SlideShare a Scribd company logo
Artificial Intelligence Techniques
applied to Engineering
Part 2. Genetic Fuzzy Systems
Enrique Onieva Caracuel
@EnriqueOnieva
1.Fuzzy Logic
2.Genetic Algorithms
3.Genetic Fuzzy Systems
4.Applications to Intelligent Transportation
Systems: My Experience
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 2
Intelligent Transportation Systems
Intelligent Transportation Systems integrate
information and communication technologies with
transportation of passengers and goods
 Mobility
 Safety
 Productivity
 Energy consumption
 Capacity
1
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 3
Intelligent Transportation Systems
 Common services
 Information Systems
 Route planning
 Air transport
 Maritime transport
 Road transport
 Intelligent infrastructure
 Intelligent vehicles
Active assistances
Pasive assistances
2
Autonomous Driving?
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 4
Motivation
 Fuzzy Logic
 IF the vehicle is derived through the right, steer to the left
 IF the vehicle is derived through the left, steer to the right
 IF the vehicle is slow, press the throttle
 IF the vehicle is fast, press the brake
1
Control System Driver
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 5
Motivation 2
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 6
AUTOPIA Program 1
1998
2012
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 7
AUTOPIA Program
 Throttle
 Pedal signals commuted
 Orders communicated by an
Analog Card
 Brake
 Intervention on the ABS
 Electro-hydraulic system
Motor
Deposit
3 valves: Limiter, Proportional,
Nothing-All
 Orders communicated by a
CAN controller
2
WLAN
Antenna
Power
Supply
GPS
Receiver
Computer
IMU
GPS
Antenna
CAN-USB
converter
Auxiliary
Battery
CAN
Module
Electro-
hydraulic
system
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 8
Speed Control for Cities
 Inputs
 Speed error(km/h)
 Acceleration (km/h/s)
 Outputs
 Throttle [0,1] Throttle [0,0.4]
 Brake [0,1] Brake [0,0.2]
1
Comfort
acceleration
≤ 2.5 m/s2
Ac+ Ac0 Ac-
EV+ B02 B01 B01
EV0 T00 t01 T01
EV- T01 T02 t04
E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516.
Speed Error (km/h)
Acceleration (km/h/s)
Negative NegativeZero Positive
Negative Zero Positive
T00 T01 T02 T04
B00 B01 B02
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 9
Speed Control for Cities
 First gear (speed > 16 km/h)
 Error measured after transitory
state (5 s)
 Bigger error at 15 km/h
 (1st to 2nd gear)
 Similar results (speed≤ 20 km/h)
 Better results at 25 km/h
2
E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516.
Human System
10km/h ±0.63 ±0.71
15km/h ±0.88 ±0.98
20km/h ±0.72 ±0.84
25km/h ±1.22 ±0.9
Speed Target
Speed Target
Speed Target
Speed Target
Speed Target
Time (s)
Speed(km/h)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 10
Speed Control on-line Learning
1. Rules’ consequents modification in real time
Speed error
Acceleration
Rule activation
 9 cased reward
Positive or Negative error
Acceleration and comfort acceleration
Acceleration decreases when error  0
1
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 11
Speed Control on-line Learning
1. Rules’ consequents modification in real time
2
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Speed(km/h)
Time (s)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 12
Speed Control on-line Learning
2. Trapezoids’ modification
 After a certain time (100 seconds)
 Input values histogram analysis
A trapezoid is added if it is low-covered
A trapezoid is narrowed if covers several frequent values
3
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 13
Speed Control on-line Learning 4
 Test with 40 vehicles in TORCS
 Different dynamics
 Different behaviors
 Simple initial controller
 2x2 membership functions
 All the singletons = 0 (do nothing)
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 14
Speed Control on-line Learning
1. Speed change test
2. Fixed speed test (15 km/h)
3. Fixed speed test (5 km/h)
5
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 15
Information capture
Information Processing
Simplification
Extension
Steering control by Genetic
Algorithms 1
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Lateral Error Angular Error
Steering
Lateral Error Angular Error
Steering
Lateral
Error
Angular
Error
Reference Line
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 16
Steering control by Genetic
Algorithms
 Membership functions Representation
 Rule base representation
 Integer coding
 Length = Number of rules
 21 Singletons in [-1,1]
2
LAT/ ANG
θ
{VeryLeft}
Left
No
Right
{VeryRigth}
Θ M M M M M
{VeryLeft} M C C C C C
Left M C C C C C
No M C C C C C
Right M C C C C C
{VeryRigth} M C C C C C
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Left NO Right VeryLeft VeryRightLeft NO Right
R10, R9, R8, R7, … R1 L1, L2, L3, L4, … L10NO
Right (Clockwise) Left
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 17
Steering control by Genetic
Algorithms
 Genetic fuzzy system
in 2 stages
 Membership function
optimization
Real coding
BLX-𝛼 crossover
 Rule base optimization
Integer coding
One point crossover
 Steady state Genetic Algorithm
 Binary Tournament
 Uniform Mutation
 Worse individual replacement
3
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 18
Steering control by Genetic
Algorithms
Objective function
 Mean squared error (MSE)
 Highest jump in the control surface (Dist)
Fitness Function (Min): 0.75·MSE + 0.25·Dist
4
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 19
Steering control by Genetic
Algorithms 5
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Controllers Speeds
Labels Rule Base Average Maximum
3x3 Marginal 12.8 22.4
3x3 Central 14.6 22.1
3x3 Total 13.5 24
5x5 Marginal 14.9 22.1
5x5 Central 14.8 28.6
5x5 Total 14.8 27.9
