large percentage of rounded‐amount invoices or in sequence invoice 
numbers.  
Conflicting External Data 
• Supplier addresses not listed in Google Maps
• Supplier matches to a world compliance “watch list”
• Google Maps shows supplier (business) address to be an apartment or other personal 
residence 
Timing Differences
• Suppliers who are consistently paid quickly, typically in less than 10 days
• Checks cut on a weekend or after‐hours based on time stamps
• Unusual increasing or decreasing trends across business quarters for a supplier
Sample Red Flag Vendor Reports 
(Focus on the potential accomplice )
5/7/2014
20
Copyright © FraudResourceNet LLC
Cost Recovery 
Opportunity Tests
Vendors that are sole sourced to one employee
Employees that have too many vendors
Categories that map to the “recovery list” (TELCOM!!!)
Top 100 vendors
Trend analysis over time 
Trend analysis by vendor (scatter graph)
Copyright © FraudResourceNet LLC
Stratify Data ‐ Results
5/7/2014
21
Copyright © FraudResourceNet LLC
Scatter Data
Copyright © FraudResourceNet LLC
Scatter Graph
5/7/2014
22
Copyright © FraudResourceNet LLC
Map of the Vendor 
Population
43
Copyright © FraudResourceNet LLC
0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
Frequency
Digits
Quarterly law
Benford
4th
3rd
2nd
1st
Benford’s Law 
Continuous View
5/7/2014
23
Copyright © FraudResourceNet LLC
Deeper into Benford’s
Copyright © FraudResourceNet LLC
Invoices Near The 
Approval Limit
5/7/2014
24
Copyright © FraudResourceNet LLC
Polling Question 4
What is the best Excel chart for reviewing Pcard and T&E 
data?
A. Scatter Graphs
B. Pivot Tables
C. Vlookup
D. Data Analysis Toolkit
Copyright © FraudResourceNet LLC
T&E Scoring Analysis 
(Using Macros)
1. Employees with low transaction, high dollar activity ‐ 20
2. Employees with a high proportion of round dollar 
payments. ‐ 25
3. Payments to any employees that exceed the twelve month 
average payments to that employee by a specified 
percentage (i.e., 200%) or 3x the standard deviation for 
that vendor. ‐ 20
4. Employees with a high proportion of charges near approval 
limits ‐ 35
5/7/2014
25
Copyright © FraudResourceNet LLC
Transactional Score Benefits
Instead of selecting samples from reports, transactions that 
meet multiple report attributes are selected (kill more birds 
with one stone).  Therefore a 50 unit sample can efficiently 
audit:
 38 duplicate payments
 22 round invoices
 18 in sequence invoices
….and they are the best given they are 
mathematically the most “severe”.
Sampling can be based on quadrants 
which takes into account different
severity, volume, and value dimensions
49
Copyright © FraudResourceNet LLC
P‐Card Process Steps
 Create/Issue Cards
 Maintain Cards
 Cancel Cards
 Approve Merchants / Merchant Codes
 Block Merchants / Merchant Codes
 Set Approval Limits / Policies of Use
 Initiate Transactions
 Validate Transactions
 Approve Transactions
5/7/2014
26
Copyright © FraudResourceNet LLC
The Controls Summary
 Whistleblower Hotline
 Code of Conduct
 Employee Training
 Review the Data
 Book It For Them
 Automated Workflow
 Deal With the Fraudsters
Copyright © FraudResourceNet LLC
Set the Baseline
 Establish set of core values
 Communicate them
 Train people in them
 Give people examples
 So they understand in practical terms 
when they break the code
5/7/2014
27
Copyright © FraudResourceNet LLC
Other Fraud Policy Categories
 Definitions of misconduct and dishonesty 
 Organizational policy and responsibilities regarding reporting 
suspected misconduct. 
 Deterrence and detection responsibilities of individuals with 
supervisory or review responsibility. 
 Policy specifying the responsibility and authority related to the 
investigation of incidents of misconduct and dishonesty. 
 General procedures for the follow up and investigation of 
reported incidents. 
 Note that questions or other clarifications of the fraud policy 
should be addressed to the corporation’s Chief Counsel. 
Copyright © FraudResourceNet LLC
P‐Card Policy Considerations
 Who can have the card / Who cannot have the card (former 
employees, non‐employees, agents/students/vendors)
 Reconciliation procedures
 What can and cannot be purchased with the card
 Restricting use to organizational business needs
 How to get the card
 How to handle exceptions and irregularities
 How a card can and should be deactivated
 How to get help
 Cardholder agreements
 Rights and responsibilities of the cardholder,  department 
manager responsible for managing card usage, department 
manager, organization and card‐issuer
5/7/2014
28
Copyright © FraudResourceNet LLC
Train the Frontline Troops
Explain the basics of fraud
 How it starts
 How it grows fast
 Red flag signs
Explain what to do if they 
sense it
Make it fun
 Case studies using past or 
fictional examples
Copyright © FraudResourceNet LLC
Have a Response Team
Have an incident response program
 Set the investigation plan
 Set accountabilities
Do appropriate marketing
 Put everyone on notice that a team exists and is ready to 
investigate as needed
 Communicate wrongdoing through company newsletters 
even if it is done at a departmental level 
5/7/2014
29
Copyright © FraudResourceNet LLC
Ways To Deal With 
Fraudsters
Terminate
 Make an example of those who get 
caught
Put fraud on their W‐2
Remember it is better to 
prevent and deter than try to 
reclaim later
Copyright © FraudResourceNet LLC
Polling Question 5
Which of the following are key to the P‐Card fraud control 
framework?
A. Employee Training
B. Review the Data
C. Book It For Them
D. Automated Workflow
E. All of the above
5/7/2014
30
Copyright © FraudResourceNet LLC
Questions?
Any Questions?
Don’t be Shy!
Copyright © FraudResourceNet LLC
 May 14 Vendor Master File Fraud Detection 
and Prevention Using Data Analytics
 June 11 Essentials of an Effective Fraud 
Response Plan
 June 18 Quick Response Fraud Detection 
Using Data Analytics
Coming Up Next
5/7/2014
31
Copyright © FraudResourceNet LLC
The best information newsletter 
on fraud and white collar crime is 
now available for free!
Sign Up Now
Please share with your network!
WCC Fighter News ‐ Free
Copyright © FraudResourceNet LLC
Thank You!
Website: http://www.fraudresourcenet.com
Jim Kaplan
FraudResourceNet™
800‐385‐1625 
jkaplan@fraudresourcenet.com
Peter Goldmann
FraudResourceNet™
800‐440‐2261
pgoldmann@fraudresourcenet.com
Rich Lanza
Cash Recovery Partners, LLC
Phone: 973‐729‐3944
rich@richlanza.com