Lateral errorAngular error Honorable
Mention to
best student
work
ESTYLF 2008
East (m)
North(m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 20
Intersection decision by genetic
algorithms
Decision making in non-
cooperative intersections
Non yielding always
strategy
Safe and efficient
maneuver
 Slightly accelerate to pass
before the manual one
 Slightly brake to yield
 Without stopping
1
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Accidents at
intersections
Intelligent
Trasnportation Systems
Intersections
Manual Manual Autonomous
Autonomous Autonomous Autonomous
Coordination
Accidents
Roads
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 21
Intersection decision by genetic
algorithms
1. Check if the vehicle is going to cross and by where
 Fuzzy rule based system  3 inputs
 Manually adjusted
2. Decide the autonomous vehicle’s speed to finish the
maneuver
 Without risk
 As soon as possible
 Fuzzy rule based system  4 inputs
 Coded with {2,3,4} membership functions  81
Granularities
 2 types of outputs
 Relative / Absolute Speed
 162 controllers adjusted by a Genetic Algorithm
3. Move the pedals to reach the desires speed
 Vehicle’s longitudinal dynamics model
 Flat surface
2
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Manual
Autonomous
Time
Speed
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 22
Intersection decision by genetic
algorithms
 Evaluation in a variable number of
scenarios
 Nsc=1+19·(g/G)
 2 Executions
 Free (EF)  (Keep SA)
What happens if speed does not vary?
 Controlled (EC)
Does the fuzzy system avoid the
collision
 3 possible results
 No collision
 Lateral collision
 Frontal collision
3
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
No Collision Lateral Collision Frontal Collision
Keep
Speed
up
Slow
Down
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 23
Intersection decision by genetic
algorithms
 Partial fitness depending on:
 Result in free execution
 Result in controlled execution
 How much has been the speed varied
 Fitness function  Minimize the sum of partial fitnesses
4
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Description Meaning Partial fitness
No collision (EF=EC=NO) |∫SA
c-∫SA
l|
A lateral collision is avoided (EF=LA & EC=NO)
•|∫SA
c-∫SA
l|, if speeds up
•2.500, if brakes down
A frontal collision is avoided (EF=FR & EC=NO)
•|∫SA
c-∫SA
l|, if brakes down
•2.500, if speeds up
Collision is not avoided (EF≠NO & EC ≠ NO) 5.000
Collision is caused (EF=NO & EC ≠ NO) 10.000
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 24
Intersection decision by genetic
algorithms
 Safety vs Number of rules
 Safety > 90%
 Some relatives are worse that a ‘do nothing’ system
 Absolute ones are safer
 ABS4423, ABS3433, ABS3344 y ABS2442  100%
 Is the safety dependent on the type (absolute / relative) of
controller?
5
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Relative Controllers
Absolute Controllers
Number of Rules
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 25
Intersection decision by genetic
algorithms
 Granularities correlation
 Most systems are near the diagonal
 54% vs 46% of structures are safer with a specific model
 Safe structures are both when relative and absolute
output
6
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Safety for Relative FRBS
SafetyforAbsoluteFRBS
Structures with higher
safety in Absolute
mode (46%)
Structures with higher
safety in Relative mode
(54%)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 26
Intersection decision by genetic
algorithms
 A ‘stop always’ policy  safety 100 %
 No efficient, neither intelligent
 Fitness function measures the efficiency of the systems
 Lineal relationship
 Safety comes with efficiency
7
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Relative Controllers
Absolute Controllers
Safety
FitnessFunction
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 27
Intersection decision by genetic
algorithms
 Both vehicles start at same speed
 Free execution  Frontal collision
 System must brake
 All of them do
 ABS4242 brake less
 REL3344 speeds up once the risk disappear
 Autonomous one starts slightly faster
 Free execution  Lateral collision
 System must speed up
 All of them avoid the collision
 REL3344 does it by speeding up
 Autonomous one starts much faster
 Free execution  No collision
 System must maintain speed
 All of them avoid the collision
 REL3344 varies less the speed
8
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Time (s)
Speed
(km/h)
Distance
(m)
Time (s)
Speed
(km/h)
Distance
(m)
Time (s)
Speed
(km/h)
Distance
(m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 28
Videos
Learning to steer in an autonomous vehicle
Self-Archive
Autonomous Driving Citroën C3 Pluriel
https://www.youtube.com/watch?v=qm-nh7_fJvY
Grand Cooperative Driving Challenge (GCDC) - Technische Universiteit Eindhoven
https://www.youtube.com/watch?v=BprHHm5j_hA
Other Applications
Composition: https://www.youtube.com/user/GrupoAUTOPIA/videos
Autonomous Driving @ High Speed
https://www.youtube.com/watch?v=1zoTg_Pnxbg
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 29
2009 Simulated Car Racing
Championship 1
Gears
Change current gear Rule system (RPM)
Use reverse gear Angle + Deviation
Steer
Centered vehicle Laser Sensors
Reverse gear Angle
Go back to track Angle + Deviation
Pedals
Adequate speed Speed error
ABS / TCL Filters Speed-Wheels
Objective Desires Speed Fuzzy System
Learning
Off track
Decision systemBorders crashs
Long straights
Opponents
Overtaking
Rule SystemAvoid collisions
Emergency braking
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 30
2009 Simulated Car Racing
Championship
Gear Control
 Change current gear according with RPM
[1ª-3ª] ↑ if RPM>9000
[4ª-5ª] ↑ if RPM>9500
[2ª-4ª] ↓ if RPM<3000
[5ª-6ª] ↓ if RPM<3500
 Reverse gear?
 Continue race
2
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 31
2009 Simulated Car Racing
Championship
Pedals control
 Throttle and brake
Pedal [-1,1]
 Speed and wheels’ speed based filters
[ABS  Brake]
[TCS  Throttle]
 Special case: Reverse Gear
Pedal = 0.25
3
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Speed – Target (km/h)
Pedal
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 32
2009 Simulated Car Racing
Championship
Steer control
 Reverse gear
 Off-track
 Inside track
4
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Steer
Angle (rad)
Angle (rad)
Steer
Deviation (m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 33
2009 Simulated Car Racing
Championship
Objective speed
 IF FRONT is High  200 km/h
 IF FRONT is Medium  175 km/h
 IF FRONT is Low Y MAX10 is High  150 km/h
 IF FRONT is Low Y MAX10 is Medium  125 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is High  100 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is Medium  75 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is Low  50 km/h
 Non-Fuzzy rule:
 IF FRONT = 100  300 km/h
5
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
FrontMax10Max20
Low Medium High
Low Medium High
Low Medium High
Front = P0
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 34
2009 Simulated Car Racing
Championship
Opponents
 Modify the steer to overtake
Sensors at {±90º} SI (measure/speed)<Tolerance  (steer+=Increment)
 Modify the steer to avoid collisions
Sensors at {±30º} SI (measure<10)  (steer±=0.25)
 Emergency breaking
Sensors at {±20º} SI (measure<10)  (VELobj *=0.8)
6
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 35
2009 Simulated Car Racing
Championship
 3 International Conferences
 Rules
 3 unknown tracks
 Classification phase  race alone: 200 seconds
 Race among the 8 classified.
10 races, 10 laps, different starting
F1 punctuation scheme:
 Fastest lap  +2
 Less damage +2
Final score  Median over 10 races
7
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 36
2009 Simulated Car Racing
Championship 8
CEC GECCO CIG FINAL
Proposal 22 32 29 83
Cobostar 28.5 16.5 30 75
Champ2008 20 23 12.5 55.5
Perez &Saez 16 11 12.5 36.5
Best student
work award
ESTYLF 2010
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 37
2010 Simulated Car Racing
Championship
Similar architecture
 Punctual modifications in certain modules
 Removing of the fuzzy system in charge of determining
the desired speed
 Optimized Steer and target speed:
Generational Genetic
Algorithm
Controller evaluation
in 4 tracks
Maximize the sum of
distances coverted
1
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 38
2010 Simulated Car Racing
Championship
Real optimization
 10 component vector
Steer control
Target speed
 BLX-𝛼 Crossover
 Uniform mutation
2
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 39
2010 Simulated Car Racing
Championship
Winner in 2010
 System to beat at
2011, 2012 y 2013
Not beaten until now
3
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Proposal Muñoz Mr. Racer Polimi
GECCO_1 12 5.5 9 6
GECCO_2 12 8 4 4.5
GECCO_3 10 9 3 5.5
WCCI_1 10 10 4 5
WCCI_2 8 10 3 5
WCCI_3 6 8 2 6
CIG_1 8 4 3 10
CIG_2 12 2 4 6
CIG_3 5 6 8 8
Proposal Muñoz Mr. Racer Polimi
GECCO 34 17 16 6
WCCI 24 28 9 16
CIG 25 12 15 24
TOTAL 83 57 40 46
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 40
Racing overtakes
Opponents that oppose to be
overtaken are implemented.