More Related Content

PDF
Think Like a Fraudster to Catch a Fraudster
PDF
Quick Response Fraud Detection
PDF
Finding Payroll Fraud Using Audit Software
PDF
Using Data Analytics to Detect and Prevent Corporate and P-Card Fraud
PDF
Using Data Analytics to Find and Deter Procure to Pay Fraud
PDF
Vendor Master File Fraud Detection and Prevention Using Data Analytics
PDF
Is Your Payroll Being Plundered - Detecting Payroll Fraud Using Data Analytics
PDF
Best Practices in Detecting Payable Fraud Using Data Analytics
Think Like a Fraudster to Catch a Fraudster
Quick Response Fraud Detection
Finding Payroll Fraud Using Audit Software
Using Data Analytics to Detect and Prevent Corporate and P-Card Fraud
Using Data Analytics to Find and Deter Procure to Pay Fraud
Vendor Master File Fraud Detection and Prevention Using Data Analytics
Is Your Payroll Being Plundered - Detecting Payroll Fraud Using Data Analytics
Best Practices in Detecting Payable Fraud Using Data Analytics

Viewers also liked (14)

PDF
Detecting Fraud Using Data Mining Techniques
PPTX
Fraud, Waste & Abuse: Capture low hanging fruit and more
PDF
Recognizing and Preventing Fixed Asset and Inventory Fraud using Data Analysis
PPTX
User Behavior Analytics And The Benefits To Companies
PDF
Ponzis, Pyramids, and Bubbles: An introduction to financial fraud
PDF
Using benford's law for fraud detection and auditing
PPTX
Fraud: Understanding Fraud and Our Responsibilities
PPTX
Hr analytics
PPTX
Fraud principles1
PPTX
HR Analytics, Done Right
PDF
Fraud Detection presentation
PDF
HR / Talent Analytics
PDF
HR Analytics & HR Tools
Detecting Fraud Using Data Mining Techniques
Fraud, Waste & Abuse: Capture low hanging fruit and more
Recognizing and Preventing Fixed Asset and Inventory Fraud using Data Analysis
User Behavior Analytics And The Benefits To Companies
Ponzis, Pyramids, and Bubbles: An introduction to financial fraud
Using benford's law for fraud detection and auditing
Fraud: Understanding Fraud and Our Responsibilities
Hr analytics
Fraud principles1
HR Analytics, Done Right
Fraud Detection presentation
HR / Talent Analytics
HR Analytics & HR Tools
Ad

Similar to Catch T&E and P-Card Fraudsters Using Data Analytics (20)