They try to reach the position
of the overtaker
3 types:
 Limited
 Slow
 Complete
Opponent must be overtaken
1
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
Limited
Slow
Complete
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 41
Racing overtakes
 Fuzzy Rule Based System
 4 inputs:
 Longitudinal distance (Dx)
 Lateral distance (Dy)
 Lateral deviation (DL)
 Time to Collision (TtC)
 2 outputs
 Required lateral position
 Pedal (Emergency braking)
 Manually tuned rule base
 600 potential rules  3·8·5·5 Labels
 Common sense  If the maneuver is finished go back to the center
 Grouping  If lateral distance is long, do not move
 81 rules in the final rule base
2
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 42
Racing overtakes
 They were tested:
 The proposal
 Controllers included in TORCS
 Against:
 Slow at 12 different speeds
 Limited at 12 different speeds
 Complete at 12 different speeds
 It is measured:
 % of finished maneuvers
 % of maneuvers without frontal damage
(system’s fault)
 % of maneuvers without lateral damage
(opponent’s fault)
3
Proposal Berniw Bt Inferno Lliaw Olethros Simplix Tita
%S 100 34.4 21.9 37.5 37.5 31.3 25 37.5
%Bf
D 90.6 75 87.5 78.1 78.1 100 100 81.3
%Lf
D 87.5 62.5 96.9 65.6 65.6 93.8 100 65.6
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
2º Best Work
IEEE-CIG 2010
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 43
Videos
Highlight from the Simulated Car Racing Competition at CEC-2009 - Driver by Onieva and Pelta
https://www.youtube.com/watch?v=k5FgzAmJdzs
2010 Simulated Car Racing Championship - First Leg @ GECCO-2010
https://www.youtube.com/watch?v=SXDJMXpiRs0
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 44
 We collect traffic data from the
 California Department of Transportation
 About 15 km long
14 (actually more) loops detectors
6 loops detectors which give us flow, speed and density
8 loops detectors which give us only flow
Congestion Prediction 1
Objective:
When congestion is going
to occur here ?
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 45
Congestion Prediction
 We group the information in 14 possible input variables
 3 flows in the main highway F1 F2 F3
 3 densities in the main highway D1 D2 D3
 3 speeds in the main highway S1 S2 S3
 2 input flows from the entrances iF1 iF2
 2 output flows from the exits oF1 oF2
2
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 46
Congestion Prediction
We define a hierarchical fuzzy system structure to
predict congestions at desired
 Example: 4 input variables with 3 membership
functions per variable
3
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
The same example with N input variables :
3N rules in the non-hierarchical system
9·(N-1) rules in the hierarchical system
14 variables:
4.782.969 Vs 117 Rules
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 47
Congestion Prediction
The systems is optimized by a Genetic Algorithm:
 3-part coding
Input variables’ order  Variable selection
Membership Functions
Rules’ consequents
 2 operator groups:
Permutation
Real Coding
4
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 48
Congestion Prediction
3 experiments:
 97% 5 minutes ahead 9 variables
 94% 15 minutes ahead 7 variables
 93% 30 minutes ahead 10 variables
5
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 49
Assignment
 Write an abstract of your thesis work (max. 250
words)
 Look for 2-3 works that applies fuzzy logic to your
thesis’ topic.
 Write a brief summary (max. 100 words/each)
 Look for 2-3 works that applies genetic algorithms to
your thesis’ topic .
 Write a brief summary (max. 100 words/each)
 Look for 2-3 works that applies genetic fuzzy system to
your thesis’ topic .
 Write a brief summary (max. 100 words/each)
Thank you very much
Any Question?

More Related Content

PDF
Optimized Traffic Signal Control System at Traffic Intersections Using Vanet
PPT
Intelligent Transportation System
PDF
Ai powred transport
PPT
ITS (Intelligent Teleportation System)
PPTX
Intelligent Transportation System for Afghanistan
PPTX
Artificial intelligence in transportation system
PDF
Online Accessable Traffic Control System for Urban Areas Using Embedded Syste...
PPTX
An Ontology-Based Intelligent Speed Adaptation System for Autonomous Cars
Optimized Traffic Signal Control System at Traffic Intersections Using Vanet
Intelligent Transportation System
Ai powred transport
ITS (Intelligent Teleportation System)
Intelligent Transportation System for Afghanistan
Artificial intelligence in transportation system
Online Accessable Traffic Control System for Urban Areas Using Embedded Syste...
An Ontology-Based Intelligent Speed Adaptation System for Autonomous Cars

What's hot (20)

PPT
intelligent transport system bgsbu coet
PPTX
Practices of AI guided traffic analysis
PPTX
Intelligent transport system
PDF
Intelligent Transportation Systems - ITS
PPT
Intelligent Transportation System (ITS)
PPTX
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
PDF
Smart Parking
PPTX
Futuristic intelligent transportation system architecture for sustainable roa...
PPTX
Intelligent Transportation System
PPTX
Automated vigilance assistance system with crime detection for upcoming smart...
PDF
Ie3415061510
PPT
Intelligent transport system
PDF
IRJET- Simulation based Automatic Traffic Controlling System
PDF
Intelligent Transport Systems India
PPTX
Advance Traffic management system
PPTX
Intelligent transportation system its
PDF
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
PDF
IRJET- Intelligent Queue Management System at Airports using Image Processing...
DOCX
Intelligent transportation system based on iot service for traffic control
intelligent transport system bgsbu coet
Practices of AI guided traffic analysis
Intelligent transport system
Intelligent Transportation Systems - ITS
Intelligent Transportation System (ITS)
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
Smart Parking
Futuristic intelligent transportation system architecture for sustainable roa...
Intelligent Transportation System
Automated vigilance assistance system with crime detection for upcoming smart...
Ie3415061510
Intelligent transport system
IRJET- Simulation based Automatic Traffic Controlling System
Intelligent Transport Systems India
Advance Traffic management system
Intelligent transportation system its
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
IRJET- Intelligent Queue Management System at Airports using Image Processing...
Intelligent transportation system based on iot service for traffic control
Ad

Similar to 2015 Artificial Intelligence Techniques at Engineering Seminar - Chapter 2 - Part 4: Intelligent Transportation Systems (20)

PDF
Smart Driving Test Track
PPTX
Intelauto
PPTX
Ppt on image processing
PPTX
International conference on electronics and communication systems 2016 (2)
PDF
40120140504005
PDF
40120140504005 2
PDF
Shared Steering Control between a Driver and an Automation: Stability in the ...
PPTX
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
PDF
A1803040103
PPT
Speed adaptation using Neuro fuzzy approach
PDF
Vehicle Traffic Analysis using CNN Algorithm
PPT
Human in automotive safety design
 
PDF
Development and testing of braking and acceleration features for vehicle adv...
PPTX
Driver-less cars by avaneesh shuka
PPT
Will Cars Always Be Cars
PDF
IRJET- Smart Travel Automated Vehicle
PDF
Vtt transport vehicle_systems
PDF
Mona sherki_Senior Engg_Automotive Electronics
PPTX
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
PDF
Semi-Autonomous Vehicle
Smart Driving Test Track
Intelauto
Ppt on image processing
International conference on electronics and communication systems 2016 (2)
40120140504005
40120140504005 2
Shared Steering Control between a Driver and an Automation: Stability in the ...
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
A1803040103
Speed adaptation using Neuro fuzzy approach
Vehicle Traffic Analysis using CNN Algorithm
Human in automotive safety design
 
Development and testing of braking and acceleration features for vehicle adv...
Driver-less cars by avaneesh shuka
Will Cars Always Be Cars
IRJET- Smart Travel Automated Vehicle
Vtt transport vehicle_systems
Mona sherki_Senior Engg_Automotive Electronics
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
Semi-Autonomous Vehicle
Ad

Recently uploaded (20)

PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Structs to JSON How Go Powers REST APIs.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Geodesy 1.pptx...............................................
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
composite construction of structures.pdf
PPTX
web development for engineering and engineering
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Mechanical Engineering MATERIALS Selection
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Structs to JSON How Go Powers REST APIs.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Sustainable Sites - Green Building Construction
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Geodesy 1.pptx...............................................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CH1 Production IntroductoryConcepts.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
composite construction of structures.pdf
web development for engineering and engineering
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Arduino robotics embedded978-1-4302-3184-4.pdf

2015 Artificial Intelligence Techniques at Engineering Seminar - Chapter 2 - Part 4: Intelligent Transportation Systems

  • 1. Artificial Intelligence Techniques applied to Engineering Part 2. Genetic Fuzzy Systems Enrique Onieva Caracuel @EnriqueOnieva 1.Fuzzy Logic 2.Genetic Algorithms 3.Genetic Fuzzy Systems 4.Applications to Intelligent Transportation Systems: My Experience
  • 2. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 2 Intelligent Transportation Systems Intelligent Transportation Systems integrate information and communication technologies with transportation of passengers and goods  Mobility  Safety  Productivity  Energy consumption  Capacity 1
  • 3. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 3 Intelligent Transportation Systems  Common services  Information Systems  Route planning  Air transport  Maritime transport  Road transport  Intelligent infrastructure  Intelligent vehicles Active assistances Pasive assistances 2 Autonomous Driving?