PDF
Using Data Analytics to Detect and Deter Procure to Pay Fraud
PDF
Uncovering Fraud in Key Financial Accounts using Data Analysis
PDF
Proactive Data Analysis Techniques to Detect Financial Statement Fraud
PDF
Effective General Ledger and Journal Entry Fraud Detection Using Data Analytics
PDF
Quick Response Fraud Detection using Data Analytics: Hitting the Ground Runni...
PDF
Detecting and Auditing for Fraud in Financial Statements Using Data Analysis
PDF
Fraud Risk Assessment: An Expert’s Blueprint
PDF
How to Use Data Analytics to Detect Fixed Asset and Inventory Fraud
PDF
Fraud Incident Response Planning Essentials
PDF
Bribery and Corruption (FCPA): What Auditors Need to Know
PDF
IT Fraud Series: Data Analytics
PDF
20141203 akjk
PDF
The Truth Behind Detecting Fraud Using Data Analytics
PDF
Benford's Law: How to Use it to Detect Fraud in Financial Data
PDF
.Ethics for Auditors: Understanding Current Issues in Financial Integrity
PDF
Enhanced fraud detection with data analytics
PDF
Background Check Best Practices
PDF
Anti-Fraud Professional’s Guide to Building an Anti- Fraud Culture
PDF
The Future of Auditing and Fraud Detection
PDF
10/15/2009 Meeting - Tools of The Trade (Background Checks)
Using Data Analytics to Detect and Deter Procure to Pay Fraud
Uncovering Fraud in Key Financial Accounts using Data Analysis
Proactive Data Analysis Techniques to Detect Financial Statement Fraud
Effective General Ledger and Journal Entry Fraud Detection Using Data Analytics
Quick Response Fraud Detection using Data Analytics: Hitting the Ground Runni...
Detecting and Auditing for Fraud in Financial Statements Using Data Analysis
Fraud Risk Assessment: An Expert’s Blueprint
How to Use Data Analytics to Detect Fixed Asset and Inventory Fraud
Fraud Incident Response Planning Essentials
Bribery and Corruption (FCPA): What Auditors Need to Know
IT Fraud Series: Data Analytics
20141203 akjk
The Truth Behind Detecting Fraud Using Data Analytics
Benford's Law: How to Use it to Detect Fraud in Financial Data
.Ethics for Auditors: Understanding Current Issues in Financial Integrity
Enhanced fraud detection with data analytics
Background Check Best Practices
Anti-Fraud Professional’s Guide to Building an Anti- Fraud Culture
The Future of Auditing and Fraud Detection
10/15/2009 Meeting - Tools of The Trade (Background Checks)
Ad

More from FraudBusters (11)

PDF
The Power of Benford's Law in Finding Fraud
PDF
Best Practices: Planning Data Analytic into Your Audits
PDF
Ways to Beat Vendor and Procurement Fraudsters Using Data Analysis
PDF
Fraud in Social Media: Facing the Growing Threat
PDF
Management Override: Common Tactics and How to Audit For Red Flags
PDF
Setting Up and Managing an Anonymous Fraud Hotline
PDF
Detecting Healthcare Vendor Fraud Using Data Analysis
PDF
Establishing an Organization Wide Fraud Policy
PDF
Essentials of a Highly Effective Employee Fraud Awareness Program
PDF
Using Data Analytics to Conduct a Forensic Audit
PDF
Fraudulent Documentation: Fraudsters’ Secret Weapon ... How to Disarm Them
The Power of Benford's Law in Finding Fraud
Best Practices: Planning Data Analytic into Your Audits
Ways to Beat Vendor and Procurement Fraudsters Using Data Analysis
Fraud in Social Media: Facing the Growing Threat
Management Override: Common Tactics and How to Audit For Red Flags
Setting Up and Managing an Anonymous Fraud Hotline
Detecting Healthcare Vendor Fraud Using Data Analysis
Establishing an Organization Wide Fraud Policy
Essentials of a Highly Effective Employee Fraud Awareness Program
Using Data Analytics to Conduct a Forensic Audit
Fraudulent Documentation: Fraudsters’ Secret Weapon ... How to Disarm Them

Recently uploaded (20)

PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPT
Teaching material agriculture food technology
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
cuic standard and advanced reporting.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Encapsulation theory and applications.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
Building Integrated photovoltaic BIPV_UPV.pdf
Understanding_Digital_Forensics_Presentation.pptx
NewMind AI Monthly Chronicles - July 2025
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Teaching material agriculture food technology
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
cuic standard and advanced reporting.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Per capita expenditure prediction using model stacking based on satellite ima...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Encapsulation theory and applications.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Unlocking AI with Model Context Protocol (MCP)
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Network Security Unit 5.pdf for BCA BBA.

Catch T&E and P-Card Fraudsters Using Data Analytics