  • 4. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 4 Motivation  Fuzzy Logic  IF the vehicle is derived through the right, steer to the left  IF the vehicle is derived through the left, steer to the right  IF the vehicle is slow, press the throttle  IF the vehicle is fast, press the brake 1 Control System Driver
  • 5. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 5 Motivation 2
  • 6. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 6 AUTOPIA Program 1 1998 2012
  • 7. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 7 AUTOPIA Program  Throttle  Pedal signals commuted  Orders communicated by an Analog Card  Brake  Intervention on the ABS  Electro-hydraulic system Motor Deposit 3 valves: Limiter, Proportional, Nothing-All  Orders communicated by a CAN controller 2 WLAN Antenna Power Supply GPS Receiver Computer IMU GPS Antenna CAN-USB converter Auxiliary Battery CAN Module Electro- hydraulic system
  • 8. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 8 Speed Control for Cities  Inputs  Speed error(km/h)  Acceleration (km/h/s)  Outputs  Throttle [0,1] Throttle [0,0.4]  Brake [0,1] Brake [0,0.2] 1 Comfort acceleration ≤ 2.5 m/s2 Ac+ Ac0 Ac- EV+ B02 B01 B01 EV0 T00 t01 T01 EV- T01 T02 t04 E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516. Speed Error (km/h) Acceleration (km/h/s) Negative NegativeZero Positive Negative Zero Positive T00 T01 T02 T04 B00 B01 B02
  • 9. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 9 Speed Control for Cities  First gear (speed > 16 km/h)  Error measured after transitory state (5 s)  Bigger error at 15 km/h  (1st to 2nd gear)  Similar results (speed≤ 20 km/h)  Better results at 25 km/h 2 E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516. Human System 10km/h ±0.63 ±0.71 15km/h ±0.88 ±0.98 20km/h ±0.72 ±0.84 25km/h ±1.22 ±0.9 Speed Target Speed Target Speed Target Speed Target Speed Target Time (s) Speed(km/h)
  • 10. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 10 Speed Control on-line Learning 1. Rules’ consequents modification in real time Speed error Acceleration Rule activation  9 cased reward Positive or Negative error Acceleration and comfort acceleration Acceleration decreases when error  0 1 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 11. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 11 Speed Control on-line Learning 1. Rules’ consequents modification in real time 2 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053. Speed(km/h) Time (s)
  • 12. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 12 Speed Control on-line Learning 2. Trapezoids’ modification  After a certain time (100 seconds)  Input values histogram analysis A trapezoid is added if it is low-covered A trapezoid is narrowed if covers several frequent values 3 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 13. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 13 Speed Control on-line Learning 4  Test with 40 vehicles in TORCS  Different dynamics  Different behaviors  Simple initial controller  2x2 membership functions  All the singletons = 0 (do nothing) E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 14. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 14 Speed Control on-line Learning 1. Speed change test 2. Fixed speed test (15 km/h) 3. Fixed speed test (5 km/h) 5 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 15. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 15 Information capture Information Processing Simplification Extension Steering control by Genetic Algorithms 1 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Lateral Error Angular Error Steering Lateral Error Angular Error Steering Lateral Error Angular Error Reference Line
  • 16. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 16 Steering control by Genetic Algorithms  Membership functions Representation  Rule base representation  Integer coding  Length = Number of rules  21 Singletons in [-1,1] 2 LAT/ ANG θ {VeryLeft} Left No Right {VeryRigth} Θ M M M M M {VeryLeft} M C C C C C Left M C C C C C No M C C C C C Right M C C C C C {VeryRigth} M C C C C C E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Left NO Right VeryLeft VeryRightLeft NO Right R10, R9, R8, R7, … R1 L1, L2, L3, L4, … L10NO Right (Clockwise) Left
  • 17. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 17 Steering control by Genetic Algorithms  Genetic fuzzy system in 2 stages  Membership function optimization Real coding BLX-𝛼 crossover  Rule base optimization Integer coding One point crossover  Steady state Genetic Algorithm  Binary Tournament  Uniform Mutation  Worse individual replacement 3 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
  • 18. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 18 Steering control by Genetic Algorithms Objective function  Mean squared error (MSE)  Highest jump in the control surface (Dist) Fitness Function (Min): 0.75·MSE + 0.25·Dist 4 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
  • 19. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 19 Steering control by Genetic Algorithms 5 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Controllers Speeds Labels Rule Base Average Maximum 3x3 Marginal 12.8 22.4 3x3 Central 14.6 22.1 3x3 Total 13.5 24 5x5 Marginal 14.9 22.1 5x5 Central 14.8 28.6 5x5 Total 14.8 27.9 Lateral errorAngular error Honorable Mention to best student work ESTYLF 2008 East (m) North(m)
  • 20. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 20 Intersection decision by genetic algorithms Decision making in non- cooperative intersections Non yielding always strategy Safe and efficient maneuver  Slightly accelerate to pass before the manual one  Slightly brake to yield  Without stopping 1 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Accidents at intersections Intelligent Trasnportation Systems Intersections Manual Manual Autonomous Autonomous Autonomous Autonomous Coordination Accidents Roads
  • 21. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 21 Intersection decision by genetic algorithms 1. Check if the vehicle is going to cross and by where  Fuzzy rule based system  3 inputs  Manually adjusted 2. Decide the autonomous vehicle’s speed to finish the maneuver  Without risk  As soon as possible  Fuzzy rule based system  4 inputs  Coded with {2,3,4} membership functions  81 Granularities  2 types of outputs  Relative / Absolute Speed  162 controllers adjusted by a Genetic Algorithm 3. Move the pedals to reach the desires speed  Vehicle’s longitudinal dynamics model  Flat surface 2 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Manual Autonomous Time Speed
  • 22. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 22 Intersection decision by genetic algorithms  Evaluation in a variable number of scenarios  Nsc=1+19·(g/G)  2 Executions  Free (EF)  (Keep SA) What happens if speed does not vary?  Controlled (EC) Does the fuzzy system avoid the collision  3 possible results  No collision  Lateral collision  Frontal collision 3 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 No Collision Lateral Collision Frontal Collision Keep Speed up Slow Down
  • 23. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 23 Intersection decision by genetic algorithms  Partial fitness depending on:  Result in free execution  Result in controlled execution  How much has been the speed varied  Fitness function  Minimize the sum of partial fitnesses 4 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Description Meaning Partial fitness No collision (EF=EC=NO) |∫SA c-∫SA l| A lateral collision is avoided (EF=LA & EC=NO) •|∫SA c-∫SA l|, if speeds up •2.500, if brakes down A frontal collision is avoided (EF=FR & EC=NO) •|∫SA c-∫SA l|, if brakes down •2.500, if speeds up Collision is not avoided (EF≠NO & EC ≠ NO) 5.000 Collision is caused (EF=NO & EC ≠ NO) 10.000
  • 24. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 24 Intersection decision by genetic algorithms  Safety vs Number of rules  Safety > 90%  Some relatives are worse that a ‘do nothing’ system  Absolute ones are safer  ABS4423, ABS3433, ABS3344 y ABS2442  100%  Is the safety dependent on the type (absolute / relative) of controller? 5 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Relative Controllers Absolute Controllers Number of Rules
  • 25. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 25 Intersection decision by genetic algorithms  Granularities correlation  Most systems are near the diagonal  54% vs 46% of structures are safer with a specific model  Safe structures are both when relative and absolute output 6 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Safety for Relative FRBS SafetyforAbsoluteFRBS Structures with higher safety in Absolute mode (46%) Structures with higher safety in Relative mode (54%)
  • 26. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 26 Intersection decision by genetic algorithms  A ‘stop always’ policy  safety 100 %  No efficient, neither intelligent  Fitness function measures the efficiency of the systems  Lineal relationship  Safety comes with efficiency 7 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Relative Controllers Absolute Controllers Safety FitnessFunction
  • 27. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 27 Intersection decision by genetic algorithms  Both vehicles start at same speed  Free execution  Frontal collision  System must brake  All of them do  ABS4242 brake less  REL3344 speeds up once the risk disappear  Autonomous one starts slightly faster  Free execution  Lateral collision  System must speed up  All of them avoid the collision  REL3344 does it by speeding up  Autonomous one starts much faster  Free execution  No collision  System must maintain speed  All of them avoid the collision  REL3344 varies less the speed 8 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Time (s) Speed (km/h) Distance (m) Time (s) Speed (km/h) Distance (m) Time (s) Speed (km/h) Distance (m)
  • 28. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 28 Videos Learning to steer in an autonomous vehicle Self-Archive Autonomous Driving Citroën C3 Pluriel https://www.youtube.com/watch?v=qm-nh7_fJvY Grand Cooperative Driving Challenge (GCDC) - Technische Universiteit Eindhoven https://www.youtube.com/watch?v=BprHHm5j_hA Other Applications Composition: https://www.youtube.com/user/GrupoAUTOPIA/videos Autonomous Driving @ High Speed https://www.youtube.com/watch?v=1zoTg_Pnxbg
  • 29. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 29 2009 Simulated Car Racing Championship 1 Gears Change current gear Rule system (RPM) Use reverse gear Angle + Deviation Steer Centered vehicle Laser Sensors Reverse gear Angle Go back to track Angle + Deviation Pedals Adequate speed Speed error ABS / TCL Filters Speed-Wheels Objective Desires Speed Fuzzy System Learning Off track Decision systemBorders crashs Long straights Opponents Overtaking Rule SystemAvoid collisions Emergency braking E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 30. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 30 2009 Simulated Car Racing Championship Gear Control  Change current gear according with RPM [1ª-3ª] ↑ if RPM>9000 [4ª-5ª] ↑ if RPM>9500 [2ª-4ª] ↓ if RPM<3000 [5ª-6ª] ↓ if RPM<3500  Reverse gear?  Continue race 2 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 31. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 31 2009 Simulated Car Racing Championship Pedals control  Throttle and brake Pedal [-1,1]  Speed and wheels’ speed based filters [ABS  Brake] [TCS  Throttle]  Special case: Reverse Gear Pedal = 0.25 3 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. Speed – Target (km/h) Pedal
  • 32. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 32 2009 Simulated Car Racing Championship Steer control  Reverse gear  Off-track  Inside track 4 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. Steer Angle (rad) Angle (rad) Steer Deviation (m)
  • 33. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 33 2009 Simulated Car Racing Championship Objective speed  IF FRONT is High  200 km/h  IF FRONT is Medium  175 km/h  IF FRONT is Low Y MAX10 is High  150 km/h  IF FRONT is Low Y MAX10 is Medium  125 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is High  100 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is Medium  75 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is Low  50 km/h  Non-Fuzzy rule:  IF FRONT = 100  300 km/h 5 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. FrontMax10Max20 Low Medium High Low Medium High Low Medium High Front = P0
  • 34. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 34 2009 Simulated Car Racing Championship Opponents  Modify the steer to overtake Sensors at {±90º} SI (measure/speed)<Tolerance  (steer+=Increment)  Modify the steer to avoid collisions Sensors at {±30º} SI (measure<10)  (steer±=0.25)  Emergency breaking Sensors at {±20º} SI (measure<10)  (VELobj *=0.8) 6 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 35. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 35 2009 Simulated Car Racing Championship  3 International Conferences  Rules  3 unknown tracks  Classification phase  race alone: 200 seconds  Race among the 8 classified. 10 races, 10 laps, different starting F1 punctuation scheme:  Fastest lap  +2  Less damage +2 Final score  Median over 10 races 7 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 36. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 36 2009 Simulated Car Racing Championship 8 CEC GECCO CIG FINAL Proposal 22 32 29 83 Cobostar 28.5 16.5 30 75 Champ2008 20 23 12.5 55.5 Perez &Saez 16 11 12.5 36.5 Best student work award ESTYLF 2010 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 37. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 37 2010 Simulated Car Racing Championship Similar architecture  Punctual modifications in certain modules  Removing of the fuzzy system in charge of determining the desired speed  Optimized Steer and target speed: Generational Genetic Algorithm Controller evaluation in 4 tracks Maximize the sum of distances coverted 1 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
  • 38. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 38 2010 Simulated Car Racing Championship Real optimization  10 component vector Steer control Target speed  BLX-𝛼 Crossover  Uniform mutation 2 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
  • 39. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 39 2010 Simulated Car Racing Championship Winner in 2010  System to beat at 2011, 2012 y 2013 Not beaten until now 3 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012. Proposal Muñoz Mr. Racer Polimi GECCO_1 12 5.5 9 6 GECCO_2 12 8 4 4.5 GECCO_3 10 9 3 5.5 WCCI_1 10 10 4 5 WCCI_2 8 10 3 5 WCCI_3 6 8 2 6 CIG_1 8 4 3 10 CIG_2 12 2 4 6 CIG_3 5 6 8 8 Proposal Muñoz Mr. Racer Polimi GECCO 34 17 16 6 WCCI 24 28 9 16 CIG 25 12 15 24 TOTAL 83 57 40 46
  • 40. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 40 Racing overtakes Opponents that oppose to be overtaken are implemented. They try to reach the position of the overtaker 3 types:  Limited  Slow  Complete Opponent must be overtaken 1 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010 Limited Slow Complete
  • 41. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 41 Racing overtakes  Fuzzy Rule Based System  4 inputs:  Longitudinal distance (Dx)  Lateral distance (Dy)  Lateral deviation (DL)  Time to Collision (TtC)  2 outputs  Required lateral position  Pedal (Emergency braking)  Manually tuned rule base  600 potential rules  3·8·5·5 Labels  Common sense  If the maneuver is finished go back to the center  Grouping  If lateral distance is long, do not move  81 rules in the final rule base 2 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
  • 42. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 42 Racing overtakes  They were tested:  The proposal  Controllers included in TORCS  Against:  Slow at 12 different speeds  Limited at 12 different speeds  Complete at 12 different speeds  It is measured:  % of finished maneuvers  % of maneuvers without frontal damage (system’s fault)  % of maneuvers without lateral damage (opponent’s fault) 3 Proposal Berniw Bt Inferno Lliaw Olethros Simplix Tita %S 100 34.4 21.9 37.5 37.5 31.3 25 37.5 %Bf D 90.6 75 87.5 78.1 78.1 100 100 81.3 %Lf D 87.5 62.5 96.9 65.6 65.6 93.8 100 65.6 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010 2º Best Work IEEE-CIG 2010
  • 43. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 43 Videos Highlight from the Simulated Car Racing Competition at CEC-2009 - Driver by Onieva and Pelta https://www.youtube.com/watch?v=k5FgzAmJdzs 2010 Simulated Car Racing Championship - First Leg @ GECCO-2010 https://www.youtube.com/watch?v=SXDJMXpiRs0
  • 44. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 44  We collect traffic data from the  California Department of Transportation  About 15 km long 14 (actually more) loops detectors 6 loops detectors which give us flow, speed and density 8 loops detectors which give us only flow Congestion Prediction 1 Objective: When congestion is going to occur here ? X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 45. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 45 Congestion Prediction  We group the information in 14 possible input variables  3 flows in the main highway F1 F2 F3  3 densities in the main highway D1 D2 D3  3 speeds in the main highway S1 S2 S3  2 input flows from the entrances iF1 iF2  2 output flows from the exits oF1 oF2 2 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 46. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 46 Congestion Prediction We define a hierarchical fuzzy system structure to predict congestions at desired  Example: 4 input variables with 3 membership functions per variable 3 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014 The same example with N input variables : 3N rules in the non-hierarchical system 9·(N-1) rules in the hierarchical system 14 variables: 4.782.969 Vs 117 Rules
  • 47. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 47 Congestion Prediction The systems is optimized by a Genetic Algorithm:  3-part coding Input variables’ order  Variable selection Membership Functions Rules’ consequents  2 operator groups: Permutation Real Coding 4 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 48. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 48 Congestion Prediction 3 experiments:  97% 5 minutes ahead 9 variables  94% 15 minutes ahead 7 variables  93% 30 minutes ahead 10 variables 5 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 49. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 49 Assignment  Write an abstract of your thesis work (max. 250 words)  Look for 2-3 works that applies fuzzy logic to your thesis’ topic.  Write a brief summary (max. 100 words/each)  Look for 2-3 works that applies genetic algorithms to your thesis’ topic .  Write a brief summary (max. 100 words/each)  Look for 2-3 works that applies genetic fuzzy system to your thesis’ topic .  Write a brief summary (max. 100 words/each)
  • 50. Thank you very much Any Question?